organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Diphen­yl[(phenyl­sulfan­yl)meth­yl]-λ5-phosphane­thione

aInstitut fuer Anorganische Chemie, Julius-Maximilians-Universitaet Würzburg, Am Hubland, 97074 Würzburg, Germany
*Correspondence e-mail: vgessner@uni-wuerzburg.de

(Received 21 February 2014; accepted 25 February 2014; online 28 February 2014)

The title compound, C19H17PS2, results from the direct deprotonation of di­phenyl­methyl­phosphine sulfide and subsequent reaction with diphenyl di­sulfide. The C—P and C—S bond lengths of 1.8242 (18) and 1.8009 (18) Å, respectively, of the central P—C—S linkage are comparable to those found in the sulfonyl analogue, but are considerably longer than those reported for the dimetallated sulfonyl compound. The dihedral angle between the benzene rings of the di­phenyl­methyl moiety is 69.46 (7)°. No distinct inter­molecular inter­actions are present in the crystal structure.

Related literature

For the sulfonyl and dimetallated sulfonyl analogues, see: Schröter & Gessner (2012[Schröter, P. & Gessner, V. H. (2012). Chem. Eur. J. 18, 11223-11227.]). For background to precursors for dili­thio methandiides and their carbene complexes, see: Becker & Gessner (2014a[Becker, J. & Gessner, V. H. (2014a). Dalton Trans. 43, 4320-4325.],b[Becker, J. & Gessner, V. H. (2014b). Organometallics, doi:101021/om5001277.]); Cantat et al. (2006[Cantat, T., Ricard, L., Le Floch, P. & Mézailles, P. (2006). Organometallics, 25, 4965-4976.], 2008[Cantat, T., Mézailles, P., Auffrant, A. & Le Floch, P. (2008). Dalton Trans. pp. 1957-1972.]); Cavell et al. (2001[Cavell, R. G., Kamalesh Babu, R. P. & Aparna, K. (2001). J. Organomet. Chem. 617, 158-169.]); Cooper et al. (2010[Cooper, O. J., Wooles, A. J., McMaster, J., Lewis, W., Blaker, A. J. & Liddle, S. T. (2010). Angew. Chem. Int. Ed. 49, 5570-5573.]); Gessner (2012[Gessner, V. H. (2012). Acta Cryst. E68, o1045.]); Gessner et al. (2013[Gessner, V. H., Meyer, F., Uhrich, D. & Kaupp, M. (2013). Chem. Eur. J. 19, 16729-16739.]); Harder (2011[Harder, S. (2011). Coord. Chem. Rev. 255, 1252-1267.]); Kasani et al. (1999[Kasani, A., Babu, R. P. K., McDonald, R. & Cavell, R. G. (1999). Angew. Chem. Int. Ed. 38, 1483-1484.]); Liddle et al. (2011[Liddle, S. T., Mills, D. P. & Wooles, A. J. (2011). Chem. Soc. Rev. 40, 2164-2176.]); Ong et al. (1999[Ong, C. M. & Stephan, D. W. (1999). J. Am. Chem. Soc. 121, 2939-2940.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17PS2

  • Mr = 340.42

  • Monoclinic, P 21 /c

  • a = 9.3748 (13) Å

  • b = 18.598 (3) Å

  • c = 10.0941 (14) Å

  • β = 101.044 (2)°

  • V = 1727.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.38 × 0.18 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.979

  • 10734 measured reflections

  • 3033 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.05

  • 3033 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Methylene compounds with two anion-stabilizing substituents, such as phosphonium or sulfonyl moieties, have found special interest as precursors for the corresponding dimetallated methandiides (Kasani et al., 1999; Ong et al., 1999; Cantat et al., 2006; Cooper et al., 2010). These dianions were found to be excellent ligands for the preparation of carbene complexes exhibiting a unique electronic structure (Gessner et al., 2013). They allowed the synthesis of a variety of different complexes with early and late transition metals, but also with lanthanides and actinides (Cavell et al., 2001; Cantat et al., 2008; Harder, 2011; Liddle et al., 2011).

As part of our studies on the synthesis of novel methandiides for the preparation of carbene complexes, we have developed a ligand and its dianionic analogue with a thiophosphoryl and sulfonyl sidearm (Schröter & Gessner, 2012). Thereby, the synthesis of a protonated precursor is best achieved via a two-step synthesis, with the first step being the lithiation of diphenylmethylphosphine sulfide and its reaction with diphenyl disulfide (Becker & Gessner, 2014a,b). This procedure furnishes the title compound, C19H17PS2, in good yield. Oxidation of the sulfide to the sulfone gives way to the final ligand (Gessner, 2012).

The bond lengths and angles in the title compound are comparable to the sulfonyl analogue, but deviate considerably from the dimetallated compound (Schröter & Gessner, 2012). These differences are most pronounced in the P—C—S backbone. While the title compound features C—P and C—S distances of 1.8242 (18) and 1.8009 (18) Å, respectively, the sulfonyl substituted dianion shows C—Pav distances shortened by 7% [1.710 (4) Å] and C—S distances shortened by 11% [1.614 (3) Å] (Schröter & Gessner, 2012). Additionally, the P—C—S angle experiences a widening from 107.7 (1)° in the title compound to 121.4 (2)° in the methandiide. This is the result of a change in the hybridization of the central carbon atom from sp3 in the title compound to sp2 in the methandiide.

No distinct intermolecular interactions (such as C—H···S interactions) are present in the crystal structure of the title compound.

Related literature top

For the sulfonyl and dimetallated sulfonyl analogues, see: Schröter & Gessner (2012). For background to precursors for dilithio methandiides and their carbene complexes, see: Becker & Gessner (2014a,b); Cantat et al. (2006, 2008); Cavell et al. (2001); Cooper et al. (2010); Gessner (2012); Gessner et al. (2013); Harder (2011); Kasani et al. (1999); Liddle et al. (2011); Ong et al. (1999).

Experimental top

4.00 g (17.2 mmol) diphenylmethylphosphane sulfide were dissolved in 50 ml THF and 11.1 ml (17.2 mmol) n-butyllithium (1.55 M solution in hexane) were added drop-wise at 195 K. The mixture was allowed to warm to room temperatureand stirred for additional 3 h. After cooling to 195 K 3.76 g (17.2 mmol) diphenyldisulfide dissolved in 30 ml THF were added. The mixture was stirred overnight, quenchedby the addition of 50 ml water and extracted three times with 40 ml diethyl ether. After drying over sodium sulfate, the solvent was removed in vacuo and the residue purified by bulb-to-bulb distillation (oven temperature 473–483 K, 1x10-3 mbar). The title compound was obtained as a yellowish oil, which solidified after a couple of days (4.21 g, 12.3 mmol; 72%). 1H NMR: (300.1 MHz, CDCl3): δ =3.92 (d, 2JPH = 9.09 Hz, 2H; PCH2S),7.16–7.19 (m, 3H; CHSPh,meta/para), 7.23–7.27 (m, 2H; CHSPh,ortho),7.40–7.47 (m, 6H; CHPPh,meta/para), 7.72–7.79 (m, 4H; CHPPh,ortho).13C{1H} NMR: (75.5 MHz, CDCl3): δ = 38.5 (d, 1JPC =52.25 Hz; PCH2S), 127.1 (CSPh,ortho), 128.6(d, 3JPC = 12.33 Hz; CPPh,meta),129.0 (CSPh,meta), 130.4 (CSPh,para), 131.0(d, 1JPC = 82.59 Hz; CPPh,ipso),131.6 (d, 4JPC = 10.24 Hz; CPPh,ortho),131.9 (d, 3JPC = 2.90 Hz, CPPh,para),135.5 (d, 2JPC = 5.78 Hz; CSPh,ipso).31P{1H} NMR: (122.0 MHz, CDCl3): δ =40.6. Anal. Calcd for C19H17PS: C, 67.03; H, 5.03; S, 18.84; found: C, 66.80; H, 5.00; S, 19.09; GC—MS(ESI): tR = 17.18 min [353 K (2 min) -10 K min-1 – 553 K (5 min)]; m/z (%): 340 (36) (M+), 217 (100) {[Ph2PS]+}, 123 (46) {[CH2SPh]+}, 139 (81) {[C6H4PS]+}.

Refinement top

The H atoms were refined on a riding model approximation in their ideal geometric positions with C—H = 0.95 Å for C–H(aromatic) and 0.99 for CH2 atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement parameters are drawn at the 50% probability level.
Diphenyl[(phenylsulfanyl)methyl]-λ5-phosphanethione top
Crystal data top
C19H17PS2F(000) = 712
Mr = 340.42Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4352 reflections
a = 9.3748 (13) Åθ = 2.2–25°
b = 18.598 (3) ŵ = 0.39 mm1
c = 10.0941 (14) ÅT = 173 K
β = 101.044 (2)°Block, colourless
V = 1727.3 (4) Å30.38 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3033 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω–scansθmax = 25°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 117
Tmin = 0.953, Tmax = 0.979k = 2222
10734 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.5374P]
where P = (Fo2 + 2Fc2)/3
3033 reflections(Δ/σ)max = 0.007
199 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.23 e Å3
0 constraints
Crystal data top
C19H17PS2V = 1727.3 (4) Å3
Mr = 340.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3748 (13) ŵ = 0.39 mm1
b = 18.598 (3) ÅT = 173 K
c = 10.0941 (14) Å0.38 × 0.18 × 0.15 mm
β = 101.044 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3033 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2663 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.979Rint = 0.041
10734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
3033 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.52214 (19)0.08028 (9)0.30067 (17)0.0288 (4)
C20.5712 (2)0.02245 (10)0.23596 (19)0.0380 (4)
H20.5350.01470.14250.046*
C30.6729 (2)0.02428 (11)0.3069 (2)0.0472 (5)
H30.70530.06430.26230.057*
C40.7274 (2)0.01291 (10)0.4421 (2)0.0413 (5)
H40.79870.04450.490.05*
C50.6782 (2)0.04426 (10)0.50795 (19)0.0397 (5)
H50.71530.05180.60130.048*
C60.5750 (2)0.09060 (10)0.43818 (18)0.0356 (4)
H60.54010.12950.4840.043*
C70.2351 (2)0.14772 (9)0.28387 (18)0.0311 (4)
C80.1148 (2)0.10634 (12)0.2316 (2)0.0463 (5)
H80.11620.07630.15580.056*
C90.0079 (2)0.10857 (13)0.2896 (2)0.0551 (6)
H90.08970.07960.25390.066*
C100.0118 (2)0.15236 (13)0.3978 (2)0.0510 (6)
H100.09610.15380.43720.061*
C110.1064 (2)0.19424 (11)0.4494 (2)0.0487 (5)
H110.10310.2250.52390.058*
C120.2297 (2)0.19198 (10)0.3942 (2)0.0402 (5)
H120.31140.22070.43140.048*
C130.4787 (2)0.23097 (9)0.24179 (18)0.0322 (4)
H13A0.40740.26960.21090.039*
H13B0.51430.23660.34010.039*
C140.7380 (2)0.30474 (9)0.24404 (18)0.0332 (4)
C150.8792 (2)0.30812 (11)0.2215 (2)0.0467 (5)
H150.91180.27380.16420.056*
C160.9721 (2)0.36083 (13)0.2815 (3)0.0568 (6)
H161.06790.36350.2640.068*
C170.9273 (3)0.40970 (13)0.3668 (2)0.0573 (6)
H170.99230.44580.40870.069*
C180.7882 (3)0.40641 (12)0.3914 (2)0.0534 (6)
H180.75740.44020.45050.064*
C190.6925 (2)0.35395 (11)0.3302 (2)0.0432 (5)
H190.59640.35180.34730.052*
P10.39369 (5)0.14308 (2)0.20578 (4)0.02841 (14)
S10.34680 (6)0.12132 (3)0.01308 (5)0.03941 (16)
S20.62814 (5)0.23650 (3)0.15364 (5)0.03730 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (9)0.0300 (9)0.0276 (9)0.0035 (7)0.0050 (7)0.0025 (7)
C20.0430 (12)0.0405 (10)0.0295 (9)0.0046 (9)0.0047 (9)0.0024 (8)
C30.0533 (13)0.0452 (11)0.0428 (12)0.0134 (10)0.0090 (10)0.0047 (9)
C40.0389 (11)0.0410 (11)0.0422 (11)0.0053 (9)0.0031 (9)0.0097 (9)
C50.0447 (12)0.0409 (11)0.0300 (10)0.0054 (9)0.0017 (9)0.0033 (8)
C60.0440 (12)0.0315 (9)0.0303 (9)0.0023 (8)0.0044 (9)0.0036 (7)
C70.0284 (10)0.0311 (9)0.0327 (9)0.0017 (7)0.0035 (8)0.0038 (7)
C80.0412 (12)0.0577 (13)0.0393 (11)0.0143 (10)0.0055 (10)0.0050 (9)
C90.0346 (12)0.0731 (16)0.0558 (14)0.0193 (11)0.0038 (11)0.0046 (12)
C100.0346 (12)0.0627 (14)0.0595 (14)0.0025 (10)0.0187 (11)0.0135 (11)
C110.0469 (13)0.0447 (11)0.0607 (13)0.0000 (10)0.0259 (11)0.0029 (10)
C120.0376 (11)0.0376 (10)0.0485 (11)0.0076 (9)0.0158 (9)0.0062 (9)
C130.0333 (10)0.0323 (9)0.0326 (9)0.0035 (7)0.0102 (8)0.0012 (7)
C140.0336 (10)0.0336 (9)0.0322 (9)0.0029 (8)0.0054 (8)0.0091 (7)
C150.0374 (12)0.0456 (12)0.0589 (13)0.0007 (9)0.0140 (10)0.0068 (10)
C160.0345 (12)0.0594 (14)0.0737 (16)0.0078 (10)0.0032 (12)0.0103 (12)
C170.0520 (15)0.0561 (14)0.0552 (14)0.0188 (11)0.0111 (12)0.0049 (11)
C180.0675 (16)0.0501 (13)0.0414 (12)0.0115 (11)0.0075 (11)0.0078 (10)
C190.0445 (12)0.0440 (11)0.0430 (11)0.0064 (9)0.0132 (10)0.0019 (9)
P10.0297 (3)0.0295 (2)0.0257 (2)0.00220 (18)0.0045 (2)0.00026 (17)
S10.0459 (3)0.0451 (3)0.0251 (3)0.0004 (2)0.0013 (2)0.00118 (19)
S20.0409 (3)0.0377 (3)0.0369 (3)0.0078 (2)0.0167 (2)0.00314 (19)
Geometric parameters (Å, º) top
C1—C21.382 (3)C11—C121.377 (3)
C1—C61.395 (2)C11—H110.95
C1—P11.8138 (18)C12—H120.95
C2—C31.384 (3)C13—S21.8009 (18)
C2—H20.95C13—P11.8242 (18)
C3—C41.379 (3)C13—H13A0.99
C3—H30.95C13—H13B0.99
C4—C51.379 (3)C14—C191.385 (3)
C4—H40.95C14—C151.387 (3)
C5—C61.384 (3)C14—S21.7729 (19)
C5—H50.95C15—C161.373 (3)
C6—H60.95C15—H150.95
C7—C81.384 (3)C16—C171.371 (3)
C7—C121.393 (3)C16—H160.95
C7—P11.8137 (18)C17—C181.375 (3)
C8—C91.388 (3)C17—H170.95
C8—H80.95C18—C191.387 (3)
C9—C101.369 (3)C18—H180.95
C9—H90.95C19—H190.95
C10—C111.373 (3)P1—S11.9527 (7)
C10—H100.95
C2—C1—C6119.37 (17)C11—C12—H12119.9
C2—C1—P1119.93 (14)C7—C12—H12119.9
C6—C1—P1120.68 (13)S2—C13—P1107.72 (9)
C1—C2—C3120.18 (17)S2—C13—H13A110.2
C1—C2—H2119.9P1—C13—H13A110.2
C3—C2—H2119.9S2—C13—H13B110.2
C4—C3—C2120.23 (19)P1—C13—H13B110.2
C4—C3—H3119.9H13A—C13—H13B108.5
C2—C3—H3119.9C19—C14—C15119.44 (18)
C5—C4—C3120.05 (18)C19—C14—S2125.31 (15)
C5—C4—H4120C15—C14—S2115.23 (15)
C3—C4—H4120C16—C15—C14120.3 (2)
C4—C5—C6120.05 (17)C16—C15—H15119.9
C4—C5—H5120C14—C15—H15119.9
C6—C5—H5120C17—C16—C15120.4 (2)
C5—C6—C1120.09 (17)C17—C16—H16119.8
C5—C6—H6120C15—C16—H16119.8
C1—C6—H6120C16—C17—C18119.9 (2)
C8—C7—C12118.81 (18)C16—C17—H17120
C8—C7—P1118.95 (15)C18—C17—H17120
C12—C7—P1122.23 (14)C17—C18—C19120.4 (2)
C7—C8—C9120.2 (2)C17—C18—H18119.8
C7—C8—H8119.9C19—C18—H18119.8
C9—C8—H8119.9C14—C19—C18119.6 (2)
C10—C9—C8120.3 (2)C14—C19—H19120.2
C10—C9—H9119.8C18—C19—H19120.2
C8—C9—H9119.8C7—P1—C1108.53 (8)
C9—C10—C11119.9 (2)C7—P1—C13103.53 (8)
C9—C10—H10120.1C1—P1—C13104.55 (8)
C11—C10—H10120.1C7—P1—S1113.32 (6)
C10—C11—C12120.5 (2)C1—P1—S1113.12 (6)
C10—C11—H11119.7C13—P1—S1112.99 (6)
C12—C11—H11119.7C14—S2—C13102.51 (9)
C11—C12—C7120.20 (19)

Experimental details

Crystal data
Chemical formulaC19H17PS2
Mr340.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.3748 (13), 18.598 (3), 10.0941 (14)
β (°) 101.044 (2)
V3)1727.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.38 × 0.18 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.953, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10734, 3033, 2663
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.05
No. of reflections3033
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

The author acknowledges the Deutsche Forschungs­gemeinschaft, the Alexander von Humboldt Foundation and the Fonds der Chemischen Industrie for financial support.

References

First citationBecker, J. & Gessner, V. H. (2014a). Dalton Trans. 43, 4320–4325.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBecker, J. & Gessner, V. H. (2014b). Organometallics, doi:101021/om5001277.  Google Scholar
First citationBruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCantat, T., Mézailles, P., Auffrant, A. & Le Floch, P. (2008). Dalton Trans. pp. 1957–1972.  Web of Science CrossRef Google Scholar
First citationCantat, T., Ricard, L., Le Floch, P. & Mézailles, P. (2006). Organometallics, 25, 4965–4976.  Web of Science CSD CrossRef CAS Google Scholar
First citationCavell, R. G., Kamalesh Babu, R. P. & Aparna, K. (2001). J. Organomet. Chem. 617, 158–169.  Web of Science CrossRef Google Scholar
First citationCooper, O. J., Wooles, A. J., McMaster, J., Lewis, W., Blaker, A. J. & Liddle, S. T. (2010). Angew. Chem. Int. Ed. 49, 5570–5573.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGessner, V. H. (2012). Acta Cryst. E68, o1045.  CSD CrossRef IUCr Journals Google Scholar
First citationGessner, V. H., Meyer, F., Uhrich, D. & Kaupp, M. (2013). Chem. Eur. J. 19, 16729–16739.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHarder, S. (2011). Coord. Chem. Rev. 255, 1252–1267.  Web of Science CrossRef CAS Google Scholar
First citationKasani, A., Babu, R. P. K., McDonald, R. & Cavell, R. G. (1999). Angew. Chem. Int. Ed. 38, 1483–1484.  Web of Science CrossRef CAS Google Scholar
First citationLiddle, S. T., Mills, D. P. & Wooles, A. J. (2011). Chem. Soc. Rev. 40, 2164–2176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOng, C. M. & Stephan, D. W. (1999). J. Am. Chem. Soc. 121, 2939–2940.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchröter, P. & Gessner, V. H. (2012). Chem. Eur. J. 18, 11223–11227.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds