organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-((E)-{4-[Bis(4-eth­­oxy­phen­yl)amino]­phen­yl}imino­meth­yl)phenol

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, bKey Laboratory of Functional Inorganic Materials Chemistry, Hefei 230039, People's Republic of China, and cDepartment of Chemistry, Bengbu Medical College, Bengbu 233030, People's Republic of China
*Correspondence e-mail: yptian@ahu.edu.cn

(Received 16 January 2014; accepted 12 February 2014; online 15 February 2014)

In the title Schiff base mol­ecule, C29H28N2O3, the three terminal benzene rings are twisted by 73.84 (15), 81.25 (16) and 12.1 (2)° with respect to the central benzene ring. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, mol­ecules are linked via weak C—H⋯π inter­actions into a three-dimensional supra­molecular architecture.

Related literature

For background and the synthesis of the title compound, see: Dharmaraj et al. (2001[Dharmaraj, N., Viswanathamurthi, P. & Natarajan, K. (2001). Transition Met. Chem. 26, 105-109.]); Feng (2014[Feng, T.-J. (2014). Acta Cryst. E70, o42.]). For a related structure, see: Tanak et al. (2013[Tanak, H., Toğurman, F., Kalecik, S., Dege, N. & Yavuz, M. (2013). Acta Cryst. E69, o1085.]).

[Scheme 1]

Experimental

Crystal data
  • C29H28N2O3

  • Mr = 452.53

  • Orthorhombic, P 21 21 21

  • a = 9.765 (3) Å

  • b = 13.113 (4) Å

  • c = 19.378 (6) Å

  • V = 2481.2 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.984

  • 17684 measured reflections

  • 2486 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.13

  • 2486 reflections

  • 310 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 Cg2 and Cg3 are the centroids of the C3–C8, C11–C16 and C17–C22 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.82 1.87 2.605 (4) 148
C1—H1CCg2i 0.96 2.84 3.760 (4) 162
C4—H4⋯Cg3ii 0.93 2.82 3.655 (3) 150
C9—H9CCg1iii 0.96 2.94 3.872 (4) 164
C28—H28⋯Cg1iv 0.93 2.88 3.742 (4) 154
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few decades, the researchers have witnessed a great deal of interest in the chemistry of transition metal Schiff base chelates bacause of their importance as catalysts in reactions such as carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis (Dharmaraj et al., 2001). Schiff bases derived from salicyladehyde and fluoroaniline, specifically, have been considered as potential pharmaceutically interesting compounds as several of the members of this family of molecules have shown antimicrobial, antitumor or antiviral activities (Feng et al., 2014). As an extension of our work on the structural characterization of Schiff base compounds, the crystal structure of the title compound (I) is reported.

In (I) (Fig.1), the molecular structure of title compound shows an E configuration, with a C(20)—N(2)=C(23)—C(24) torsion angle of -176.9 (3)°. The bond distance of N(2)=C(23) at 1.258 (3) Å is a typical double bond. The dihedral angles between the salicyladehyde moiety and the aniline ring is 12.1 (2)°, indicating they are nearly coplanar. Intramolecular O—H···N hydrogen bond exists, similar to that found in a related structure (Tanak et al. 2013). In the crystal, the molecules are linked via weak C—H···π interaction into the three dimensional supramolecular architecture.

Related literature top

For background and the synthesis of the title compound, see: Dharmaraj et al. (2001); Feng (2014). For a related structure, see: Tanak et al. (2013).

Experimental top

A hot solution of N1,N1 -bis (4-ethoxyphenyl) benzene -1,4 - diamine (3.48 g, 10 mmol) in ethanol 50 mL was mixed with a salicylaldehyde (1.83 g, 15 mmol) in ethanol 5 mL, a yellow solid was appeared immediately, then the reaction mixture was reflux for 2 h. Under cooling the room temperature, the light yellow crystals were separated by filtration and recrystallized from ethanol. Yield: 96%. 1H NMR (400 MHz, DMSO-d6) 1.34 (t, 6H), 4.03 (m, 4H), 6.82 (d, 2H), 6.97 (m, 6H), 7.04 (d, 4H), 7.31 (d, 2H), 7.38 (t, 1H), 7.59 (d, 1H), 8.90 (s, 1H), 13.37 (s, 1H).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). As no significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. : The H-bond diagram of the title molecule(I).
2-((E)-{4-[Bis(4-ethoxyphenyl)amino]phenyl}iminomethyl)phenol top
Crystal data top
C29H28N2O3Dx = 1.211 Mg m3
Mr = 452.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2336 reflections
a = 9.765 (3) Åθ = 2.3–20.7°
b = 13.113 (4) ŵ = 0.08 mm1
c = 19.378 (6) ÅT = 296 K
V = 2481.2 (14) Å3Block, yellow
Z = 40.40 × 0.30 × 0.20 mm
F(000) = 960
Data collection top
Bruker SMART CCD area-detector
diffractometer
2486 independent reflections
Radiation source: fine-focus sealed tube1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1111
Tmin = 0.969, Tmax = 0.984k = 1515
17684 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
2486 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.12 e Å3
6 restraintsΔρmin = 0.18 e Å3
Crystal data top
C29H28N2O3V = 2481.2 (14) Å3
Mr = 452.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.765 (3) ŵ = 0.08 mm1
b = 13.113 (4) ÅT = 296 K
c = 19.378 (6) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1747 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.984Rint = 0.051
17684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.13Δρmax = 0.12 e Å3
2486 reflectionsΔρmin = 0.18 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1807 (5)0.6157 (3)1.2427 (2)0.0891 (13)
H1A0.12660.66951.22310.134*
H1B0.26980.64141.25430.134*
H1C0.13670.59041.28350.134*
C20.1945 (4)0.5321 (3)1.1919 (2)0.0741 (11)
H2A0.23320.55821.14930.089*
H2B0.25550.48001.20980.089*
C30.0558 (3)0.4027 (2)1.13890 (15)0.0476 (8)
C40.1641 (3)0.3628 (2)1.10191 (16)0.0554 (9)
H40.24880.39531.10230.066*
C50.1461 (3)0.2750 (3)1.06451 (17)0.0569 (9)
H50.21960.24781.04020.068*
C60.0203 (3)0.2259 (2)1.06227 (15)0.0484 (8)
C70.0875 (3)0.2676 (3)1.09885 (16)0.0560 (9)
H70.17270.23611.09760.067*
C80.0708 (4)0.3548 (2)1.13691 (16)0.0551 (9)
H80.14420.38191.16140.066*
C90.2070 (4)0.3382 (3)1.25128 (19)0.0800 (12)
H9A0.15360.39161.23060.120*
H9B0.29610.36391.26290.120*
H9C0.16210.31451.29230.120*
C100.2213 (4)0.2511 (3)1.2010 (2)0.0757 (11)
H10A0.25860.27541.15760.091*
H10B0.28230.19951.21950.091*
C110.0768 (4)0.1254 (2)1.14919 (16)0.0546 (8)
C120.0506 (4)0.0825 (3)1.14815 (18)0.0648 (10)
H120.12000.10981.17530.078*
C130.0772 (4)0.0010 (3)1.10721 (17)0.0584 (9)
H130.16470.02901.10630.070*
C140.0254 (4)0.0431 (2)1.06752 (16)0.0513 (8)
C150.1533 (4)0.0009 (3)1.06924 (18)0.0613 (9)
H150.22330.02931.04300.074*
C160.1797 (3)0.0843 (3)1.11010 (18)0.0631 (10)
H160.26670.11321.11080.076*
C170.0234 (3)0.1219 (2)0.95562 (15)0.0486 (8)
C180.0227 (3)0.2085 (2)0.91266 (15)0.0494 (8)
H180.01440.27320.93180.059*
C190.0345 (3)0.1973 (2)0.84202 (16)0.0524 (8)
H190.03400.25520.81420.063*
C200.0470 (3)0.1022 (2)0.81143 (15)0.0483 (8)
C210.0489 (4)0.0180 (2)0.85418 (17)0.0556 (9)
H210.05760.04650.83480.067*
C220.0384 (4)0.0268 (2)0.92461 (16)0.0562 (9)
H220.04130.03140.95190.067*
N20.0527 (3)0.0833 (2)0.73886 (13)0.0539 (7)
C240.0683 (4)0.1357 (3)0.62156 (17)0.0636 (9)
C250.0822 (7)0.2158 (4)0.5769 (2)0.129 (2)
H250.09390.28120.59440.154*
C260.0793 (8)0.2014 (4)0.5064 (2)0.146 (2)
H260.08780.25680.47670.175*
C270.0637 (7)0.1046 (4)0.4803 (2)0.125 (2)
H270.06330.09450.43280.150*
C280.0490 (5)0.0243 (3)0.52299 (19)0.0818 (12)
H280.03810.04090.50500.098*
C290.0503 (4)0.0392 (3)0.59391 (17)0.0615 (9)
N10.0028 (3)0.13169 (19)1.02609 (13)0.0572 (8)
C230.0688 (4)0.1534 (3)0.69541 (17)0.0633 (9)
H230.08160.21970.71130.076*
O10.0896 (3)0.21002 (19)1.19072 (13)0.0745 (7)
O20.0625 (2)0.48898 (16)1.17876 (11)0.0613 (6)
O30.0333 (4)0.04181 (18)0.63487 (13)0.0933 (10)
H30.03830.02390.67530.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.095 (3)0.078 (3)0.093 (3)0.022 (2)0.003 (3)0.023 (3)
C20.069 (3)0.069 (2)0.085 (3)0.015 (2)0.005 (2)0.012 (2)
C30.053 (2)0.0494 (19)0.0401 (17)0.0010 (16)0.0005 (15)0.0007 (15)
C40.0502 (18)0.062 (2)0.054 (2)0.0089 (17)0.0027 (17)0.0064 (19)
C50.053 (2)0.065 (2)0.0527 (19)0.0001 (18)0.0150 (17)0.0058 (18)
C60.058 (2)0.0510 (19)0.0365 (16)0.0029 (17)0.0009 (15)0.0031 (15)
C70.0462 (19)0.067 (2)0.0550 (19)0.0081 (17)0.0033 (16)0.0012 (19)
C80.049 (2)0.064 (2)0.052 (2)0.0052 (17)0.0050 (16)0.0077 (18)
C90.097 (3)0.072 (3)0.071 (2)0.023 (2)0.002 (2)0.014 (2)
C100.073 (3)0.072 (2)0.082 (3)0.010 (2)0.002 (2)0.008 (2)
C110.068 (2)0.0469 (19)0.0492 (18)0.0013 (18)0.0059 (18)0.0055 (17)
C120.061 (2)0.067 (2)0.067 (2)0.002 (2)0.0060 (19)0.012 (2)
C130.054 (2)0.061 (2)0.060 (2)0.0035 (17)0.0025 (18)0.0040 (19)
C140.060 (2)0.0538 (19)0.0398 (17)0.0022 (17)0.0059 (16)0.0005 (16)
C150.063 (2)0.059 (2)0.062 (2)0.0035 (19)0.0084 (18)0.0085 (19)
C160.053 (2)0.063 (2)0.073 (2)0.0079 (18)0.000 (2)0.007 (2)
C170.0502 (19)0.056 (2)0.0397 (17)0.0035 (17)0.0018 (14)0.0008 (16)
C180.054 (2)0.0496 (18)0.0443 (18)0.0055 (16)0.0008 (15)0.0019 (15)
C190.055 (2)0.0566 (19)0.0460 (18)0.0032 (17)0.0010 (17)0.0040 (16)
C200.0463 (19)0.059 (2)0.0395 (16)0.0027 (17)0.0015 (15)0.0018 (16)
C210.070 (2)0.0464 (18)0.0508 (19)0.0026 (18)0.0012 (18)0.0051 (16)
C220.072 (2)0.0481 (19)0.0479 (19)0.0053 (18)0.0019 (18)0.0021 (16)
N20.0578 (17)0.0597 (17)0.0440 (15)0.0038 (14)0.0024 (14)0.0000 (15)
C240.081 (2)0.065 (2)0.0452 (19)0.015 (2)0.0012 (19)0.0000 (19)
C250.233 (7)0.091 (3)0.061 (3)0.055 (4)0.010 (4)0.006 (3)
C260.259 (7)0.115 (4)0.063 (3)0.054 (4)0.009 (4)0.019 (3)
C270.208 (6)0.123 (4)0.044 (2)0.050 (4)0.001 (3)0.006 (3)
C280.112 (3)0.083 (3)0.051 (2)0.011 (3)0.009 (2)0.007 (2)
C290.067 (2)0.067 (2)0.051 (2)0.001 (2)0.0048 (19)0.002 (2)
N10.085 (2)0.0491 (16)0.0381 (14)0.0123 (15)0.0043 (14)0.0009 (13)
C230.076 (2)0.060 (2)0.053 (2)0.014 (2)0.005 (2)0.0069 (19)
O10.0706 (17)0.0684 (15)0.0846 (17)0.0048 (14)0.0022 (14)0.0202 (14)
O20.0602 (15)0.0605 (14)0.0630 (15)0.0050 (12)0.0041 (12)0.0160 (12)
O30.159 (3)0.0601 (16)0.0610 (16)0.0017 (19)0.008 (2)0.0043 (14)
Geometric parameters (Å, º) top
C1—C21.479 (5)C14—C151.367 (5)
C1—H1A0.9600C14—N11.439 (4)
C1—H1B0.9600C15—C161.394 (4)
C1—H1C0.9600C15—H150.9300
C2—O21.431 (4)C16—H160.9300
C2—H2A0.9700C17—N11.386 (4)
C2—H2B0.9700C17—C221.392 (4)
C3—O21.371 (3)C17—C181.407 (4)
C3—C41.380 (4)C18—C191.381 (4)
C3—C81.387 (5)C18—H180.9300
C4—C51.372 (4)C19—C201.387 (4)
C4—H40.9300C19—H190.9300
C5—C61.388 (4)C20—C211.380 (4)
C5—H50.9300C20—N21.429 (4)
C6—C71.382 (4)C21—C221.373 (4)
C6—N11.431 (4)C21—H210.9300
C7—C81.370 (4)C22—H220.9300
C7—H70.9300N2—C231.257 (4)
C8—H80.9300C24—C251.368 (5)
C9—C101.508 (5)C24—C291.385 (5)
C9—H9A0.9600C24—C231.450 (5)
C9—H9B0.9600C25—C261.379 (6)
C9—H9C0.9600C25—H250.9300
C10—O11.408 (4)C26—C271.375 (6)
C10—H10A0.9700C26—H260.9300
C10—H10B0.9700C27—C281.347 (6)
C11—C121.366 (5)C27—H270.9300
C11—C161.369 (5)C28—C291.388 (5)
C11—O11.376 (4)C28—H280.9300
C12—C131.376 (5)C29—O31.337 (4)
C12—H120.9300C23—H230.9300
C13—C141.379 (4)O3—H30.8200
C13—H130.9300
C2—C1—H1A109.5C13—C14—N1119.8 (3)
C2—C1—H1B109.5C14—C15—C16120.5 (3)
H1A—C1—H1B109.5C14—C15—H15119.7
C2—C1—H1C109.5C16—C15—H15119.7
H1A—C1—H1C109.5C11—C16—C15119.6 (3)
H1B—C1—H1C109.5C11—C16—H16120.2
O2—C2—C1109.2 (3)C15—C16—H16120.2
O2—C2—H2A109.8N1—C17—C22121.5 (3)
C1—C2—H2A109.8N1—C17—C18120.5 (3)
O2—C2—H2B109.8C22—C17—C18117.9 (3)
C1—C2—H2B109.8C19—C18—C17120.0 (3)
H2A—C2—H2B108.3C19—C18—H18120.0
O2—C3—C4124.7 (3)C17—C18—H18120.0
O2—C3—C8115.6 (3)C18—C19—C20121.7 (3)
C4—C3—C8119.8 (3)C18—C19—H19119.1
C5—C4—C3119.6 (3)C20—C19—H19119.1
C5—C4—H4120.2C21—C20—C19117.6 (3)
C3—C4—H4120.2C21—C20—N2116.8 (3)
C4—C5—C6121.3 (3)C19—C20—N2125.5 (3)
C4—C5—H5119.4C22—C21—C20121.9 (3)
C6—C5—H5119.4C22—C21—H21119.1
C7—C6—C5118.3 (3)C20—C21—H21119.1
C7—C6—N1120.1 (3)C21—C22—C17120.8 (3)
C5—C6—N1121.5 (3)C21—C22—H22119.6
C8—C7—C6121.0 (3)C17—C22—H22119.6
C8—C7—H7119.5C23—N2—C20122.5 (3)
C6—C7—H7119.5C25—C24—C29117.9 (3)
C7—C8—C3119.9 (3)C25—C24—C23120.1 (3)
C7—C8—H8120.0C29—C24—C23121.9 (3)
C3—C8—H8120.0C24—C25—C26121.4 (4)
C10—C9—H9A109.5C24—C25—H25119.3
C10—C9—H9B109.5C26—C25—H25119.3
H9A—C9—H9B109.5C27—C26—C25119.5 (4)
C10—C9—H9C109.5C27—C26—H26120.3
H9A—C9—H9C109.5C25—C26—H26120.3
H9B—C9—H9C109.5C28—C27—C26120.5 (4)
O1—C10—C9107.3 (3)C28—C27—H27119.7
O1—C10—H10A110.3C26—C27—H27119.7
C9—C10—H10A110.3C27—C28—C29119.8 (4)
O1—C10—H10B110.3C27—C28—H28120.1
C9—C10—H10B110.3C29—C28—H28120.1
H10A—C10—H10B108.5O3—C29—C24120.8 (3)
C12—C11—C16119.9 (3)O3—C29—C28118.3 (3)
C12—C11—O1115.1 (3)C24—C29—C28120.9 (4)
C16—C11—O1125.0 (3)C17—N1—C6123.0 (3)
C11—C12—C13120.5 (3)C17—N1—C14120.2 (3)
C11—C12—H12119.7C6—N1—C14116.5 (2)
C13—C12—H12119.7N2—C23—C24122.9 (3)
C12—C13—C14120.2 (3)N2—C23—H23118.5
C12—C13—H13119.9C24—C23—H23118.5
C14—C13—H13119.9C11—O1—C10118.3 (3)
C15—C14—C13119.2 (3)C3—O2—C2118.0 (3)
C15—C14—N1121.0 (3)C29—O3—H3109.5
O2—C3—C4—C5179.0 (3)C29—C24—C25—C260.3 (8)
C8—C3—C4—C51.2 (5)C23—C24—C25—C26178.7 (5)
C3—C4—C5—C60.9 (5)C24—C25—C26—C270.8 (11)
C4—C5—C6—C70.0 (5)C25—C26—C27—C281.1 (11)
C4—C5—C6—N1176.9 (3)C26—C27—C28—C290.3 (9)
C5—C6—C7—C80.5 (5)C25—C24—C29—O3178.7 (4)
N1—C6—C7—C8176.4 (3)C23—C24—C29—O30.3 (6)
C6—C7—C8—C30.2 (5)C25—C24—C29—C281.1 (7)
O2—C3—C8—C7179.6 (3)C23—C24—C29—C28179.5 (4)
C4—C3—C8—C70.7 (5)C27—C28—C29—O3178.9 (5)
C16—C11—C12—C131.1 (5)C27—C28—C29—C240.8 (7)
O1—C11—C12—C13178.3 (3)C22—C17—N1—C6164.1 (3)
C11—C12—C13—C141.0 (5)C18—C17—N1—C619.1 (5)
C12—C13—C14—C150.2 (5)C22—C17—N1—C149.9 (5)
C12—C13—C14—N1178.6 (3)C18—C17—N1—C14166.8 (3)
C13—C14—C15—C160.6 (5)C7—C6—N1—C17121.5 (3)
N1—C14—C15—C16179.4 (3)C5—C6—N1—C1761.7 (4)
C12—C11—C16—C150.3 (5)C7—C6—N1—C1464.3 (4)
O1—C11—C16—C15179.1 (3)C5—C6—N1—C14112.6 (4)
C14—C15—C16—C110.6 (5)C15—C14—N1—C1779.1 (4)
N1—C17—C18—C19175.8 (3)C13—C14—N1—C17102.1 (4)
C22—C17—C18—C191.1 (5)C15—C14—N1—C6106.4 (4)
C17—C18—C19—C200.0 (5)C13—C14—N1—C672.3 (4)
C18—C19—C20—C210.7 (5)C20—N2—C23—C24177.0 (3)
C18—C19—C20—N2176.7 (3)C25—C24—C23—N2178.0 (4)
C19—C20—C21—C220.2 (5)C29—C24—C23—N20.3 (6)
N2—C20—C21—C22177.3 (3)C12—C11—O1—C10172.5 (3)
C20—C21—C22—C170.9 (6)C16—C11—O1—C108.2 (5)
N1—C17—C22—C21175.3 (3)C9—C10—O1—C11176.7 (3)
C18—C17—C22—C211.5 (5)C4—C3—O2—C210.3 (4)
C21—C20—N2—C23170.9 (3)C8—C3—O2—C2170.0 (3)
C19—C20—N2—C2311.7 (5)C1—C2—O2—C3172.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 Cg2 and Cg3 are the centroids of the C3–C8, C11–C16 and C17–C22 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.872.605 (4)148
C1—H1C···Cg2i0.962.843.760 (4)162
C4—H4···Cg3ii0.932.823.655 (3)150
C9—H9C···Cg1iii0.962.943.872 (4)164
C28—H28···Cg1iv0.932.883.742 (4)154
Symmetry codes: (i) x, y+1/2, z+5/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y1/2, z+5/2; (iv) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 Cg2 and Cg3 are the centroids of the C3–C8, C11–C16 and C17–C22 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.872.605 (4)148
C1—H1C···Cg2i0.962.83703.760 (4)162
C4—H4···Cg3ii0.932.81823.655 (3)150
C9—H9C···Cg1iii0.962.94173.872 (4)164
C28—H28···Cg1iv0.932.88393.742 (4)154
Symmetry codes: (i) x, y+1/2, z+5/2; (ii) x+1/2, y+1/2, z+2; (iii) x, y1/2, z+5/2; (iv) x, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51372003, 21271004).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDharmaraj, N., Viswanathamurthi, P. & Natarajan, K. (2001). Transition Met. Chem. 26, 105–109.  Web of Science CrossRef CAS Google Scholar
First citationFeng, T.-J. (2014). Acta Cryst. E70, o42.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanak, H., Toğurman, F., Kalecik, S., Dege, N. & Yavuz, M. (2013). Acta Cryst. E69, o1085.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds