organic compounds
Diphenyl[(phenylsulfanyl)methyl]-λ5-phosphanethione
aInstitut fuer Anorganische Chemie, Julius-Maximilians-Universitaet Würzburg, Am Hubland, 97074 Würzburg, Germany
*Correspondence e-mail: vgessner@uni-wuerzburg.de
The title compound, C19H17PS2, results from the direct deprotonation of diphenylmethylphosphine sulfide and subsequent reaction with diphenyl disulfide. The C—P and C—S bond lengths of 1.8242 (18) and 1.8009 (18) Å, respectively, of the central P—C—S linkage are comparable to those found in the sulfonyl analogue, but are considerably longer than those reported for the dimetallated sulfonyl compound. The dihedral angle between the benzene rings of the diphenylmethyl moiety is 69.46 (7)°. No distinct intermolecular interactions are present in the crystal structure.
CCDC reference: 988671
Related literature
For the sulfonyl and dimetallated sulfonyl analogues, see: Schröter & Gessner (2012). For background to precursors for dilithio methandiides and their carbene complexes, see: Becker & Gessner (2014a,b); Cantat et al. (2006, 2008); Cavell et al. (2001); Cooper et al. (2010); Gessner (2012); Gessner et al. (2013); Harder (2011); Kasani et al. (1999); Liddle et al. (2011); Ong et al. (1999).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 988671
10.1107/S1600536814004292/wm5008sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004292/wm5008Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814004292/wm5008Isup3.cml
4.00 g (17.2 mmol) diphenylmethylphosphane sulfide were dissolved in 50 ml THF and 11.1 ml (17.2 mmol) n-butyllithium (1.55 M solution in hexane) were added drop-wise at 195 K. The mixture was allowed to warm to room temperatureand stirred for additional 3 h. After cooling to 195 K 3.76 g (17.2 mmol) diphenyldisulfide dissolved in 30 ml THF were added. The mixture was stirred overnight, quenchedby the addition of 50 ml water and extracted three times with 40 ml diethyl ether. After drying over sodium sulfate, the solvent was removed in vacuo and the residue purified by bulb-to-bulb distillation (oven temperature 473–483 K, 1x10-3 mbar). The title compound was obtained as a yellowish oil, which solidified after a couple of days (4.21 g, 12.3 mmol; 72%). 1H NMR: (300.1 MHz, CDCl3): δ =3.92 (d, 2JPH = 9.09 Hz, 2H; PCH2S),7.16–7.19 (m, 3H; CHSPh,meta/para), 7.23–7.27 (m, 2H; CHSPh,ortho),7.40–7.47 (m, 6H; CHPPh,meta/para), 7.72–7.79 (m, 4H; CHPPh,ortho).13C{1H} NMR: (75.5 MHz, CDCl3): δ = 38.5 (d, 1JPC =52.25 Hz; PCH2S), 127.1 (CSPh,ortho), 128.6(d, 3JPC = 12.33 Hz; CPPh,meta),129.0 (CSPh,meta), 130.4 (CSPh,para), 131.0(d, 1JPC = 82.59 Hz; CPPh,ipso),131.6 (d, 4JPC = 10.24 Hz; CPPh,ortho),131.9 (d, 3JPC = 2.90 Hz, CPPh,para),135.5 (d, 2JPC = 5.78 Hz; CSPh,ipso).31P{1H} NMR: (122.0 MHz, CDCl3): δ =40.6. Anal. Calcd for C19H17PS: C, 67.03; H, 5.03; S, 18.84; found: C, 66.80; H, 5.00; S, 19.09; GC—MS(ESI): tR = 17.18 min [353 K (2 min) -10 K min-1 – 553 K (5 min)]; m/z (%): 340 (36) (M+), 217 (100) {[Ph2PS]+}, 123 (46) {[CH2SPh]+}, 139 (81) {[C6H4PS]+}.
The H atoms were refined on a riding model approximation in their ideal geometric positions with C—H = 0.95 Å for C–H(aromatic) and 0.99 for CH2 atoms, respectively, with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Displacement parameters are drawn at the 50% probability level. |
C19H17PS2 | F(000) = 712 |
Mr = 340.42 | Dx = 1.309 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4352 reflections |
a = 9.3748 (13) Å | θ = 2.2–25° |
b = 18.598 (3) Å | µ = 0.39 mm−1 |
c = 10.0941 (14) Å | T = 173 K |
β = 101.044 (2)° | Block, colourless |
V = 1727.3 (4) Å3 | 0.38 × 0.18 × 0.15 mm |
Z = 4 |
Bruker APEX CCD diffractometer | 3033 independent reflections |
Radiation source: fine-focus sealed tube | 2663 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω–scans | θmax = 25°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −11→7 |
Tmin = 0.953, Tmax = 0.979 | k = −22→22 |
10734 measured reflections | l = −12→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.5374P] where P = (Fo2 + 2Fc2)/3 |
3033 reflections | (Δ/σ)max = 0.007 |
199 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
0 constraints |
C19H17PS2 | V = 1727.3 (4) Å3 |
Mr = 340.42 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.3748 (13) Å | µ = 0.39 mm−1 |
b = 18.598 (3) Å | T = 173 K |
c = 10.0941 (14) Å | 0.38 × 0.18 × 0.15 mm |
β = 101.044 (2)° |
Bruker APEX CCD diffractometer | 3033 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 2663 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.979 | Rint = 0.041 |
10734 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
3033 reflections | Δρmin = −0.23 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.52214 (19) | 0.08028 (9) | 0.30067 (17) | 0.0288 (4) | |
C2 | 0.5712 (2) | 0.02245 (10) | 0.23596 (19) | 0.0380 (4) | |
H2 | 0.535 | 0.0147 | 0.1425 | 0.046* | |
C3 | 0.6729 (2) | −0.02428 (11) | 0.3069 (2) | 0.0472 (5) | |
H3 | 0.7053 | −0.0643 | 0.2623 | 0.057* | |
C4 | 0.7274 (2) | −0.01291 (10) | 0.4421 (2) | 0.0413 (5) | |
H4 | 0.7987 | −0.0445 | 0.49 | 0.05* | |
C5 | 0.6782 (2) | 0.04426 (10) | 0.50795 (19) | 0.0397 (5) | |
H5 | 0.7153 | 0.0518 | 0.6013 | 0.048* | |
C6 | 0.5750 (2) | 0.09060 (10) | 0.43818 (18) | 0.0356 (4) | |
H6 | 0.5401 | 0.1295 | 0.484 | 0.043* | |
C7 | 0.2351 (2) | 0.14772 (9) | 0.28387 (18) | 0.0311 (4) | |
C8 | 0.1148 (2) | 0.10634 (12) | 0.2316 (2) | 0.0463 (5) | |
H8 | 0.1162 | 0.0763 | 0.1558 | 0.056* | |
C9 | −0.0079 (2) | 0.10857 (13) | 0.2896 (2) | 0.0551 (6) | |
H9 | −0.0897 | 0.0796 | 0.2539 | 0.066* | |
C10 | −0.0118 (2) | 0.15236 (13) | 0.3978 (2) | 0.0510 (6) | |
H10 | −0.0961 | 0.1538 | 0.4372 | 0.061* | |
C11 | 0.1064 (2) | 0.19424 (11) | 0.4494 (2) | 0.0487 (5) | |
H11 | 0.1031 | 0.225 | 0.5239 | 0.058* | |
C12 | 0.2297 (2) | 0.19198 (10) | 0.3942 (2) | 0.0402 (5) | |
H12 | 0.3114 | 0.2207 | 0.4314 | 0.048* | |
C13 | 0.4787 (2) | 0.23097 (9) | 0.24179 (18) | 0.0322 (4) | |
H13A | 0.4074 | 0.2696 | 0.2109 | 0.039* | |
H13B | 0.5143 | 0.2366 | 0.3401 | 0.039* | |
C14 | 0.7380 (2) | 0.30474 (9) | 0.24404 (18) | 0.0332 (4) | |
C15 | 0.8792 (2) | 0.30812 (11) | 0.2215 (2) | 0.0467 (5) | |
H15 | 0.9118 | 0.2738 | 0.1642 | 0.056* | |
C16 | 0.9721 (2) | 0.36083 (13) | 0.2815 (3) | 0.0568 (6) | |
H16 | 1.0679 | 0.3635 | 0.264 | 0.068* | |
C17 | 0.9273 (3) | 0.40970 (13) | 0.3668 (2) | 0.0573 (6) | |
H17 | 0.9923 | 0.4458 | 0.4087 | 0.069* | |
C18 | 0.7882 (3) | 0.40641 (12) | 0.3914 (2) | 0.0534 (6) | |
H18 | 0.7574 | 0.4402 | 0.4505 | 0.064* | |
C19 | 0.6925 (2) | 0.35395 (11) | 0.3302 (2) | 0.0432 (5) | |
H19 | 0.5964 | 0.3518 | 0.3473 | 0.052* | |
P1 | 0.39369 (5) | 0.14308 (2) | 0.20578 (4) | 0.02841 (14) | |
S1 | 0.34680 (6) | 0.12132 (3) | 0.01308 (5) | 0.03941 (16) | |
S2 | 0.62814 (5) | 0.23650 (3) | 0.15364 (5) | 0.03730 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0287 (9) | 0.0300 (9) | 0.0276 (9) | −0.0035 (7) | 0.0050 (7) | 0.0025 (7) |
C2 | 0.0430 (12) | 0.0405 (10) | 0.0295 (9) | 0.0046 (9) | 0.0047 (9) | −0.0024 (8) |
C3 | 0.0533 (13) | 0.0452 (11) | 0.0428 (12) | 0.0134 (10) | 0.0090 (10) | −0.0047 (9) |
C4 | 0.0389 (11) | 0.0410 (11) | 0.0422 (11) | 0.0053 (9) | 0.0031 (9) | 0.0097 (9) |
C5 | 0.0447 (12) | 0.0409 (11) | 0.0300 (10) | −0.0054 (9) | −0.0017 (9) | 0.0033 (8) |
C6 | 0.0440 (12) | 0.0315 (9) | 0.0303 (9) | −0.0023 (8) | 0.0044 (9) | −0.0036 (7) |
C7 | 0.0284 (10) | 0.0311 (9) | 0.0327 (9) | −0.0017 (7) | 0.0035 (8) | 0.0038 (7) |
C8 | 0.0412 (12) | 0.0577 (13) | 0.0393 (11) | −0.0143 (10) | 0.0055 (10) | −0.0050 (9) |
C9 | 0.0346 (12) | 0.0731 (16) | 0.0558 (14) | −0.0193 (11) | 0.0038 (11) | 0.0046 (12) |
C10 | 0.0346 (12) | 0.0627 (14) | 0.0595 (14) | 0.0025 (10) | 0.0187 (11) | 0.0135 (11) |
C11 | 0.0469 (13) | 0.0447 (11) | 0.0607 (13) | 0.0000 (10) | 0.0259 (11) | −0.0029 (10) |
C12 | 0.0376 (11) | 0.0376 (10) | 0.0485 (11) | −0.0076 (9) | 0.0158 (9) | −0.0062 (9) |
C13 | 0.0333 (10) | 0.0323 (9) | 0.0326 (9) | −0.0035 (7) | 0.0102 (8) | 0.0012 (7) |
C14 | 0.0336 (10) | 0.0336 (9) | 0.0322 (9) | −0.0029 (8) | 0.0054 (8) | 0.0091 (7) |
C15 | 0.0374 (12) | 0.0456 (12) | 0.0589 (13) | −0.0007 (9) | 0.0140 (10) | 0.0068 (10) |
C16 | 0.0345 (12) | 0.0594 (14) | 0.0737 (16) | −0.0078 (10) | 0.0032 (12) | 0.0103 (12) |
C17 | 0.0520 (15) | 0.0561 (14) | 0.0552 (14) | −0.0188 (11) | −0.0111 (12) | 0.0049 (11) |
C18 | 0.0675 (16) | 0.0501 (13) | 0.0414 (12) | −0.0115 (11) | 0.0075 (11) | −0.0078 (10) |
C19 | 0.0445 (12) | 0.0440 (11) | 0.0430 (11) | −0.0064 (9) | 0.0132 (10) | −0.0019 (9) |
P1 | 0.0297 (3) | 0.0295 (2) | 0.0257 (2) | −0.00220 (18) | 0.0045 (2) | −0.00026 (17) |
S1 | 0.0459 (3) | 0.0451 (3) | 0.0251 (3) | 0.0004 (2) | 0.0013 (2) | −0.00118 (19) |
S2 | 0.0409 (3) | 0.0377 (3) | 0.0369 (3) | −0.0078 (2) | 0.0167 (2) | −0.00314 (19) |
C1—C2 | 1.382 (3) | C11—C12 | 1.377 (3) |
C1—C6 | 1.395 (2) | C11—H11 | 0.95 |
C1—P1 | 1.8138 (18) | C12—H12 | 0.95 |
C2—C3 | 1.384 (3) | C13—S2 | 1.8009 (18) |
C2—H2 | 0.95 | C13—P1 | 1.8242 (18) |
C3—C4 | 1.379 (3) | C13—H13A | 0.99 |
C3—H3 | 0.95 | C13—H13B | 0.99 |
C4—C5 | 1.379 (3) | C14—C19 | 1.385 (3) |
C4—H4 | 0.95 | C14—C15 | 1.387 (3) |
C5—C6 | 1.384 (3) | C14—S2 | 1.7729 (19) |
C5—H5 | 0.95 | C15—C16 | 1.373 (3) |
C6—H6 | 0.95 | C15—H15 | 0.95 |
C7—C8 | 1.384 (3) | C16—C17 | 1.371 (3) |
C7—C12 | 1.393 (3) | C16—H16 | 0.95 |
C7—P1 | 1.8137 (18) | C17—C18 | 1.375 (3) |
C8—C9 | 1.388 (3) | C17—H17 | 0.95 |
C8—H8 | 0.95 | C18—C19 | 1.387 (3) |
C9—C10 | 1.369 (3) | C18—H18 | 0.95 |
C9—H9 | 0.95 | C19—H19 | 0.95 |
C10—C11 | 1.373 (3) | P1—S1 | 1.9527 (7) |
C10—H10 | 0.95 | ||
C2—C1—C6 | 119.37 (17) | C11—C12—H12 | 119.9 |
C2—C1—P1 | 119.93 (14) | C7—C12—H12 | 119.9 |
C6—C1—P1 | 120.68 (13) | S2—C13—P1 | 107.72 (9) |
C1—C2—C3 | 120.18 (17) | S2—C13—H13A | 110.2 |
C1—C2—H2 | 119.9 | P1—C13—H13A | 110.2 |
C3—C2—H2 | 119.9 | S2—C13—H13B | 110.2 |
C4—C3—C2 | 120.23 (19) | P1—C13—H13B | 110.2 |
C4—C3—H3 | 119.9 | H13A—C13—H13B | 108.5 |
C2—C3—H3 | 119.9 | C19—C14—C15 | 119.44 (18) |
C5—C4—C3 | 120.05 (18) | C19—C14—S2 | 125.31 (15) |
C5—C4—H4 | 120 | C15—C14—S2 | 115.23 (15) |
C3—C4—H4 | 120 | C16—C15—C14 | 120.3 (2) |
C4—C5—C6 | 120.05 (17) | C16—C15—H15 | 119.9 |
C4—C5—H5 | 120 | C14—C15—H15 | 119.9 |
C6—C5—H5 | 120 | C17—C16—C15 | 120.4 (2) |
C5—C6—C1 | 120.09 (17) | C17—C16—H16 | 119.8 |
C5—C6—H6 | 120 | C15—C16—H16 | 119.8 |
C1—C6—H6 | 120 | C16—C17—C18 | 119.9 (2) |
C8—C7—C12 | 118.81 (18) | C16—C17—H17 | 120 |
C8—C7—P1 | 118.95 (15) | C18—C17—H17 | 120 |
C12—C7—P1 | 122.23 (14) | C17—C18—C19 | 120.4 (2) |
C7—C8—C9 | 120.2 (2) | C17—C18—H18 | 119.8 |
C7—C8—H8 | 119.9 | C19—C18—H18 | 119.8 |
C9—C8—H8 | 119.9 | C14—C19—C18 | 119.6 (2) |
C10—C9—C8 | 120.3 (2) | C14—C19—H19 | 120.2 |
C10—C9—H9 | 119.8 | C18—C19—H19 | 120.2 |
C8—C9—H9 | 119.8 | C7—P1—C1 | 108.53 (8) |
C9—C10—C11 | 119.9 (2) | C7—P1—C13 | 103.53 (8) |
C9—C10—H10 | 120.1 | C1—P1—C13 | 104.55 (8) |
C11—C10—H10 | 120.1 | C7—P1—S1 | 113.32 (6) |
C10—C11—C12 | 120.5 (2) | C1—P1—S1 | 113.12 (6) |
C10—C11—H11 | 119.7 | C13—P1—S1 | 112.99 (6) |
C12—C11—H11 | 119.7 | C14—S2—C13 | 102.51 (9) |
C11—C12—C7 | 120.20 (19) |
Experimental details
Crystal data | |
Chemical formula | C19H17PS2 |
Mr | 340.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 9.3748 (13), 18.598 (3), 10.0941 (14) |
β (°) | 101.044 (2) |
V (Å3) | 1727.3 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.39 |
Crystal size (mm) | 0.38 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.953, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10734, 3033, 2663 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.091, 1.05 |
No. of reflections | 3033 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.23 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).
Acknowledgements
The author acknowledges the Deutsche Forschungsgemeinschaft, the Alexander von Humboldt Foundation and the Fonds der Chemischen Industrie for financial support.
References
Becker, J. & Gessner, V. H. (2014a). Dalton Trans. 43, 4320–4325. Web of Science CSD CrossRef CAS PubMed Google Scholar
Becker, J. & Gessner, V. H. (2014b). Organometallics, doi:101021/om5001277. Google Scholar
Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cantat, T., Mézailles, P., Auffrant, A. & Le Floch, P. (2008). Dalton Trans. pp. 1957–1972. Web of Science CrossRef Google Scholar
Cantat, T., Ricard, L., Le Floch, P. & Mézailles, P. (2006). Organometallics, 25, 4965–4976. Web of Science CSD CrossRef CAS Google Scholar
Cavell, R. G., Kamalesh Babu, R. P. & Aparna, K. (2001). J. Organomet. Chem. 617, 158–169. Web of Science CrossRef Google Scholar
Cooper, O. J., Wooles, A. J., McMaster, J., Lewis, W., Blaker, A. J. & Liddle, S. T. (2010). Angew. Chem. Int. Ed. 49, 5570–5573. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gessner, V. H. (2012). Acta Cryst. E68, o1045. CSD CrossRef IUCr Journals Google Scholar
Gessner, V. H., Meyer, F., Uhrich, D. & Kaupp, M. (2013). Chem. Eur. J. 19, 16729–16739. Web of Science CSD CrossRef CAS PubMed Google Scholar
Harder, S. (2011). Coord. Chem. Rev. 255, 1252–1267. Web of Science CrossRef CAS Google Scholar
Kasani, A., Babu, R. P. K., McDonald, R. & Cavell, R. G. (1999). Angew. Chem. Int. Ed. 38, 1483–1484. Web of Science CrossRef CAS Google Scholar
Liddle, S. T., Mills, D. P. & Wooles, A. J. (2011). Chem. Soc. Rev. 40, 2164–2176. Web of Science CrossRef CAS PubMed Google Scholar
Ong, C. M. & Stephan, D. W. (1999). J. Am. Chem. Soc. 121, 2939–2940. Web of Science CSD CrossRef CAS Google Scholar
Schröter, P. & Gessner, V. H. (2012). Chem. Eur. J. 18, 11223–11227. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Methylene compounds with two anion-stabilizing substituents, such as phosphonium or sulfonyl moieties, have found special interest as precursors for the corresponding dimetallated methandiides (Kasani et al., 1999; Ong et al., 1999; Cantat et al., 2006; Cooper et al., 2010). These dianions were found to be excellent ligands for the preparation of carbene complexes exhibiting a unique electronic structure (Gessner et al., 2013). They allowed the synthesis of a variety of different complexes with early and late transition metals, but also with lanthanides and actinides (Cavell et al., 2001; Cantat et al., 2008; Harder, 2011; Liddle et al., 2011).
As part of our studies on the synthesis of novel methandiides for the preparation of carbene complexes, we have developed a ligand and its dianionic analogue with a thiophosphoryl and sulfonyl sidearm (Schröter & Gessner, 2012). Thereby, the synthesis of a protonated precursor is best achieved via a two-step synthesis, with the first step being the lithiation of diphenylmethylphosphine sulfide and its reaction with diphenyl disulfide (Becker & Gessner, 2014a,b). This procedure furnishes the title compound, C19H17PS2, in good yield. Oxidation of the sulfide to the sulfone gives way to the final ligand (Gessner, 2012).
The bond lengths and angles in the title compound are comparable to the sulfonyl analogue, but deviate considerably from the dimetallated compound (Schröter & Gessner, 2012). These differences are most pronounced in the P—C—S backbone. While the title compound features C—P and C—S distances of 1.8242 (18) and 1.8009 (18) Å, respectively, the sulfonyl substituted dianion shows C—Pav distances shortened by ≈ 7% [1.710 (4) Å] and C—S distances shortened by ≈ 11% [1.614 (3) Å] (Schröter & Gessner, 2012). Additionally, the P—C—S angle experiences a widening from 107.7 (1)° in the title compound to 121.4 (2)° in the methandiide. This is the result of a change in the hybridization of the central carbon atom from sp3 in the title compound to sp2 in the methandiide.
No distinct intermolecular interactions (such as C—H···S interactions) are present in the crystal structure of the title compound.