organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phthalo­nitrile

aFaculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 February 2014; accepted 17 February 2014; online 22 February 2014)

In the title compound, C8H3N3O2 (systematic name: 4-nitro­benzene-1,2-dicarbo­nitrile), the nitro group is twisted out of the plane of the benzene ring to which it is attached [O—N—Cring—Cring torsion angle = 9.80 (13)°]. In the crystal packing, supra­molecular layers with a zigzag topology in the ac plane are sustained by C—H⋯N inter­actions.

Related literature

For background to the synthesis of functional phthalocyanines, see: Chin et al. (2012[Chin, Y. J., Tan, A. L., Wimmer, F. L., Mirza, A. H., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2293-o2294.]). For a related structure, see: Lin et al. (2006[Lin, M.-J., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2006). J. Coord. Chem. 59, 607-615.]). For the synthesis, see: Rasmussen et al. (1978[Rasmussen, C. R., Gardocki, J. F., Plampin, J. N., Twardzik, B. L., Reynolds, B. E., Molinari, A. J., Schwartz, N., Bennetts, W. W., Price, B. E. & Marakowski, J. (1978). J. Med. Chem. 21, 1044-1054.]).

[Scheme 1]

Experimental

Crystal data
  • C8H3N3O2

  • Mr = 173.13

  • Orthorhombic, P b c a

  • a = 12.8642 (3) Å

  • b = 9.2013 (2) Å

  • c = 13.2578 (3) Å

  • V = 1569.29 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.626, Tmax = 1.000

  • 7104 measured reflections

  • 1638 independent reflections

  • 1556 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.088

  • S = 1.10

  • 1638 reflections

  • 130 parameters

  • All H-atom parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.962 (14) 2.621 (14) 3.3880 (13) 136.9 (11)
C3—H3⋯N2ii 0.950 (14) 2.554 (14) 3.3955 (13) 147.8 (10)
C6—H6⋯N3iii 0.943 (13) 2.457 (13) 3.3412 (13) 156.1 (10)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

As part of our on-going study of functional phthalocyanines, we have previously reported the synthesis and structure of 4-(prop-2-yn-1-yl­oxy)benzene-1,2-dicarbo­nitrile prepared from 4-nitro­phthalo­nitrile (Chin et al., 2012). We now report the structure of the latter.

Structural commentary top

In the title compound (Fig. 1), the nitro group is slightly twisted out of the plane of the benzene ring to which it is attached as seen in the value of the O1—N1—C1—C6 torsion angle of 9.80 (13)°. A similar small twist was found in the structure of the most closely related compound in the literature, i.e. 4-bromo-5-nitro­phthalo­nitrile (Lin et al., 2006).

Supra­molecular features top

Supra­molecular layers (Fig. 2) sustained by C—H···N inter­actions which form 22-membered {···NC4N···HC2H···NC3H···NC5H} synthons (Table 1) features in the crystal packing. The layers have a zigzag topolgy and extend parallel to the ac plane and stack along the b axis (Fig. 3).

Synthesis and crystallization top

The title compound was prepared by a literature procedure (Rasmussen et al., 1978). Thio­nyl chloride (4.3 ml, 0.56 mmol) was added drop wise with stiring over 5 minutes to 4-nitro­phthalamide (2.83 g, 13.5 mmol) in dry DMF (10.4 ml, 0.20 mmol) at 263 to 258 K (salt-ice bath). After 4 h, the homogenous yellow solution was poured onto excess ice-water with vigorous stirring. The precipitate was vacuum filtered, washed with cold water and dried. Crystals for the X-ray study were grown from slow evaporation from its methanol solution. Yield = 1.92 g (68 %), M.pt: 408–413 K (lit. 413–415 K). IR (KBr) ν/cm-1: 2924, 2241, 1610, 1587, 1538, 1463, 1356, 1297, 1076, 931, 855, 802, 745, 718.

Refinement top

All hydrogen atoms were refined freely.

Related literature top

For background to the synthesis of functional phthalocyanines, see: Chin et al. (2012). For a related structure, see: Lin et al. (2006). For the synthesis, see: Rasmussen et al. (1978).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the title compound, sustained by C—H···N interactions shown as orange dashed lines.
[Figure 3] Fig. 3. A view of the unit-cell contents of the title compound in projection down the a axis. The C—H···N interactions are shown as orange dashed lines.
4-Nitrobenzene-1,2-dicarbonitrile top
Crystal data top
C8H3N3O2F(000) = 704
Mr = 173.13Dx = 1.466 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 4240 reflections
a = 12.8642 (3) Åθ = 3.3–76.1°
b = 9.2013 (2) ŵ = 0.94 mm1
c = 13.2578 (3) ÅT = 100 K
V = 1569.29 (6) Å3Prism, colourless
Z = 80.35 × 0.30 × 0.25 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1638 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1556 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.4041 pixels mm-1θmax = 76.3°, θmin = 6.7°
ω scanh = 816
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1011
Tmin = 0.626, Tmax = 1.000l = 1616
7104 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.3777P]
where P = (Fo2 + 2Fc2)/3
1638 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C8H3N3O2V = 1569.29 (6) Å3
Mr = 173.13Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 12.8642 (3) ŵ = 0.94 mm1
b = 9.2013 (2) ÅT = 100 K
c = 13.2578 (3) Å0.35 × 0.30 × 0.25 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1638 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1556 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 1.000Rint = 0.016
7104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.088All H-atom parameters refined
S = 1.10Δρmax = 0.21 e Å3
1638 reflectionsΔρmin = 0.24 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55783 (6)0.56540 (8)0.23140 (6)0.0224 (2)
O20.41285 (6)0.62811 (9)0.16017 (6)0.0284 (2)
N10.46305 (7)0.56035 (9)0.22296 (6)0.0185 (2)
N20.49465 (7)0.20831 (10)0.59515 (7)0.0245 (2)
N30.20184 (7)0.10850 (10)0.54001 (7)0.0214 (2)
C10.40488 (7)0.46610 (10)0.29308 (7)0.0159 (2)
C20.30038 (8)0.44112 (11)0.27448 (7)0.0185 (2)
C30.24639 (7)0.34933 (11)0.33907 (7)0.0183 (2)
C40.29752 (7)0.28688 (10)0.42094 (7)0.0158 (2)
C50.40307 (7)0.31687 (10)0.43884 (7)0.0152 (2)
C60.45807 (7)0.40675 (10)0.37365 (7)0.0156 (2)
C70.45469 (7)0.25464 (10)0.52497 (7)0.0176 (2)
C80.24319 (7)0.18890 (10)0.48760 (7)0.0173 (2)
H20.2670 (11)0.4827 (16)0.2163 (10)0.027 (3)*
H30.1745 (11)0.3317 (13)0.3282 (9)0.020 (3)*
H60.5294 (10)0.4254 (13)0.3839 (9)0.017 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0156 (4)0.0246 (4)0.0271 (4)0.0022 (3)0.0032 (3)0.0031 (3)
O20.0248 (4)0.0300 (4)0.0304 (4)0.0019 (3)0.0029 (3)0.0151 (3)
N10.0177 (4)0.0174 (4)0.0204 (4)0.0004 (3)0.0013 (3)0.0015 (3)
N20.0198 (4)0.0303 (5)0.0235 (5)0.0001 (3)0.0016 (3)0.0064 (4)
N30.0183 (4)0.0241 (4)0.0217 (4)0.0026 (3)0.0008 (3)0.0014 (3)
C10.0166 (5)0.0145 (4)0.0167 (5)0.0002 (3)0.0030 (3)0.0003 (3)
C20.0176 (5)0.0204 (5)0.0174 (5)0.0014 (3)0.0017 (3)0.0002 (4)
C30.0132 (5)0.0219 (5)0.0199 (5)0.0009 (3)0.0010 (3)0.0005 (4)
C40.0155 (4)0.0152 (4)0.0166 (4)0.0002 (3)0.0021 (3)0.0022 (3)
C50.0152 (4)0.0144 (4)0.0159 (4)0.0021 (3)0.0001 (3)0.0020 (3)
C60.0125 (4)0.0153 (4)0.0190 (5)0.0005 (3)0.0006 (3)0.0021 (4)
C70.0135 (4)0.0185 (5)0.0208 (5)0.0015 (3)0.0019 (3)0.0000 (4)
C80.0139 (4)0.0196 (5)0.0184 (4)0.0002 (3)0.0014 (3)0.0023 (4)
Geometric parameters (Å, º) top
O1—N11.2252 (12)C2—H20.962 (14)
O2—N11.2243 (11)C3—C41.3932 (13)
N1—C11.4752 (12)C3—H30.949 (13)
N2—C71.1453 (13)C4—C51.4057 (13)
N3—C81.1459 (13)C4—C81.4431 (13)
C1—C61.3811 (14)C5—C61.3898 (13)
C1—C21.3859 (14)C5—C71.4397 (13)
C2—C31.3889 (14)C6—H60.943 (13)
O2—N1—O1124.59 (8)C3—C4—C5120.44 (9)
O2—N1—C1117.40 (8)C3—C4—C8120.41 (8)
O1—N1—C1118.01 (8)C5—C4—C8119.15 (8)
C6—C1—C2123.54 (9)C6—C5—C4120.23 (9)
C6—C1—N1117.94 (8)C6—C5—C7119.68 (8)
C2—C1—N1118.52 (9)C4—C5—C7120.09 (8)
C1—C2—C3118.44 (9)C1—C6—C5117.66 (9)
C1—C2—H2120.7 (8)C1—C6—H6121.4 (8)
C3—C2—H2120.8 (8)C5—C6—H6120.9 (8)
C2—C3—C4119.67 (9)N2—C7—C5178.04 (11)
C2—C3—H3119.8 (8)N3—C8—C4178.30 (10)
C4—C3—H3120.5 (8)
O2—N1—C1—C6170.25 (9)C3—C4—C5—C7178.52 (9)
O1—N1—C1—C69.80 (13)C8—C4—C5—C72.37 (13)
O2—N1—C1—C210.12 (13)C2—C1—C6—C50.25 (14)
O1—N1—C1—C2169.82 (9)N1—C1—C6—C5179.36 (8)
C6—C1—C2—C31.26 (15)C4—C5—C6—C11.09 (14)
N1—C1—C2—C3178.34 (8)C7—C5—C6—C1178.85 (8)
C1—C2—C3—C40.91 (15)C6—C5—C7—N296 (3)
C2—C3—C4—C50.38 (14)C4—C5—C7—N284 (3)
C2—C3—C4—C8178.71 (9)C3—C4—C8—N3122 (3)
C3—C4—C5—C61.41 (14)C5—C4—C8—N357 (4)
C8—C4—C5—C6177.69 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.962 (14)2.621 (14)3.3880 (13)136.9 (11)
C3—H3···N2ii0.950 (14)2.554 (14)3.3955 (13)147.8 (10)
C6—H6···N3iii0.943 (13)2.457 (13)3.3412 (13)156.1 (10)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.962 (14)2.621 (14)3.3880 (13)136.9 (11)
C3—H3···N2ii0.950 (14)2.554 (14)3.3955 (13)147.8 (10)
C6—H6···N3iii0.943 (13)2.457 (13)3.3412 (13)156.1 (10)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: david.young@ubd.edu.bn.

Acknowledgements

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChin, Y. J., Tan, A. L., Wimmer, F. L., Mirza, A. H., Young, D. J., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2293–o2294.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, M.-J., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2006). J. Coord. Chem. 59, 607–615.  Web of Science CrossRef CAS Google Scholar
First citationRasmussen, C. R., Gardocki, J. F., Plampin, J. N., Twardzik, B. L., Reynolds, B. E., Molinari, A. J., Schwartz, N., Bennetts, W. W., Price, B. E. & Marakowski, J. (1978). J. Med. Chem. 21, 1044–1054.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds