metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­di­methyl­bis­­(thio­urea-κS)tin(IV)

aLaboratoire de Chimie Minerale et Analytique, Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop, Dakar, Senegal, bSchool of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa, and cInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: yayasow81@yahoo.fr

(Received 26 January 2014; accepted 28 January 2014; online 8 February 2014)

The title compound, [Sn(CH3)2Cl2(CH4N2S)2], crystallizes with two half-mol­ecules in the asymmetric unit. Both mol­ecules are completed by inversion symmetry with the two SnIV atoms located on inversion centers. The metal atoms have distorted octa­hedral coordination environments defined by two Cl atoms, two C atoms of methyl groups and two thio­urea S atoms. In the crystal, mol­ecules are linked via N—H⋯Cl and N—H⋯S hydrogen bonds, forming a three-dimensional structure.

Related literature

For the applications and biological activity of organotin(IV) compounds, see: Davies (2010[Davies, A. G. (2010). J. Chem. Res. 34, 181-190.]); Evans & Karpel (1984[Evans, C. J. & Karpel, S. (1984). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Hadjikakou & Hadjiliadis (2009[Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 235-249.]). For the crystal structures of related compounds, see: Calogero et al. (1984[Calogero, S., Valle, G. & Russo, U. (1984). Organometallics, 3, 1205-1210.]); Sow et al. (2012[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337.], 2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m539-m540.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2Cl2(CH4N2S)2]

  • Mr = 371.90

  • Triclinic, [P \overline 1]

  • a = 6.4461 (1) Å

  • b = 8.4063 (2) Å

  • c = 12.4249 (2) Å

  • α = 82.172 (1)°

  • β = 78.240 (1)°

  • γ = 89.465 (1)°

  • V = 652.89 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.65 mm−1

  • T = 296 K

  • 0.32 × 0.19 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (by face-indexing with XPREP; Bruker, 2005[Bruker (2005). APEX2, XPREP and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.533, Tmax = 0.827

  • 12611 measured reflections

  • 3250 independent reflections

  • 2917 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.053

  • S = 1.06

  • 3250 reflections

  • 156 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.85 (2) 2.53 (2) 3.3703 (19) 168 (2)
N1—H1B⋯Cl2ii 0.84 (2) 2.87 (2) 3.4224 (19) 125 (2)
N2—H2A⋯Cl2ii 0.83 (2) 2.92 (2) 3.5205 (19) 131 (2)
N2—H2A⋯S2ii 0.83 (2) 2.98 (2) 3.5677 (19) 130 (2)
N2—H2B⋯Cl1 0.86 (2) 2.41 (2) 3.255 (2) 170 (2)
N3—H3A⋯S1 0.82 (2) 2.54 (2) 3.3522 (19) 173 (2)
N3—H3B⋯Cl1iii 0.85 (2) 2.60 (2) 3.396 (2) 155 (2)
N4—H4A⋯Cl1iii 0.84 (2) 2.58 (2) 3.3876 (18) 162 (2)
N4—H4B⋯Cl2iv 0.86 (2) 2.42 (2) 3.2871 (18) 179 (2)
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) -x+1, -y, -z+1; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, XPREP and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2, XPREP and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Organotin(IV) compounds have been shown to have several applications in modern technology, for example as catalysis in polymer chemistry (Davies, 2010; Evans & Karpel, 1984). The antiproliferative and anti-tumor activities of organotin(IV) compounds have been reviewed by Hadjikakou & Hadjiliadis (2009). The crystal structures of a number of such compounds involving thiourea ligands have been reported, e.g. Dichloridodimethylbis(1,3-dimethylthiourea-κS)tin(IV) (Calogero et al., 1984), Dichloridodiphenylbis(thiourea-κS)tin(IV) (Sow et al., 2013) and µ2-oxalato-bis[triphenyl(thiourea-κS)tin(IV)] (Sow et al., 2012). Herein we report on the synthesis and crystal structure of the title compound, [Sn(CH3)2Cl2(CH4N2S)2].

The molecular structure of the two independent molecules of the title compound is illustrated in Fig. 1. The compound crystallizes with two half molecules in the asymmetric unit. Both molecules possess inversion symmetry with atoms Sn1 and Sn2 located on inversion centers, both with distorted octahedral coordination geometries resulting from two Cl atoms, two C atoms of methyl groups and two thiourea S atoms. The bond lengths and angles are similar to those observed for dichloridodimethylbis(1,3-dimethylthiourea-κS)tin(IV) (Calogero et al., 1984).

In the crystal, molecules are linked via N—H···Cl and N—H···S hydrogen bonds into a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For the applications and biological activity of organotin(IV) compounds, see: Davies (2010); Evans & Karpel (1984); Hadjikakou & Hadjiliadis (2009). For the crystal structures of related compounds, see: Calogero et al. (1984); Sow et al. (2012, 2013).

Experimental top

The title compound was synthesized by the reaction of dichloridodimethyltin(IV) with thiourea in a solution of absolute ethanol in a 1:2 molar ratio. After stirring for two hours, a clear solution was obtained. It was allowed to evaporate slowly at room temperature, yielding colourless block-like crystals (yield 63%; m.p. 512 K). Analytical data calculated for C4H14Cl2N4S2Sn: C 12.92; H: 3.79; N: 15.06; S:17.24; Sn: 31.9 2%: found: C: 12.87; H: 3.63; N: 15.06; S: 16.95; Sn: 31.99%.

Refinement top

The NH2 H atoms were located in a difference Fourier map and refined with distance restraints: N—H = 0.86 (2) Å. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.96 Å for methyl H atoms, with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the structures of the two independent molecules of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Both atoms Sn1 and Sn2 occupy inversion centers. Non-labelled atoms are generated by symmetry codes -x + 1, -y + 1, -z + 1 (Sn1) and -x, -y, -z (Sn2).
[Figure 2] Fig. 2. A view along the a axis of the crystal structure of the title compound, showing the crystal packing. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
Dichloridodimethylbis(thiourea-κS)tin(IV) top
Crystal data top
[Sn(CH3)2Cl2(CH4N2S)2]Z = 2
Mr = 371.90F(000) = 364
Triclinic, P1Dx = 1.892 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4461 (1) ÅCell parameters from 8182 reflections
b = 8.4063 (2) Åθ = 2.5–28.3°
c = 12.4249 (2) ŵ = 2.65 mm1
α = 82.172 (1)°T = 296 K
β = 78.240 (1)°Block, colourless
γ = 89.465 (1)°0.32 × 0.19 × 0.06 mm
V = 652.89 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3250 independent reflections
Radiation source: sealed tube2917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: integration
(face-indexed absorption correction carried out with XPREP; Bruker, 2005)
h = 88
Tmin = 0.533, Tmax = 0.827k = 1111
12611 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.0565P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3250 reflectionsΔρmax = 0.57 e Å3
156 parametersΔρmin = 0.54 e Å3
8 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.0077 (7)
Crystal data top
[Sn(CH3)2Cl2(CH4N2S)2]γ = 89.465 (1)°
Mr = 371.90V = 652.89 (2) Å3
Triclinic, P1Z = 2
a = 6.4461 (1) ÅMo Kα radiation
b = 8.4063 (2) ŵ = 2.65 mm1
c = 12.4249 (2) ÅT = 296 K
α = 82.172 (1)°0.32 × 0.19 × 0.06 mm
β = 78.240 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3250 independent reflections
Absorption correction: integration
(face-indexed absorption correction carried out with XPREP; Bruker, 2005)
2917 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.827Rint = 0.058
12611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0218 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.57 e Å3
3250 reflectionsΔρmin = 0.54 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.50000.50000.01799 (7)
Sn20.00000.00000.00000.01831 (7)
Cl10.70413 (9)0.23120 (6)0.47747 (4)0.03146 (13)
Cl20.11932 (8)0.29624 (5)0.05524 (4)0.02409 (11)
S10.36555 (8)0.49581 (6)0.30643 (4)0.02033 (11)
S20.19978 (8)0.15451 (6)0.13272 (4)0.02269 (11)
N10.5850 (3)0.5545 (2)0.10178 (15)0.0250 (4)
H1A0.473 (3)0.606 (2)0.0937 (19)0.026 (6)*
H1B0.691 (3)0.561 (3)0.0492 (19)0.052 (9)*
N20.7433 (3)0.3848 (2)0.21896 (16)0.0300 (4)
H2A0.846 (3)0.385 (3)0.1668 (17)0.034 (7)*
H2B0.739 (4)0.333 (3)0.2837 (15)0.030 (6)*
N30.2675 (3)0.0996 (2)0.33626 (16)0.0313 (4)
H3A0.283 (4)0.197 (2)0.334 (2)0.030 (7)*
H3B0.290 (4)0.040 (3)0.3937 (16)0.036 (7)*
N40.1851 (3)0.1227 (2)0.26787 (15)0.0261 (4)
H4A0.198 (4)0.169 (3)0.3298 (15)0.030 (6)*
H4B0.166 (4)0.169 (3)0.2126 (16)0.026 (6)*
C10.5832 (3)0.4767 (2)0.20191 (16)0.0202 (4)
C20.2200 (3)0.3664 (3)0.58135 (18)0.0294 (5)
H2D0.25680.25920.60750.044*
H2E0.12750.36260.53020.044*
H2F0.14940.41720.64310.044*
C30.2172 (3)0.0340 (2)0.25425 (16)0.0200 (4)
C40.2713 (3)0.0400 (3)0.12940 (17)0.0261 (4)
H4D0.34320.13680.12330.039*
H4E0.22900.05030.19970.039*
H4F0.36480.04890.12390.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01928 (10)0.01734 (10)0.01622 (10)0.00096 (7)0.00255 (7)0.00007 (7)
Sn20.01640 (10)0.01877 (10)0.01806 (11)0.00430 (7)0.00106 (7)0.00052 (7)
Cl10.0455 (3)0.0274 (3)0.0217 (3)0.0133 (2)0.0094 (2)0.0012 (2)
Cl20.0289 (3)0.0200 (2)0.0240 (3)0.00809 (19)0.0076 (2)0.00258 (19)
S10.0230 (2)0.0217 (2)0.0166 (2)0.00450 (19)0.00449 (18)0.00357 (18)
S20.0292 (3)0.0181 (2)0.0216 (2)0.00022 (19)0.0098 (2)0.00136 (19)
N10.0265 (9)0.0296 (9)0.0183 (9)0.0052 (8)0.0047 (7)0.0009 (7)
N20.0308 (10)0.0398 (11)0.0181 (9)0.0166 (8)0.0029 (8)0.0037 (8)
N30.0539 (13)0.0191 (9)0.0235 (10)0.0018 (9)0.0149 (9)0.0005 (8)
N40.0379 (10)0.0195 (9)0.0221 (10)0.0003 (7)0.0115 (8)0.0012 (7)
C10.0258 (10)0.0181 (9)0.0173 (9)0.0014 (8)0.0052 (7)0.0039 (7)
C20.0271 (11)0.0343 (12)0.0244 (11)0.0083 (9)0.0016 (9)0.0003 (9)
C30.0182 (9)0.0201 (9)0.0215 (10)0.0036 (7)0.0037 (7)0.0020 (8)
C40.0232 (10)0.0272 (10)0.0247 (11)0.0024 (8)0.0014 (8)0.0021 (9)
Geometric parameters (Å, º) top
Sn1—C2i2.127 (2)N1—H1B0.838 (17)
Sn1—C22.127 (2)N2—C11.318 (3)
Sn1—Cl1i2.6234 (5)N2—H2A0.828 (16)
Sn1—Cl12.6234 (5)N2—H2B0.855 (16)
Sn1—S12.7221 (5)N3—C31.319 (3)
Sn1—S1i2.7222 (5)N3—H3A0.818 (16)
Sn2—C42.115 (2)N3—H3B0.853 (16)
Sn2—C4ii2.115 (2)N4—C31.318 (3)
Sn2—Cl2ii2.6416 (4)N4—H4A0.835 (16)
Sn2—Cl22.6416 (4)N4—H4B0.863 (15)
Sn2—S2ii2.7468 (5)C2—H2D0.9600
Sn2—S22.7468 (5)C2—H2E0.9600
S1—C11.729 (2)C2—H2F0.9600
S2—C31.723 (2)C4—H4D0.9600
N1—C11.322 (3)C4—H4E0.9600
N1—H1A0.853 (15)C4—H4F0.9600
C2i—Sn1—C2180.0C3—S2—Sn2112.12 (7)
C2i—Sn1—Cl1i89.90 (7)C1—N1—H1A116.1 (16)
C2—Sn1—Cl1i90.10 (7)C1—N1—H1B124 (2)
C2i—Sn1—Cl190.10 (7)H1A—N1—H1B120 (2)
C2—Sn1—Cl189.90 (7)C1—N2—H2A117.5 (18)
Cl1i—Sn1—Cl1180.00 (2)C1—N2—H2B118.6 (16)
C2i—Sn1—S192.49 (6)H2A—N2—H2B124 (2)
C2—Sn1—S187.51 (6)C3—N3—H3A123.0 (17)
Cl1i—Sn1—S188.204 (15)C3—N3—H3B119.6 (17)
Cl1—Sn1—S191.796 (15)H3A—N3—H3B117 (2)
C2i—Sn1—S1i87.51 (6)C3—N4—H4A114.2 (16)
C2—Sn1—S1i92.49 (6)C3—N4—H4B119.5 (16)
Cl1i—Sn1—S1i91.795 (15)H4A—N4—H4B126 (2)
Cl1—Sn1—S1i88.204 (15)N2—C1—N1119.65 (19)
S1—Sn1—S1i180.0N2—C1—S1121.92 (15)
C4—Sn2—C4ii180.0N1—C1—S1118.41 (15)
C4—Sn2—Cl2ii90.67 (6)Sn1—C2—H2D109.5
C4ii—Sn2—Cl2ii89.33 (6)Sn1—C2—H2E109.5
C4—Sn2—Cl289.33 (6)H2D—C2—H2E109.5
C4ii—Sn2—Cl290.67 (6)Sn1—C2—H2F109.5
Cl2ii—Sn2—Cl2180.00 (2)H2D—C2—H2F109.5
C4—Sn2—S2ii90.20 (6)H2E—C2—H2F109.5
C4ii—Sn2—S2ii89.80 (6)N4—C3—N3118.47 (18)
Cl2ii—Sn2—S2ii81.026 (14)N4—C3—S2122.29 (15)
Cl2—Sn2—S2ii98.974 (14)N3—C3—S2119.23 (15)
C4—Sn2—S289.80 (6)Sn2—C4—H4D109.5
C4ii—Sn2—S290.20 (6)Sn2—C4—H4E109.5
Cl2ii—Sn2—S298.975 (14)H4D—C4—H4E109.5
Cl2—Sn2—S281.025 (14)Sn2—C4—H4F109.5
S2ii—Sn2—S2180.0H4D—C4—H4F109.5
C1—S1—Sn1108.77 (6)H4E—C4—H4F109.5
Sn1—S1—C1—N237.99 (18)Sn2—S2—C3—N415.2 (2)
Sn1—S1—C1—N1143.46 (14)Sn2—S2—C3—N3165.86 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2iii0.85 (2)2.53 (2)3.3703 (19)168 (2)
N1—H1B···Cl2iv0.84 (2)2.87 (2)3.4224 (19)125 (2)
N2—H2A···Cl2iv0.83 (2)2.92 (2)3.5205 (19)131 (2)
N2—H2A···S2iv0.83 (2)2.98 (2)3.5677 (19)130 (2)
N2—H2B···Cl10.86 (2)2.41 (2)3.255 (2)170 (2)
N3—H3A···S10.82 (2)2.54 (2)3.3522 (19)173 (2)
N3—H3B···Cl1v0.85 (2)2.60 (2)3.396 (2)155 (2)
N4—H4A···Cl1v0.84 (2)2.58 (2)3.3876 (18)162 (2)
N4—H4B···Cl2ii0.86 (2)2.42 (2)3.2871 (18)179 (2)
Symmetry codes: (ii) x, y, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.853 (15)2.533 (16)3.3703 (19)168 (2)
N1—H1B···Cl2ii0.838 (17)2.87 (2)3.4224 (19)125 (2)
N2—H2A···Cl2ii0.828 (16)2.92 (2)3.5205 (19)131 (2)
N2—H2A···S2ii0.828 (16)2.98 (2)3.5677 (19)130 (2)
N2—H2B···Cl10.855 (16)2.409 (16)3.255 (2)170 (2)
N3—H3A···S10.818 (16)2.539 (16)3.3522 (19)173 (2)
N3—H3B···Cl1iii0.853 (16)2.603 (18)3.396 (2)155 (2)
N4—H4A···Cl1iii0.835 (16)2.582 (17)3.3876 (18)162 (2)
N4—H4B···Cl2iv0.863 (15)2.424 (16)3.2871 (18)179 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x, y, z.
 

References

First citationBruker (2005). APEX2, XPREP and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalogero, S., Valle, G. & Russo, U. (1984). Organometallics, 3, 1205–1210.  CSD CrossRef CAS Web of Science Google Scholar
First citationDavies, A. G. (2010). J. Chem. Res. 34, 181–190.  Web of Science CrossRef CAS Google Scholar
First citationEvans, C. J. & Karpel, S. (1984). Organotin Compounds in Modern Technology, J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationHadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 235–249.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337.  CSD CrossRef IUCr Journals Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m539–m540.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds