organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o303-o304

N1,N4-Di­phenyl-3,6-bis­­(phenyl­imino)­cyclo­hexa-1,4-diene-1,4-di­amine

aDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
*Correspondence e-mail: fuji@chem.saitama-u.ac.jp

(Received 22 January 2014; accepted 8 February 2014; online 15 February 2014)

In the title compound, C30H24N4, the central benzo­quinonedi­imine moiety is approximately planar, with a maximum deviation of 0.044 (14) Å. The four terminal phenyl rings are twisted by 44.95 (11), 54.90 (10), 44.98 (10) and 50.68 (11)° with respect to the mean plane the benzo­quinonedi­imine unit. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions into supra­molecular chains running along the b-axis direction.

Related literature

For general background to the title compound, see: Kimish (1875[Kimish, C. (1875). Ber. Dtsch. Chem. Ges. 8, 1026-1032.]); Rall et al. (1998[Rall, J., Stange, A. F., Hübler, K. & Kaim, W. (1998). Angew. Chem. Int. Ed. 37, 2681-2682.]); Frantz et al. (2004[Frantz, S., Rall, J., Hartenbach, J., Schleid, T., Záliś, S. & Kaim, W. (2004). Chem. Eur. J. 10, 149-154.]); Siri et al. (2005[Siri, O., Taquet, J. P., Collin, J. P., Rohmer, M. M., Bénard, M. & Braunstein, P. (2005). Chem. Eur. J. 11, 7247-7253.]); Taquet et al. (2006[Taquet, J. P., Siri, O. & Braunstein, P. (2006). Inorg. Chem. 45, 4668-4676.]); Schweinfurth et al. (2013[Schweinfurth, D., Khusniyarov, M. M., Bubrin, D., Hohloch, S., Su, C. Y. & Srkar, B. (2013). Inorg. Chem. 52, 10332-10339.]); Jeon et al. (2013[Jeon, I. R., Park, J. G., Xiao, D. J. & Harris, T. D. (2013). J. Am. Chem. Soc. 135, 16845-16848.]). For related structures, see: Hughes & Saunders (1956[Hughes, G. M. K. & Saunders, B. C. (1956). J. Chem. Soc. pp. 3814-3820.]); Merchant et al. (1984[Merchant, J. R., Martyres, G. & Shinde, N. M. (1984). Bull. Chem. Soc. Jpn, 57, 1405-1406.]); Siri & Braunstein (2000[Siri, O. & Braunstein, P. (2000). Chem. Commun. pp. 2223-2224.]); Wenderski et al. (2004[Wenderski, T., Light, K. M., Ogrin, D., Bott, S. G. & Harlan, C. J. (2004). Tetrahedron Lett. 45, 6851-6853.]); Khramov et al. (2006[Khramov, D. M., Boydston, A. J. & Bielawski, C. W. (2006). Org. Lett. 8, 1831-1834.]); Boydston et al. (2006[Boydston, A. J., Khramoc, D. M. & Bielawski, C. W. (2006). Tetrahedron Lett. 47, 5123-5125.]); Huang et al., (2008[Huang, Y.-B., Tang, G.-R., Jin, G.-Y. & Jin, G.-X. (2008). Organometallics, 27, 259-269.]); Su et al. (2012[Su, Y., Zhao, Y., Gao, J., Dong, Q., Wu, B. & Yang, X.-J. (2012). Inorg. Chem. 51, 5889-5896.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24N4

  • Mr = 440.53

  • Triclinic, [P \overline 1]

  • a = 8.8858 (12) Å

  • b = 10.0540 (13) Å

  • c = 13.2256 (18) Å

  • α = 93.343 (3)°

  • β = 106.760 (3)°

  • γ = 98.530 (3)°

  • V = 1112.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.992

  • 8166 measured reflections

  • 5291 independent reflections

  • 3273 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.172

  • S = 1.03

  • 5291 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C7–C12 and C19–C24 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cg4i 0.95 2.84 3.675 (2) 148
C14—H14⋯Cg2ii 0.95 2.81 3.673 (3) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N1,N4-Diphenyl-3,6-bis(phenylimino)cyclohexa-1,4-diene-1,4-diamine (I) was synthesized as early as in 1875 (Kimish, 1875) and called azophenine. Then I and its derivatives were obtained from aniline or substituted anilines in various ways, e.g. the oxidation of N,N'-diphenyl-p-phenylenediamine with mercury(II) oxide to give p-benzoquinone diamine followed by heating with aniline (Hughes & Saunders, 1956), heating of anilines with dry copper(II) chloride on a steam bath (Merchant et al., 1984), and the Buchwald-Hartwig cross coupling reaction (Wenderski et al., 2004). The molecular structures of the derivatives except I have been investigated (Boydston et al., 2006; Khramov et al., 2006; Huang et al., 2008). This class of compounds forms various metal complexes (Rall et al., 1998; Siri & Braunstein, 2000; Frantz et al., 2004; Siri et al., 2005; Su et al., 2012), some of which exhibit novel properties (Taquet et al., 2006; Schweinfurth et al., 2013), e.g. one-electron reduced dinuclear Fe complex with I behaves as a single molecule magnet with the strongest exchange coupling (Jeon et al., 2013).

The crystals of I were obtained in the process of a preparation of VIV complex using aniline and [VIV(O)(η2-ox)(H2O)3] (ox2- = oxalate) in air. The reaction occurs neither under an argon atmosphere nor when less than four equivalents of aniline to [VIV(O)(η2-ox)(H2O)3] was used. These results suggest that the reaction proceeds through coordination of aniline to [VIV(O)(η2-ox)(H2O)3], which may act as a catalyst of oxidation pentamerization of aniline to form I.

The red crystals contain only I, and the structure is in triclinic P-1 space group. The atoms of diamino-benzoquinonediimine moiety of I are coplanar. The bond lengths of C(1)–N(1) and C(4)–N(3) correspond to C–N single bond, and that of C(2)–N(2) and C(5)–N(4) correspond to C–N double bond. The bond angles of C(1)—N(1)—C(7) and C(4)—N(3)—C(19) are 128.74 (18) and 127.80 (19)°, respectively, and that of C(2)N(2)—C(13) and C(5)N(4)—C(25) are 121.28 (18) and 123.00 (19)°, respectively, indicating that N(1 and 3) and N(2 and 4) are attributed to amine (sp3) and imine (sp2) nitrogen atoms, respectively. The bond length of C(2)–C(3) is similar with that of C(5)–C(6), corresponding to that of a single bond, and those of C(3)–C(4) and C(1)–C(6) are similar with each other, corresponding to that of a double bond. The bond lengths of C(1)–C(2) and C(4)–C(5) are slightly longer than the above mentioned single bonds. These results indicate that each of two N–C–C–C–N zigzag shaped moieties shows a bond alternation, but no conjugation between them.

Related literature top

For general background to the title compound, see: Kimish (1875); Rall et al. (1998); Frantz et al. (2004); Siri et al. (2005); Taquet et al. (2006); Schweinfurth et al. (2013); Jeon et al. (2013). For related structures, see: Hughes & Saunders (1956); Merchant et al. (1984); Siri & Braunstein (2000); Wenderski et al. (2004); Khramov et al. (2006); Boydston et al. (2006); Huang et al., (2008); Su et al. (2012).

Experimental top

The VIV complex [VIV(O)(η2-ox)(H2O)3] was purchased as "VO(ox).nH2O" from Wako Chemicals, and used without further purification. A solution of aniline (27.9 g, 300 mmol) in EtOH (50 cm3) was added to a solution of VO(ox).nH2O (1.13 g, 3.00 mmol) in a mixture of EtOH (50 cm3) and H2O (100 cm3). The reaction mixture was set aside for 2 weeks at room temperature in air. The precipitated crystals were filterd off, washed with H2O and EtOH, successively, and dried. Yield 1.34 g. (5.1%). 1H NMR / CDCl3: δ 8.22 (s, 2H, NH), 7.41–6.88 (m, 20H, PhH), 6.21 (s, 2H, CH). MALDI TOF MS: 441 (M+1). UV-vis / CH2Cl2, λ/nm (ε/M-1cm-1): 290 (46000), 379 (30000).

Refinement top

The H atoms of NH moieies were located from a Fourier difference map and refined isotrpically. Other H atoms were placed at idealized positions with C—H = 0.95 Å, and refined in ridig mode with Ueq(H) = 1.2Uiso(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, with displacement ellipsoids drawn at the 50% probability level.
N1,N4-Diphenyl-3,6-bis(phenylimino)cyclohexa-1,4-diene-1,4-diamine top
Crystal data top
C30H24N4Z = 2
Mr = 440.53F(000) = 464
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8858 (12) ÅCell parameters from 1264 reflections
b = 10.0540 (13) Åθ = 2.4–25.9°
c = 13.2256 (18) ŵ = 0.08 mm1
α = 93.343 (3)°T = 173 K
β = 106.760 (3)°Plate, red
γ = 98.530 (3)°0.30 × 0.20 × 0.10 mm
V = 1112.4 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5291 independent reflections
Radiation source: fine-focus sealed tube3273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.366 pixels mm-1θmax = 28.0°, θmin = 1.6°
φ and ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1213
Tmin = 0.977, Tmax = 0.992l = 178
8166 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.0548P]
where P = (Fo2 + 2Fc2)/3
5291 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C30H24N4γ = 98.530 (3)°
Mr = 440.53V = 1112.4 (3) Å3
Triclinic, P1Z = 2
a = 8.8858 (12) ÅMo Kα radiation
b = 10.0540 (13) ŵ = 0.08 mm1
c = 13.2256 (18) ÅT = 173 K
α = 93.343 (3)°0.30 × 0.20 × 0.10 mm
β = 106.760 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5291 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3273 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.992Rint = 0.031
8166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.32 e Å3
5291 reflectionsΔρmin = 0.24 e Å3
315 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.6034 (0.0038) x + 5.0416 (0.0058) y + 12.9434 (0.0071) z = 8.2491 (0.0021)

* 0.0006 (0.0008) C10 * -0.0066 (0.0008) C11 * 0.0067 (0.0009) C12 * -0.0008 (0.0009) C13 * -0.0053 (0.0009) C14 * 0.0053 (0.0008) C15

Rms deviation of fitted atoms = 0.0049

- 7.4963 (0.0028) x + 1.7481 (0.0065) y + 10.6592 (0.0082) z = 4.5261 (0.0067)

Angle to previous plane (with approximate e.s.d.) = 86.71 (0.03)

* 0.0118 (0.0008) C4 * -0.0134 (0.0008) C5 * 0.0021 (0.0009) C6 * 0.0111 (0.0009) C7 * -0.0128 (0.0009) C8 * 0.0013 (0.0009) C9

Rms deviation of fitted atoms = 0.0101

- 4.5932 (0.0050) x + 6.9089 (0.0064) y + 12.6394 (0.0086) z = 6.3197 (0.0043)

Angle to previous plane (with approximate e.s.d.) = 30.79 (0.06)

* 0.0005 (0.0006) C1 * -0.0005 (0.0006) C2 * 0.0005 (0.0006) C3 * -0.0005 (0.0006) C1_$1 * 0.0005 (0.0006) C2_$1 * -0.0005 (0.0006) C3_$1 - 3.3572 (0.0015) C13_$2 - 3.6100 (0.0013) C14_$2 - 3.7830 (0.0014) C15_$2

Rms deviation of fitted atoms = 0.0005

- 4.5932 (0.0050) x + 6.9089 (0.0064) y + 12.6394 (0.0086) z = 6.3197 (0.0043)

Angle to previous plane (with approximate e.s.d.) = 0.00 (0.10)

* 0.0005 (0.0006) C1 * -0.0005 (0.0006) C2 * 0.0005 (0.0006) C3 * -0.0005 (0.0006) C1_$1 * 0.0005 (0.0006) C2_$1 * -0.0005 (0.0006) C3_$1 - 3.7228 (0.0017) C10_$2 - 3.4796 (0.0019) C11_$2 - 3.2849 (0.0018) C12_$2

Rms deviation of fitted atoms = 0.0005

- 5.6034 (0.0038) x + 5.0416 (0.0058) y + 12.9434 (0.0070) z = 2.9266 (0.0041)

Angle to previous plane (with approximate e.s.d.) = 10.70 (0.08)

* 0.0006 (0.0008) C10_$2 * -0.0066 (0.0008) C11_$2 * 0.0067 (0.0009) C12_$2 * -0.0008 (0.0009) C13_$2 * -0.0053 (0.0009) C14_$2 * 0.0053 (0.0008) C15_$2

Rms deviation of fitted atoms = 0.0049

- 4.5932 (0.0050) x + 6.9089 (0.0064) y + 12.6394 (0.0086) z = 6.3197 (0.0043)

Angle to previous plane (with approximate e.s.d.) = 10.70 (0.08)

* 0.0005 (0.0006) C1 * -0.0005 (0.0006) C2 * 0.0005 (0.0006) C3 * -0.0005 (0.0006) C1_$1 * 0.0005 (0.0006) C2_$1 * -0.0005 (0.0006) C3_$1

Rms deviation of fitted atoms = 0.0005

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6215 (2)0.1790 (2)0.48956 (16)0.0279 (5)
C20.5987 (2)0.2013 (2)0.59667 (16)0.0272 (5)
C30.4786 (3)0.2780 (2)0.60555 (17)0.0291 (5)
H30.46650.29810.67360.035*
C40.3815 (3)0.3228 (2)0.51985 (17)0.0290 (5)
C50.3993 (2)0.2946 (2)0.41226 (16)0.0272 (5)
C60.5248 (3)0.2248 (2)0.40391 (17)0.0298 (5)
H60.54120.21000.33660.036*
C70.8056 (2)0.0811 (2)0.40583 (17)0.0305 (5)
C80.8318 (3)0.1764 (2)0.33796 (17)0.0340 (5)
H80.80370.26320.34560.041*
C90.8982 (3)0.1449 (2)0.26007 (18)0.0377 (6)
H90.91680.21090.21440.045*
C100.9386 (3)0.0192 (2)0.24679 (19)0.0392 (6)
H100.98300.00190.19180.047*
C110.9138 (3)0.0753 (2)0.31417 (19)0.0368 (6)
H110.94050.16240.30540.044*
C120.8501 (3)0.0439 (2)0.39462 (18)0.0336 (5)
H120.83680.10840.44240.040*
C130.6813 (3)0.1632 (2)0.77728 (16)0.0286 (5)
C140.5421 (3)0.1153 (2)0.80110 (18)0.0340 (5)
H140.44910.07480.74560.041*
C150.5379 (3)0.1259 (2)0.90426 (19)0.0400 (6)
H150.44130.09380.91910.048*
C160.6711 (3)0.1823 (2)0.98623 (19)0.0396 (6)
H160.66660.19081.05720.048*
C170.8115 (3)0.2265 (2)0.96395 (18)0.0381 (6)
H170.90480.26421.02020.046*
C180.8180 (3)0.2163 (2)0.86100 (17)0.0339 (5)
H180.91590.24570.84690.041*
C190.2077 (3)0.4243 (2)0.60850 (18)0.0324 (5)
C200.3155 (3)0.4832 (2)0.70564 (19)0.0386 (6)
H200.42670.50000.71380.046*
C210.2614 (3)0.5167 (2)0.78905 (19)0.0399 (6)
H210.33600.55380.85550.048*
C220.1014 (3)0.4976 (2)0.77844 (19)0.0411 (6)
H220.06550.52170.83690.049*
C230.0066 (3)0.4433 (2)0.68263 (19)0.0373 (6)
H230.11760.43220.67450.045*
C240.0450 (3)0.4049 (2)0.59809 (19)0.0352 (5)
H240.03050.36510.53270.042*
C250.2863 (2)0.3163 (2)0.22856 (17)0.0284 (5)
C260.2740 (3)0.1896 (2)0.17692 (18)0.0344 (5)
H260.27780.11290.21570.041*
C270.2564 (3)0.1740 (3)0.06994 (19)0.0426 (6)
H270.24690.08630.03540.051*
C280.2524 (3)0.2840 (3)0.01207 (19)0.0447 (6)
H280.24360.27290.06130.054*
C290.2612 (3)0.4105 (3)0.06249 (19)0.0401 (6)
H290.25750.48670.02320.048*
C300.2753 (3)0.4270 (2)0.16866 (17)0.0327 (5)
H300.27770.51390.20190.039*
H10.777 (3)0.075 (3)0.551 (2)0.049 (8)*
H20.197 (3)0.394 (3)0.453 (2)0.057 (8)*
N10.7414 (2)0.1088 (2)0.48930 (15)0.0334 (5)
N20.6936 (2)0.15137 (18)0.67317 (14)0.0296 (4)
N30.2589 (2)0.3886 (2)0.52080 (15)0.0361 (5)
N40.2966 (2)0.34011 (18)0.33658 (14)0.0300 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (11)0.0305 (12)0.0276 (11)0.0063 (9)0.0076 (9)0.0019 (9)
C20.0260 (11)0.0272 (11)0.0268 (11)0.0027 (9)0.0064 (9)0.0036 (9)
C30.0331 (12)0.0324 (12)0.0248 (11)0.0103 (9)0.0111 (9)0.0036 (9)
C40.0299 (11)0.0301 (12)0.0297 (12)0.0090 (9)0.0108 (9)0.0046 (9)
C50.0267 (11)0.0277 (11)0.0262 (11)0.0043 (9)0.0064 (9)0.0053 (9)
C60.0302 (12)0.0367 (13)0.0238 (11)0.0081 (9)0.0087 (9)0.0042 (9)
C70.0223 (11)0.0398 (13)0.0277 (11)0.0074 (9)0.0037 (9)0.0035 (10)
C80.0327 (12)0.0338 (13)0.0340 (13)0.0082 (10)0.0060 (10)0.0058 (10)
C90.0393 (13)0.0411 (14)0.0336 (13)0.0088 (11)0.0108 (10)0.0070 (11)
C100.0383 (14)0.0460 (15)0.0375 (13)0.0119 (11)0.0163 (11)0.0020 (11)
C110.0336 (13)0.0325 (13)0.0443 (14)0.0100 (10)0.0104 (11)0.0005 (11)
C120.0250 (11)0.0352 (13)0.0377 (13)0.0063 (9)0.0042 (9)0.0066 (10)
C130.0326 (12)0.0269 (11)0.0273 (12)0.0129 (9)0.0059 (9)0.0068 (9)
C140.0286 (12)0.0384 (13)0.0326 (13)0.0077 (10)0.0039 (9)0.0072 (10)
C150.0387 (14)0.0473 (15)0.0390 (14)0.0117 (11)0.0159 (11)0.0127 (12)
C160.0507 (16)0.0438 (14)0.0272 (12)0.0126 (12)0.0136 (11)0.0047 (11)
C170.0424 (14)0.0383 (14)0.0282 (12)0.0047 (11)0.0036 (10)0.0010 (10)
C180.0331 (12)0.0317 (12)0.0343 (13)0.0040 (10)0.0067 (10)0.0056 (10)
C190.0375 (13)0.0299 (12)0.0332 (12)0.0106 (10)0.0126 (10)0.0082 (10)
C200.0344 (13)0.0398 (14)0.0403 (14)0.0075 (11)0.0080 (11)0.0078 (11)
C210.0470 (15)0.0392 (14)0.0313 (13)0.0135 (11)0.0058 (11)0.0002 (11)
C220.0554 (17)0.0390 (14)0.0350 (14)0.0135 (12)0.0201 (12)0.0060 (11)
C230.0391 (13)0.0354 (13)0.0445 (14)0.0117 (10)0.0196 (11)0.0108 (11)
C240.0350 (13)0.0337 (13)0.0356 (13)0.0082 (10)0.0071 (10)0.0066 (10)
C250.0220 (10)0.0360 (13)0.0271 (11)0.0080 (9)0.0058 (9)0.0040 (10)
C260.0336 (12)0.0318 (12)0.0367 (13)0.0095 (10)0.0069 (10)0.0053 (10)
C270.0419 (15)0.0423 (15)0.0397 (14)0.0115 (11)0.0061 (11)0.0066 (12)
C280.0493 (16)0.0602 (18)0.0269 (13)0.0211 (13)0.0095 (11)0.0040 (12)
C290.0467 (15)0.0441 (15)0.0314 (13)0.0148 (12)0.0097 (11)0.0120 (11)
C300.0329 (12)0.0326 (12)0.0326 (12)0.0096 (10)0.0074 (10)0.0049 (10)
N10.0346 (11)0.0441 (12)0.0255 (10)0.0177 (9)0.0088 (8)0.0089 (9)
N20.0285 (10)0.0336 (10)0.0264 (10)0.0091 (8)0.0059 (8)0.0038 (8)
N30.0407 (12)0.0476 (12)0.0264 (11)0.0233 (9)0.0111 (9)0.0085 (9)
N40.0299 (10)0.0336 (10)0.0275 (10)0.0091 (8)0.0075 (8)0.0074 (8)
Geometric parameters (Å, º) top
C1—C61.360 (3)C16—C171.380 (3)
C1—N11.363 (3)C16—H160.9500
C1—C21.497 (3)C17—C181.378 (3)
C2—N21.296 (3)C17—H170.9500
C2—C31.433 (3)C18—H180.9500
C3—C41.358 (3)C19—C241.395 (3)
C3—H30.9500C19—C201.397 (3)
C4—N31.358 (3)C19—N31.409 (3)
C4—C51.492 (3)C20—C211.368 (3)
C5—N41.302 (3)C20—H200.9500
C5—C61.429 (3)C21—C221.370 (3)
C6—H60.9500C21—H210.9500
C7—C121.385 (3)C22—C231.374 (4)
C7—C81.390 (3)C22—H220.9500
C7—N11.412 (3)C23—C241.381 (3)
C8—C91.370 (3)C23—H230.9500
C8—H80.9500C24—H240.9500
C9—C101.379 (3)C25—C261.384 (3)
C9—H90.9500C25—C301.402 (3)
C10—C111.377 (3)C25—N41.409 (3)
C10—H100.9500C26—C271.375 (3)
C11—C121.383 (3)C26—H260.9500
C11—H110.9500C27—C281.380 (3)
C12—H120.9500C27—H270.9500
C13—C141.388 (3)C28—C291.382 (4)
C13—C181.396 (3)C28—H280.9500
C13—N21.412 (3)C29—C301.371 (3)
C14—C151.374 (3)C29—H290.9500
C14—H140.9500C30—H300.9500
C15—C161.374 (3)N1—H10.89 (3)
C15—H150.9500N3—H20.91 (3)
C6—C1—N1126.3 (2)C18—C17—H17119.6
C6—C1—C2120.17 (19)C16—C17—H17119.6
N1—C1—C2113.47 (17)C17—C18—C13120.3 (2)
N2—C2—C3126.4 (2)C17—C18—H18119.8
N2—C2—C1116.00 (19)C13—C18—H18119.8
C3—C2—C1117.54 (18)C24—C19—C20118.5 (2)
C4—C3—C2122.1 (2)C24—C19—N3119.7 (2)
C4—C3—H3118.9C20—C19—N3121.8 (2)
C2—C3—H3118.9C21—C20—C19120.1 (2)
N3—C4—C3125.5 (2)C21—C20—H20119.9
N3—C4—C5114.23 (18)C19—C20—H20119.9
C3—C4—C5120.15 (19)C20—C21—C22121.1 (2)
N4—C5—C6128.0 (2)C20—C21—H21119.4
N4—C5—C4114.12 (19)C22—C21—H21119.4
C6—C5—C4117.92 (18)C21—C22—C23119.5 (2)
C1—C6—C5121.9 (2)C21—C22—H22120.2
C1—C6—H6119.0C23—C22—H22120.2
C5—C6—H6119.0C22—C23—C24120.5 (2)
C12—C7—C8119.1 (2)C22—C23—H23119.7
C12—C7—N1118.3 (2)C24—C23—H23119.7
C8—C7—N1122.5 (2)C23—C24—C19120.1 (2)
C9—C8—C7119.9 (2)C23—C24—H24119.9
C9—C8—H8120.0C19—C24—H24119.9
C7—C8—H8120.0C26—C25—C30118.5 (2)
C8—C9—C10121.1 (2)C26—C25—N4124.02 (19)
C8—C9—H9119.4C30—C25—N4117.3 (2)
C10—C9—H9119.4C27—C26—C25120.4 (2)
C11—C10—C9119.2 (2)C27—C26—H26119.8
C11—C10—H10120.4C25—C26—H26119.8
C9—C10—H10120.4C26—C27—C28120.9 (2)
C10—C11—C12120.2 (2)C26—C27—H27119.5
C10—C11—H11119.9C28—C27—H27119.5
C12—C11—H11119.9C27—C28—C29119.0 (2)
C11—C12—C7120.3 (2)C27—C28—H28120.5
C11—C12—H12119.8C29—C28—H28120.5
C7—C12—H12119.8C30—C29—C28120.6 (2)
C14—C13—C18118.3 (2)C30—C29—H29119.7
C14—C13—N2122.83 (19)C28—C29—H29119.7
C18—C13—N2118.66 (19)C29—C30—C25120.4 (2)
C15—C14—C13120.5 (2)C29—C30—H30119.8
C15—C14—H14119.7C25—C30—H30119.8
C13—C14—H14119.7C1—N1—C7128.76 (19)
C16—C15—C14121.0 (2)C1—N1—H1111.5 (17)
C16—C15—H15119.5C7—N1—H1119.7 (17)
C14—C15—H15119.5C2—N2—C13121.28 (19)
C15—C16—C17119.0 (2)C4—N3—C19127.73 (19)
C15—C16—H16120.5C4—N3—H2110.8 (18)
C17—C16—H16120.5C19—N3—H2120.5 (18)
C18—C17—C16120.7 (2)C5—N4—C25123.01 (19)
C6—C1—C2—N2178.4 (2)C24—C19—C20—C212.0 (3)
N1—C1—C2—N20.2 (3)N3—C19—C20—C21179.9 (2)
C6—C1—C2—C33.3 (3)C19—C20—C21—C222.2 (4)
N1—C1—C2—C3178.05 (19)C20—C21—C22—C230.3 (4)
N2—C2—C3—C4178.1 (2)C21—C22—C23—C241.7 (3)
C1—C2—C3—C43.8 (3)C22—C23—C24—C191.8 (3)
C2—C3—C4—N3175.7 (2)C20—C19—C24—C230.1 (3)
C2—C3—C4—C50.9 (3)N3—C19—C24—C23178.0 (2)
N3—C4—C5—N41.4 (3)C30—C25—C26—C272.0 (3)
C3—C4—C5—N4178.4 (2)N4—C25—C26—C27176.7 (2)
N3—C4—C5—C6179.6 (2)C25—C26—C27—C280.7 (4)
C3—C4—C5—C62.6 (3)C26—C27—C28—C292.0 (4)
N1—C1—C6—C5178.3 (2)C27—C28—C29—C300.6 (4)
C2—C1—C6—C50.1 (3)C28—C29—C30—C252.1 (4)
N4—C5—C6—C1178.1 (2)C26—C25—C30—C293.4 (3)
C4—C5—C6—C13.1 (3)N4—C25—C30—C29178.5 (2)
C12—C7—C8—C91.2 (3)C6—C1—N1—C78.2 (4)
N1—C7—C8—C9178.3 (2)C2—C1—N1—C7173.3 (2)
C7—C8—C9—C100.6 (3)C12—C7—N1—C1142.5 (2)
C8—C9—C10—C111.0 (4)C8—C7—N1—C140.4 (3)
C9—C10—C11—C120.4 (3)C3—C2—N2—C133.3 (3)
C10—C11—C12—C72.2 (3)C1—C2—N2—C13178.59 (18)
C8—C7—C12—C112.6 (3)C14—C13—N2—C257.2 (3)
N1—C7—C12—C11179.8 (2)C18—C13—N2—C2127.5 (2)
C18—C13—C14—C152.9 (3)C3—C4—N3—C190.3 (4)
N2—C13—C14—C15178.2 (2)C5—C4—N3—C19177.2 (2)
C13—C14—C15—C160.8 (4)C24—C19—N3—C4136.7 (2)
C14—C15—C16—C171.2 (4)C20—C19—N3—C445.4 (3)
C15—C16—C17—C181.0 (4)C6—C5—N4—C255.4 (3)
C16—C17—C18—C131.1 (3)C4—C5—N4—C25175.67 (18)
C14—C13—C18—C173.0 (3)C26—C25—N4—C551.4 (3)
N2—C13—C18—C17178.5 (2)C30—C25—N4—C5133.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C7–C12 and C19–C24 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg4i0.952.843.675 (2)148
C14—H14···Cg2ii0.952.813.673 (3)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C7–C12 and C19–C24 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8···Cg4i0.952.83473.675 (2)148
C14—H14···Cg2ii0.952.81133.673 (3)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

This work has been supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.

References

First citationBoydston, A. J., Khramoc, D. M. & Bielawski, C. W. (2006). Tetrahedron Lett. 47, 5123–5125.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrantz, S., Rall, J., Hartenbach, J., Schleid, T., Záliś, S. & Kaim, W. (2004). Chem. Eur. J. 10, 149–154.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, Y.-B., Tang, G.-R., Jin, G.-Y. & Jin, G.-X. (2008). Organometallics, 27, 259–269.  Web of Science CSD CrossRef CAS Google Scholar
First citationHughes, G. M. K. & Saunders, B. C. (1956). J. Chem. Soc. pp. 3814–3820.  CrossRef Web of Science Google Scholar
First citationJeon, I. R., Park, J. G., Xiao, D. J. & Harris, T. D. (2013). J. Am. Chem. Soc. 135, 16845–16848.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhramov, D. M., Boydston, A. J. & Bielawski, C. W. (2006). Org. Lett. 8, 1831–1834.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKimish, C. (1875). Ber. Dtsch. Chem. Ges. 8, 1026–1032.  Google Scholar
First citationMerchant, J. R., Martyres, G. & Shinde, N. M. (1984). Bull. Chem. Soc. Jpn, 57, 1405–1406.  CrossRef CAS Web of Science Google Scholar
First citationRall, J., Stange, A. F., Hübler, K. & Kaim, W. (1998). Angew. Chem. Int. Ed. 37, 2681–2682.  CrossRef CAS Google Scholar
First citationSchweinfurth, D., Khusniyarov, M. M., Bubrin, D., Hohloch, S., Su, C. Y. & Srkar, B. (2013). Inorg. Chem. 52, 10332–10339.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiri, O. & Braunstein, P. (2000). Chem. Commun. pp. 2223–2224.  Web of Science CSD CrossRef Google Scholar
First citationSiri, O., Taquet, J. P., Collin, J. P., Rohmer, M. M., Bénard, M. & Braunstein, P. (2005). Chem. Eur. J. 11, 7247–7253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSu, Y., Zhao, Y., Gao, J., Dong, Q., Wu, B. & Yang, X.-J. (2012). Inorg. Chem. 51, 5889–5896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTaquet, J. P., Siri, O. & Braunstein, P. (2006). Inorg. Chem. 45, 4668–4676.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWenderski, T., Light, K. M., Ogrin, D., Bott, S. G. & Harlan, C. J. (2004). Tetrahedron Lett. 45, 6851–6853.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o303-o304
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds