metal-organic compounds
Dichloridodimethylbis(thiourea-κS)tin(IV)
aLaboratoire de Chimie Minerale et Analytique, Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Dakar, Senegal, bSchool of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa, and cInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: yayasow81@yahoo.fr
The title compound, [Sn(CH3)2Cl2(CH4N2S)2], crystallizes with two half-molecules in the Both molecules are completed by inversion symmetry with the two SnIV atoms located on inversion centers. The metal atoms have distorted octahedral coordination environments defined by two Cl atoms, two C atoms of methyl groups and two thiourea S atoms. In the crystal, molecules are linked via N—H⋯Cl and N—H⋯S hydrogen bonds, forming a three-dimensional structure.
CCDC reference: 984032
Related literature
For the applications and biological activity of organotin(IV) compounds, see: Davies (2010); Evans & Karpel (1984); Hadjikakou & Hadjiliadis (2009). For the crystal structures of related compounds, see: Calogero et al. (1984); Sow et al. (2012, 2013).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009).
Supporting information
CCDC reference: 984032
10.1107/S1600536814002025/wm5003sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814002025/wm5003Isup2.hkl
The title compound was synthesized by the reaction of dichloridodimethyltin(IV) with thiourea in a solution of absolute ethanol in a 1:2 molar ratio. After stirring for two hours, a clear solution was obtained. It was allowed to evaporate slowly at room temperature, yielding colourless block-like crystals (yield 63%; m.p. 512 K). Analytical data calculated for C4H14Cl2N4S2Sn: C 12.92; H: 3.79; N: 15.06; S:17.24; Sn: 31.9 2%: found: C: 12.87; H: 3.63; N: 15.06; S: 16.95; Sn: 31.99%.
The NH2 H atoms were located in a difference Fourier map and refined with distance restraints: N—H = 0.86 (2) Å. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.96 Å for methyl H atoms, with Uiso(H) = 1.5Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. A view of the structures of the two independent molecules of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Both atoms Sn1 and Sn2 occupy inversion centers. Non-labelled atoms are generated by symmetry codes -x + 1, -y + 1, -z + 1 (Sn1) and -x, -y, -z (Sn2). | |
Fig. 2. A view along the a axis of the crystal structure of the title compound, showing the crystal packing. Hydrogen bonds are shown as dashed lines (see Table 1 for details). |
[Sn(CH3)2Cl2(CH4N2S)2] | Z = 2 |
Mr = 371.90 | F(000) = 364 |
Triclinic, P1 | Dx = 1.892 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4461 (1) Å | Cell parameters from 8182 reflections |
b = 8.4063 (2) Å | θ = 2.5–28.3° |
c = 12.4249 (2) Å | µ = 2.65 mm−1 |
α = 82.172 (1)° | T = 296 K |
β = 78.240 (1)° | Block, colourless |
γ = 89.465 (1)° | 0.32 × 0.19 × 0.06 mm |
V = 652.89 (2) Å3 |
Bruker APEXII CCD diffractometer | 3250 independent reflections |
Radiation source: sealed tube | 2917 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
φ and ω scans | θmax = 28.3°, θmin = 1.7° |
Absorption correction: integration (face-indexed absorption correction carried out with XPREP; Bruker, 2005) | h = −8→8 |
Tmin = 0.533, Tmax = 0.827 | k = −11→11 |
12611 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + (0.0263P)2 + 0.0565P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3250 reflections | Δρmax = 0.57 e Å−3 |
156 parameters | Δρmin = −0.54 e Å−3 |
8 restraints | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: heavy-atom method | Extinction coefficient: 0.0077 (7) |
[Sn(CH3)2Cl2(CH4N2S)2] | γ = 89.465 (1)° |
Mr = 371.90 | V = 652.89 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.4461 (1) Å | Mo Kα radiation |
b = 8.4063 (2) Å | µ = 2.65 mm−1 |
c = 12.4249 (2) Å | T = 296 K |
α = 82.172 (1)° | 0.32 × 0.19 × 0.06 mm |
β = 78.240 (1)° |
Bruker APEXII CCD diffractometer | 3250 independent reflections |
Absorption correction: integration (face-indexed absorption correction carried out with XPREP; Bruker, 2005) | 2917 reflections with I > 2σ(I) |
Tmin = 0.533, Tmax = 0.827 | Rint = 0.058 |
12611 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 8 restraints |
wR(F2) = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.57 e Å−3 |
3250 reflections | Δρmin = −0.54 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.5000 | 0.5000 | 0.5000 | 0.01799 (7) | |
Sn2 | 0.0000 | 0.0000 | 0.0000 | 0.01831 (7) | |
Cl1 | 0.70413 (9) | 0.23120 (6) | 0.47747 (4) | 0.03146 (13) | |
Cl2 | −0.11932 (8) | 0.29624 (5) | −0.05524 (4) | 0.02409 (11) | |
S1 | 0.36555 (8) | 0.49581 (6) | 0.30643 (4) | 0.02033 (11) | |
S2 | 0.19978 (8) | 0.15451 (6) | 0.13272 (4) | 0.02269 (11) | |
N1 | 0.5850 (3) | 0.5545 (2) | 0.10178 (15) | 0.0250 (4) | |
H1A | 0.473 (3) | 0.606 (2) | 0.0937 (19) | 0.026 (6)* | |
H1B | 0.691 (3) | 0.561 (3) | 0.0492 (19) | 0.052 (9)* | |
N2 | 0.7433 (3) | 0.3848 (2) | 0.21896 (16) | 0.0300 (4) | |
H2A | 0.846 (3) | 0.385 (3) | 0.1668 (17) | 0.034 (7)* | |
H2B | 0.739 (4) | 0.333 (3) | 0.2837 (15) | 0.030 (6)* | |
N3 | 0.2675 (3) | 0.0996 (2) | 0.33626 (16) | 0.0313 (4) | |
H3A | 0.283 (4) | 0.197 (2) | 0.334 (2) | 0.030 (7)* | |
H3B | 0.290 (4) | 0.040 (3) | 0.3937 (16) | 0.036 (7)* | |
N4 | 0.1851 (3) | −0.1227 (2) | 0.26787 (15) | 0.0261 (4) | |
H4A | 0.198 (4) | −0.169 (3) | 0.3298 (15) | 0.030 (6)* | |
H4B | 0.166 (4) | −0.169 (3) | 0.2126 (16) | 0.026 (6)* | |
C1 | 0.5832 (3) | 0.4767 (2) | 0.20191 (16) | 0.0202 (4) | |
C2 | 0.2200 (3) | 0.3664 (3) | 0.58135 (18) | 0.0294 (5) | |
H2D | 0.2568 | 0.2592 | 0.6075 | 0.044* | |
H2E | 0.1275 | 0.3626 | 0.5302 | 0.044* | |
H2F | 0.1494 | 0.4172 | 0.6431 | 0.044* | |
C3 | 0.2172 (3) | 0.0340 (2) | 0.25425 (16) | 0.0200 (4) | |
C4 | 0.2713 (3) | 0.0400 (3) | −0.12940 (17) | 0.0261 (4) | |
H4D | 0.3432 | 0.1368 | −0.1233 | 0.039* | |
H4E | 0.2290 | 0.0503 | −0.1997 | 0.039* | |
H4F | 0.3648 | −0.0489 | −0.1239 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01928 (10) | 0.01734 (10) | 0.01622 (10) | −0.00096 (7) | −0.00255 (7) | 0.00007 (7) |
Sn2 | 0.01640 (10) | 0.01877 (10) | 0.01806 (11) | 0.00430 (7) | −0.00106 (7) | −0.00052 (7) |
Cl1 | 0.0455 (3) | 0.0274 (3) | 0.0217 (3) | 0.0133 (2) | −0.0094 (2) | −0.0012 (2) |
Cl2 | 0.0289 (3) | 0.0200 (2) | 0.0240 (3) | 0.00809 (19) | −0.0076 (2) | −0.00258 (19) |
S1 | 0.0230 (2) | 0.0217 (2) | 0.0166 (2) | 0.00450 (19) | −0.00449 (18) | −0.00357 (18) |
S2 | 0.0292 (3) | 0.0181 (2) | 0.0216 (2) | 0.00022 (19) | −0.0098 (2) | 0.00136 (19) |
N1 | 0.0265 (9) | 0.0296 (9) | 0.0183 (9) | 0.0052 (8) | −0.0047 (7) | −0.0009 (7) |
N2 | 0.0308 (10) | 0.0398 (11) | 0.0181 (9) | 0.0166 (8) | −0.0029 (8) | −0.0037 (8) |
N3 | 0.0539 (13) | 0.0191 (9) | 0.0235 (10) | −0.0018 (9) | −0.0149 (9) | −0.0005 (8) |
N4 | 0.0379 (10) | 0.0195 (9) | 0.0221 (10) | −0.0003 (7) | −0.0115 (8) | 0.0012 (7) |
C1 | 0.0258 (10) | 0.0181 (9) | 0.0173 (9) | 0.0014 (8) | −0.0052 (7) | −0.0039 (7) |
C2 | 0.0271 (11) | 0.0343 (12) | 0.0244 (11) | −0.0083 (9) | −0.0016 (9) | −0.0003 (9) |
C3 | 0.0182 (9) | 0.0201 (9) | 0.0215 (10) | 0.0036 (7) | −0.0037 (7) | −0.0020 (8) |
C4 | 0.0232 (10) | 0.0272 (10) | 0.0247 (11) | 0.0024 (8) | 0.0014 (8) | −0.0021 (9) |
Sn1—C2i | 2.127 (2) | N1—H1B | 0.838 (17) |
Sn1—C2 | 2.127 (2) | N2—C1 | 1.318 (3) |
Sn1—Cl1i | 2.6234 (5) | N2—H2A | 0.828 (16) |
Sn1—Cl1 | 2.6234 (5) | N2—H2B | 0.855 (16) |
Sn1—S1 | 2.7221 (5) | N3—C3 | 1.319 (3) |
Sn1—S1i | 2.7222 (5) | N3—H3A | 0.818 (16) |
Sn2—C4 | 2.115 (2) | N3—H3B | 0.853 (16) |
Sn2—C4ii | 2.115 (2) | N4—C3 | 1.318 (3) |
Sn2—Cl2ii | 2.6416 (4) | N4—H4A | 0.835 (16) |
Sn2—Cl2 | 2.6416 (4) | N4—H4B | 0.863 (15) |
Sn2—S2ii | 2.7468 (5) | C2—H2D | 0.9600 |
Sn2—S2 | 2.7468 (5) | C2—H2E | 0.9600 |
S1—C1 | 1.729 (2) | C2—H2F | 0.9600 |
S2—C3 | 1.723 (2) | C4—H4D | 0.9600 |
N1—C1 | 1.322 (3) | C4—H4E | 0.9600 |
N1—H1A | 0.853 (15) | C4—H4F | 0.9600 |
C2i—Sn1—C2 | 180.0 | C3—S2—Sn2 | 112.12 (7) |
C2i—Sn1—Cl1i | 89.90 (7) | C1—N1—H1A | 116.1 (16) |
C2—Sn1—Cl1i | 90.10 (7) | C1—N1—H1B | 124 (2) |
C2i—Sn1—Cl1 | 90.10 (7) | H1A—N1—H1B | 120 (2) |
C2—Sn1—Cl1 | 89.90 (7) | C1—N2—H2A | 117.5 (18) |
Cl1i—Sn1—Cl1 | 180.00 (2) | C1—N2—H2B | 118.6 (16) |
C2i—Sn1—S1 | 92.49 (6) | H2A—N2—H2B | 124 (2) |
C2—Sn1—S1 | 87.51 (6) | C3—N3—H3A | 123.0 (17) |
Cl1i—Sn1—S1 | 88.204 (15) | C3—N3—H3B | 119.6 (17) |
Cl1—Sn1—S1 | 91.796 (15) | H3A—N3—H3B | 117 (2) |
C2i—Sn1—S1i | 87.51 (6) | C3—N4—H4A | 114.2 (16) |
C2—Sn1—S1i | 92.49 (6) | C3—N4—H4B | 119.5 (16) |
Cl1i—Sn1—S1i | 91.795 (15) | H4A—N4—H4B | 126 (2) |
Cl1—Sn1—S1i | 88.204 (15) | N2—C1—N1 | 119.65 (19) |
S1—Sn1—S1i | 180.0 | N2—C1—S1 | 121.92 (15) |
C4—Sn2—C4ii | 180.0 | N1—C1—S1 | 118.41 (15) |
C4—Sn2—Cl2ii | 90.67 (6) | Sn1—C2—H2D | 109.5 |
C4ii—Sn2—Cl2ii | 89.33 (6) | Sn1—C2—H2E | 109.5 |
C4—Sn2—Cl2 | 89.33 (6) | H2D—C2—H2E | 109.5 |
C4ii—Sn2—Cl2 | 90.67 (6) | Sn1—C2—H2F | 109.5 |
Cl2ii—Sn2—Cl2 | 180.00 (2) | H2D—C2—H2F | 109.5 |
C4—Sn2—S2ii | 90.20 (6) | H2E—C2—H2F | 109.5 |
C4ii—Sn2—S2ii | 89.80 (6) | N4—C3—N3 | 118.47 (18) |
Cl2ii—Sn2—S2ii | 81.026 (14) | N4—C3—S2 | 122.29 (15) |
Cl2—Sn2—S2ii | 98.974 (14) | N3—C3—S2 | 119.23 (15) |
C4—Sn2—S2 | 89.80 (6) | Sn2—C4—H4D | 109.5 |
C4ii—Sn2—S2 | 90.20 (6) | Sn2—C4—H4E | 109.5 |
Cl2ii—Sn2—S2 | 98.975 (14) | H4D—C4—H4E | 109.5 |
Cl2—Sn2—S2 | 81.025 (14) | Sn2—C4—H4F | 109.5 |
S2ii—Sn2—S2 | 180.0 | H4D—C4—H4F | 109.5 |
C1—S1—Sn1 | 108.77 (6) | H4E—C4—H4F | 109.5 |
Sn1—S1—C1—N2 | 37.99 (18) | Sn2—S2—C3—N4 | 15.2 (2) |
Sn1—S1—C1—N1 | −143.46 (14) | Sn2—S2—C3—N3 | −165.86 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl2iii | 0.85 (2) | 2.53 (2) | 3.3703 (19) | 168 (2) |
N1—H1B···Cl2iv | 0.84 (2) | 2.87 (2) | 3.4224 (19) | 125 (2) |
N2—H2A···Cl2iv | 0.83 (2) | 2.92 (2) | 3.5205 (19) | 131 (2) |
N2—H2A···S2iv | 0.83 (2) | 2.98 (2) | 3.5677 (19) | 130 (2) |
N2—H2B···Cl1 | 0.86 (2) | 2.41 (2) | 3.255 (2) | 170 (2) |
N3—H3A···S1 | 0.82 (2) | 2.54 (2) | 3.3522 (19) | 173 (2) |
N3—H3B···Cl1v | 0.85 (2) | 2.60 (2) | 3.396 (2) | 155 (2) |
N4—H4A···Cl1v | 0.84 (2) | 2.58 (2) | 3.3876 (18) | 162 (2) |
N4—H4B···Cl2ii | 0.86 (2) | 2.42 (2) | 3.2871 (18) | 179 (2) |
Symmetry codes: (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) x+1, y, z; (v) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl2i | 0.853 (15) | 2.533 (16) | 3.3703 (19) | 168 (2) |
N1—H1B···Cl2ii | 0.838 (17) | 2.87 (2) | 3.4224 (19) | 125 (2) |
N2—H2A···Cl2ii | 0.828 (16) | 2.92 (2) | 3.5205 (19) | 131 (2) |
N2—H2A···S2ii | 0.828 (16) | 2.98 (2) | 3.5677 (19) | 130 (2) |
N2—H2B···Cl1 | 0.855 (16) | 2.409 (16) | 3.255 (2) | 170 (2) |
N3—H3A···S1 | 0.818 (16) | 2.539 (16) | 3.3522 (19) | 173 (2) |
N3—H3B···Cl1iii | 0.853 (16) | 2.603 (18) | 3.396 (2) | 155 (2) |
N4—H4A···Cl1iii | 0.835 (16) | 2.582 (17) | 3.3876 (18) | 162 (2) |
N4—H4B···Cl2iv | 0.863 (15) | 2.424 (16) | 3.2871 (18) | 179 (2) |
Symmetry codes: (i) −x, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z. |
References
Bruker (2005). APEX2, XPREP and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calogero, S., Valle, G. & Russo, U. (1984). Organometallics, 3, 1205–1210. CSD CrossRef CAS Web of Science Google Scholar
Davies, A. G. (2010). J. Chem. Res. 34, 181–190. Web of Science CrossRef CAS Google Scholar
Evans, C. J. & Karpel, S. (1984). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Google Scholar
Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 235–249. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sow, Y., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337. CSD CrossRef IUCr Journals Google Scholar
Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m539–m540. CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organotin(IV) compounds have been shown to have several applications in modern technology, for example as catalysis in polymer chemistry (Davies, 2010; Evans & Karpel, 1984). The antiproliferative and anti-tumor activities of organotin(IV) compounds have been reviewed by Hadjikakou & Hadjiliadis (2009). The crystal structures of a number of such compounds involving thiourea ligands have been reported, e.g. Dichloridodimethylbis(1,3-dimethylthiourea-κS)tin(IV) (Calogero et al., 1984), Dichloridodiphenylbis(thiourea-κS)tin(IV) (Sow et al., 2013) and µ2-oxalato-bis[triphenyl(thiourea-κS)tin(IV)] (Sow et al., 2012). Herein we report on the synthesis and crystal structure of the title compound, [Sn(CH3)2Cl2(CH4N2S)2].
The molecular structure of the two independent molecules of the title compound is illustrated in Fig. 1. The compound crystallizes with two half molecules in the asymmetric unit. Both molecules possess inversion symmetry with atoms Sn1 and Sn2 located on inversion centers, both with distorted octahedral coordination geometries resulting from two Cl atoms, two C atoms of methyl groups and two thiourea S atoms. The bond lengths and angles are similar to those observed for dichloridodimethylbis(1,3-dimethylthiourea-κS)tin(IV) (Calogero et al., 1984).
In the crystal, molecules are linked via N—H···Cl and N—H···S hydrogen bonds into a three-dimensional structure (Table 1 and Fig. 2).