organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4bS,8aS)-1-Iso­propyl-4b,8,8-tri­methyl-4b,5,6,7,8,8a,9,10-octa­hydro­phenan­thren-2-yl acetate

aLaboratoire de Synthése Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, BP 2390, Marrakech 40000, Morocco, and bLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: itto35@hotmail.com

(Received 29 January 2014; accepted 5 February 2014; online 19 February 2014)

The hemisynthesis of the title compound, C22H32O2, was carried out through direct acetyl­ation reaction of the naturally occurring diterpene totarol [systematic name: (4bS,8aS)-4b,8,8-trimethyl-1-propan-2-yl-5,6,7,8a,9,10-hexa­hydro­phen­an­thren-2-ol]. The mol­ecule is built up from three fused six membered rings, one saturated and two unsaturated. The central unsaturated ring has a half-chair conformation, whereas the other unsaturated ring displays a chair conformation. The absolute configuration is deduced from the chemical pathway. The value of the Hooft parameter [−0.10 (6)] allowed this absolute configuration to be confirmed.

Related literature

For the synthesis, see: Short & Stromberg (1937[Short, W. F. & Stromberg, H. (1937). J. Chem. Soc. pp. 516-520.]). For biological properties of totarol, see: Barrero et al. (2003[Barrero, A. F., Quílez del Moral, J. F., Lucas, R., Payá, M., Akssira, M., Akaad, S. & Mellouki, F. (2003). J. Nat. Prod. 66, 844-50.]); Bernabeu et al. (2002[Bernabeu, A., Shapiro, S. & Villalain, J. (2002). Chem. Phys. Lipids, 119, 33-39.]); Haraguchi et al. (1996[Haraguchi, H., Oike, S., Muroi, H. & Kubo, I. (1996). Planta Med. 62, 122-125.]); Marcos et al. (2003[Marcos, I. S., Cubillo, M. A. & Moro, R. F. (2003). Tetrahedron Lett. 44, 8831-8835.]); Tacon et al. (2012[Tacon, C., Drguantaieric, M., Smith, P. J. & Chibale, K. (2012). Bioorg. Med. Chem. 20, 893-902.]). For related structures, see: Zeroual et al. (2008[Zeroual, A., Mazoir, N., Daran, J.-C., Akssira, M. & Benharref, A. (2008). Acta Cryst. E64, o604-o605.]); Pettit et al. (2004[Pettit, G. R., Tan, R., Northen, J. S., Herald, D. L., Chapuis, J.-C. & Pettit, R. K. (2004). J. Nat. Prod. 67, 1476-1482.]). For structural discussion, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C22H32O2

  • Mr = 328.47

  • Monoclinic, P 21

  • a = 7.4250 (2) Å

  • b = 10.5716 (3) Å

  • c = 12.0747 (3) Å

  • β = 90.124 (2)°

  • V = 947.79 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.55 mm−1

  • T = 180 K

  • 0.38 × 0.38 × 0.14 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.] Tmin = 0.860, Tmax = 1.000

  • 4370 measured reflections

  • 2511 independent reflections

  • 2490 reflections with I > 2σ(I)

  • Rint = 0.012

  • θmax = 60.7°

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.04

  • 2511 reflections

  • 225 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Refined as an inversion twin.

  • Absolute structure parameter: 0.0 (3)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

The hemisynthesis of the title compound C22H32O2 2 was carried out through direct acetylation reaction of naturally occurred Totarol (1). Totarol (1) is a naturally produced diterpene isolated from a several plants such as Podocarpus totara (Short & Stromberg, 1937) Tetraclinis articulata (Barrero et al., 2003). It has been attracting great interest because of its biological properties ranging from Antimicrobial (Haraguchi et al., 1996), anti-oxidant (Bernabeu et al., 2002), Anti-inflammatory, analgesic, anti-tumoral (Marcos et al., 2003) to Anti-plasmodial (Tacon et al., 2012).

In the aim of preparing totarol derivatives, we report here, the hemisynthesis of (4bS,8aS)-1-isopropyl-4 b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl acetate 2 from naturally occurred Totarol (1). Thus, treatment of (1) with acetic anhydride in pyridine provides (2) as colorless crystals in 97% yield. Its structure was fully characterized by its mass and NMR spectroscopic data. Furthermore, an X-ray single-crystal structure analysis allowed us to confirm unambiguously its full structure.

Compound (2) is built up from three fused six membered rings, a saturated one and two unsaturated (Fig. 1). The central unsaturated ring has an half chair conformation with puckering parameters: Q = 0.531 (2) Å, θ= 50.4 (2)° and φ= 120.1 (4)° (Cremer & Pople, 1975), whereas the second insaturated six-membered ring displays a chair conformation with puckering parameters: Q = 0.535 (3) Å, θ= 173.2 (3) (2)° and φ= 289 (2)°. Similar conformation for the three fused rings has been reported previously with hydroxyl substituent in place of the acetate in the title compound (Zeroual et al., 2008) and with either an hydroxyl or a methoxy substituent on the central ring (Pettit et al., 2004).

The absolute configuration (4S,8S) deduced from the chemical pathway is supported by the refinement of the Flack parameter, 0.0 (3), (Flack, 1983; Flack & Bernardinelli, 2000) and confirmed by the refinement of the Hooft parameter, -0.10 (6) (Spek, 2009).

Related literature top

For the synthesis, see: Short & Stromberg (1937). For biological properties of totarol, see: Barrero et al. (2003); Bernabeu et al. (2002); Haraguchi et al. (1996); Marcos et al. (2003); Tacon et al. (2012). For related structures, see: Zeroual et al. (2008); Pettit et al. (2004). For structural discussion, see: Cremer & Pople (1975); Flack (1983); Flack & Bernardinelli (2000); Spek (2009).

Experimental top

A solution of totarol (1) (90 mg, 0.314 mmol) in acetic anhydride (20 ml) and pyridine (20 ml) was heated under reflux for 24 h. After cooling, the mixture was acidified with 1N HCl solution then extracted with ether (3 × 20 ml). The organic layer was washed with water, dried on anhydrous Na2SO4 and then evaporated under reduced pressure. The obtained residue was chromatographied on silica gel column using hexane and ethyl acetate (97/3) as eluent, to give (4bS,8aS)-1-isopropyl-4 b,8,8-trimethyl-4 b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl acetate (2) (100 mg) in 97% yield.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.98 Å (methyl), 1.0 Å (methine) with Uiso(H) = 1.2Ueq(CH and CH2) or Uiso(H) = 1.5Ueq(CH3).

Although the standard deviation on the Flack's parameter, 0.0 (3), is rather high, the value of the Hooft's parameter, -0.10 (6), is more reliable and allows to confirm the absolute configuration. It is interesting to point out that inverting the configuration gives values of Hooft and Flack parameter close to 1.0 with similar standard deviation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Molecular view of compound (2) with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
(4bS,8aS)-1-Isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octahydrophenanthren-2-yl acetate top
Crystal data top
C22H32O2F(000) = 360
Mr = 328.47Dx = 1.151 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 7.4250 (2) ÅCell parameters from 3311 reflections
b = 10.5716 (3) Åθ = 3.7–60.6°
c = 12.0747 (3) ŵ = 0.55 mm1
β = 90.124 (2)°T = 180 K
V = 947.79 (4) Å3Box, colourless
Z = 20.38 × 0.38 × 0.14 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2511 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2490 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.012
Detector resolution: 16.1978 pixels mm-1θmax = 60.7°, θmin = 3.7°
ω scansh = 78
Absorption correction: multi-scan
Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO, Agilent, 2012)
k = 1111
Tmin = 0.860, Tmax = 1.000l = 1313
4370 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0433P)2 + 0.168P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.075Δρmax = 0.13 e Å3
S = 1.04Δρmin = 0.14 e Å3
2511 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2013), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
225 parametersExtinction coefficient: 0.050 (2)
1 restraintAbsolute structure: Refined as an inversion twin.
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.0 (3)
Crystal data top
C22H32O2V = 947.79 (4) Å3
Mr = 328.47Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.4250 (2) ŵ = 0.55 mm1
b = 10.5716 (3) ÅT = 180 K
c = 12.0747 (3) Å0.38 × 0.38 × 0.14 mm
β = 90.124 (2)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
2511 independent reflections
Absorption correction: multi-scan
Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO, Agilent, 2012)
2490 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 1.000Rint = 0.012
4370 measured reflectionsθmax = 60.7°
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.13 e Å3
S = 1.04Δρmin = 0.14 e Å3
2511 reflectionsAbsolute structure: Refined as an inversion twin.
225 parametersAbsolute structure parameter: 0.0 (3)
1 restraint
Special details top

Experimental. Absorption correction: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO; Agilent Technologies, 2012)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6487 (3)0.6992 (2)0.17276 (16)0.0270 (5)
C20.4780 (3)0.7203 (2)0.13012 (17)0.0283 (5)
C30.3461 (3)0.7823 (2)0.18816 (19)0.0334 (5)
H30.23040.79480.15620.040*
C40.3833 (3)0.8262 (2)0.29347 (18)0.0319 (5)
H40.29160.86820.33410.038*
C4A0.5533 (3)0.81000 (19)0.34131 (17)0.0244 (5)
C4B0.5942 (3)0.8675 (2)0.45589 (18)0.0258 (5)
C50.4239 (3)0.8711 (3)0.52884 (19)0.0346 (6)
H5A0.33760.93270.49720.041*
H5B0.36590.78680.52760.041*
C60.4646 (3)0.9074 (3)0.6486 (2)0.0406 (6)
H6A0.51440.99420.65090.049*
H6B0.35150.90670.69190.049*
C70.5980 (3)0.8167 (3)0.70024 (18)0.0371 (6)
H7A0.54270.73150.70330.045*
H7B0.62220.84380.77730.045*
C80.7773 (3)0.8075 (2)0.63830 (18)0.0338 (5)
C8A0.7386 (3)0.7834 (2)0.51303 (17)0.0275 (5)
H8A0.68960.69540.50930.033*
C90.9073 (3)0.7813 (3)0.44192 (19)0.0372 (6)
H9A0.95210.86870.43220.045*
H9B1.00220.73190.48010.045*
C100.8707 (3)0.7233 (3)0.32926 (18)0.0366 (6)
H10A0.96170.75610.27680.044*
H10B0.88900.63070.33510.044*
C10A0.6862 (3)0.74630 (19)0.28005 (17)0.0261 (5)
C110.7945 (3)0.6336 (2)0.10479 (18)0.0343 (6)
H110.89780.61810.15620.041*
C120.7413 (4)0.5048 (3)0.0572 (2)0.0540 (8)
H12A0.85010.45620.04000.081*
H12B0.67040.51700.01050.081*
H12C0.66910.45850.11170.081*
C130.8634 (4)0.7225 (3)0.0150 (2)0.0518 (7)
H13A0.91030.79980.04920.078*
H13B0.76440.74400.03550.078*
H13C0.95970.68070.02660.078*
C140.6541 (4)1.0050 (2)0.4337 (2)0.0433 (6)
H14A0.55901.04970.39330.065*
H14B0.76471.00470.38950.065*
H14C0.67681.04780.50440.065*
C150.8902 (4)0.9257 (3)0.6616 (2)0.0489 (7)
H15A0.92510.92700.73990.073*
H15B0.81931.00130.64440.073*
H15C0.99860.92430.61540.073*
C160.8803 (4)0.6933 (3)0.6843 (2)0.0561 (8)
H16A0.81520.61540.66570.084*
H16B0.89050.70080.76490.084*
H16C1.00090.69050.65160.084*
C170.3222 (3)0.5899 (2)0.00169 (19)0.0345 (6)
C180.3010 (4)0.5659 (3)0.1197 (2)0.0460 (7)
H18A0.18780.52060.13310.069*
H18B0.40210.51460.14610.069*
H18C0.29910.64670.15940.069*
O10.4419 (2)0.68523 (16)0.01943 (11)0.0338 (4)
O20.2470 (2)0.53449 (19)0.07423 (14)0.0491 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (12)0.0261 (11)0.0248 (11)0.0012 (10)0.0028 (9)0.0023 (9)
C20.0305 (12)0.0316 (12)0.0230 (10)0.0026 (10)0.0004 (9)0.0014 (9)
C30.0244 (12)0.0444 (13)0.0315 (12)0.0021 (11)0.0022 (9)0.0002 (10)
C40.0269 (12)0.0355 (12)0.0333 (12)0.0060 (10)0.0031 (9)0.0010 (10)
C4A0.0256 (11)0.0205 (10)0.0271 (11)0.0010 (9)0.0026 (8)0.0024 (9)
C4B0.0262 (11)0.0221 (10)0.0290 (11)0.0006 (9)0.0022 (9)0.0022 (9)
C50.0302 (12)0.0422 (13)0.0314 (12)0.0063 (11)0.0022 (10)0.0072 (10)
C60.0327 (13)0.0533 (17)0.0357 (13)0.0027 (12)0.0065 (10)0.0129 (12)
C70.0413 (14)0.0448 (14)0.0253 (11)0.0082 (12)0.0023 (10)0.0068 (11)
C80.0342 (12)0.0386 (13)0.0286 (11)0.0002 (11)0.0037 (9)0.0071 (10)
C8A0.0269 (11)0.0271 (11)0.0286 (11)0.0019 (10)0.0001 (9)0.0041 (9)
C90.0276 (12)0.0497 (14)0.0343 (13)0.0040 (11)0.0011 (9)0.0077 (11)
C100.0280 (12)0.0513 (15)0.0305 (12)0.0089 (11)0.0005 (10)0.0047 (11)
C10A0.0261 (11)0.0259 (11)0.0263 (11)0.0000 (9)0.0031 (9)0.0028 (9)
C110.0322 (12)0.0457 (14)0.0251 (11)0.0109 (11)0.0018 (9)0.0012 (10)
C120.0587 (19)0.0487 (17)0.0546 (17)0.0163 (14)0.0060 (14)0.0166 (13)
C130.0399 (15)0.0696 (19)0.0460 (15)0.0121 (14)0.0175 (12)0.0119 (14)
C140.0599 (17)0.0281 (13)0.0421 (14)0.0045 (12)0.0035 (12)0.0017 (11)
C150.0363 (14)0.0662 (18)0.0441 (15)0.0116 (13)0.0023 (11)0.0189 (14)
C160.068 (2)0.0664 (18)0.0338 (13)0.0231 (17)0.0133 (13)0.0045 (14)
C170.0352 (13)0.0364 (13)0.0319 (12)0.0016 (11)0.0017 (10)0.0013 (10)
C180.0489 (16)0.0560 (17)0.0332 (13)0.0039 (13)0.0023 (11)0.0089 (12)
O10.0341 (9)0.0432 (9)0.0239 (8)0.0036 (8)0.0002 (6)0.0011 (7)
O20.0587 (12)0.0514 (11)0.0372 (9)0.0160 (10)0.0039 (9)0.0001 (9)
Geometric parameters (Å, º) top
C1—C21.385 (3)C9—H9A0.9900
C1—C10A1.415 (3)C9—H9B0.9900
C1—C111.526 (3)C10—C10A1.512 (3)
C2—C31.372 (3)C10—H10A0.9900
C2—O11.412 (3)C10—H10B0.9900
C3—C41.381 (3)C11—C131.524 (4)
C3—H30.9500C11—C121.530 (4)
C4—C4A1.398 (3)C11—H111.0000
C4—H40.9500C12—H12A0.9800
C4A—C10A1.406 (3)C12—H12B0.9800
C4A—C4B1.541 (3)C12—H12C0.9800
C4B—C51.543 (3)C13—H13A0.9800
C4B—C141.544 (3)C13—H13B0.9800
C4B—C8A1.553 (3)C13—H13C0.9800
C5—C61.526 (3)C14—H14A0.9800
C5—H5A0.9900C14—H14B0.9800
C5—H5B0.9900C14—H14C0.9800
C6—C71.512 (4)C15—H15A0.9800
C6—H6A0.9900C15—H15B0.9800
C6—H6B0.9900C15—H15C0.9800
C7—C81.532 (3)C16—H16A0.9800
C7—H7A0.9900C16—H16B0.9800
C7—H7B0.9900C16—H16C0.9800
C8—C151.530 (4)C17—O21.193 (3)
C8—C161.533 (4)C17—O11.361 (3)
C8—C8A1.560 (3)C17—C181.496 (3)
C8A—C91.520 (3)C18—H18A0.9800
C8A—H8A1.0000C18—H18B0.9800
C9—C101.516 (3)C18—H18C0.9800
C2—C1—C10A117.49 (18)H9A—C9—H9B108.0
C2—C1—C11121.51 (18)C10A—C10—C9116.61 (19)
C10A—C1—C11120.92 (19)C10A—C10—H10A108.1
C3—C2—C1122.74 (18)C9—C10—H10A108.1
C3—C2—O1118.32 (18)C10A—C10—H10B108.1
C1—C2—O1118.77 (18)C9—C10—H10B108.1
C2—C3—C4119.29 (19)H10A—C10—H10B107.3
C2—C3—H3120.4C4A—C10A—C1120.89 (19)
C4—C3—H3120.4C4A—C10A—C10120.43 (18)
C3—C4—C4A121.18 (19)C1—C10A—C10118.65 (18)
C3—C4—H4119.4C13—C11—C1110.0 (2)
C4A—C4—H4119.4C13—C11—C12111.6 (2)
C4—C4A—C10A118.38 (18)C1—C11—C12115.1 (2)
C4—C4A—C4B119.92 (18)C13—C11—H11106.5
C10A—C4A—C4B121.63 (18)C1—C11—H11106.5
C4A—C4B—C5111.23 (17)C12—C11—H11106.5
C4A—C4B—C14105.79 (18)C11—C12—H12A109.5
C5—C4B—C14108.22 (19)C11—C12—H12B109.5
C4A—C4B—C8A107.92 (17)H12A—C12—H12B109.5
C5—C4B—C8A109.04 (17)C11—C12—H12C109.5
C14—C4B—C8A114.6 (2)H12A—C12—H12C109.5
C6—C5—C4B112.74 (18)H12B—C12—H12C109.5
C6—C5—H5A109.0C11—C13—H13A109.5
C4B—C5—H5A109.0C11—C13—H13B109.5
C6—C5—H5B109.0H13A—C13—H13B109.5
C4B—C5—H5B109.0C11—C13—H13C109.5
H5A—C5—H5B107.8H13A—C13—H13C109.5
C7—C6—C5111.0 (2)H13B—C13—H13C109.5
C7—C6—H6A109.4C4B—C14—H14A109.5
C5—C6—H6A109.4C4B—C14—H14B109.5
C7—C6—H6B109.4H14A—C14—H14B109.5
C5—C6—H6B109.4C4B—C14—H14C109.5
H6A—C6—H6B108.0H14A—C14—H14C109.5
C6—C7—C8114.08 (19)H14B—C14—H14C109.5
C6—C7—H7A108.7C8—C15—H15A109.5
C8—C7—H7A108.7C8—C15—H15B109.5
C6—C7—H7B108.7H15A—C15—H15B109.5
C8—C7—H7B108.7C8—C15—H15C109.5
H7A—C7—H7B107.6H15A—C15—H15C109.5
C15—C8—C7109.6 (2)H15B—C15—H15C109.5
C15—C8—C16107.7 (2)C8—C16—H16A109.5
C7—C8—C16107.9 (2)C8—C16—H16B109.5
C15—C8—C8A114.3 (2)H16A—C16—H16B109.5
C7—C8—C8A109.00 (17)C8—C16—H16C109.5
C16—C8—C8A108.25 (19)H16A—C16—H16C109.5
C9—C8A—C4B109.05 (18)H16B—C16—H16C109.5
C9—C8A—C8113.59 (17)O2—C17—O1123.7 (2)
C4B—C8A—C8117.57 (17)O2—C17—C18126.0 (2)
C9—C8A—H8A105.2O1—C17—C18110.3 (2)
C4B—C8A—H8A105.2C17—C18—H18A109.5
C8—C8A—H8A105.2C17—C18—H18B109.5
C10—C9—C8A111.51 (18)H18A—C18—H18B109.5
C10—C9—H9A109.3C17—C18—H18C109.5
C8A—C9—H9A109.3H18A—C18—H18C109.5
C10—C9—H9B109.3H18B—C18—H18C109.5
C8A—C9—H9B109.3C17—O1—C2117.79 (16)

Experimental details

Crystal data
Chemical formulaC22H32O2
Mr328.47
Crystal system, space groupMonoclinic, P21
Temperature (K)180
a, b, c (Å)7.4250 (2), 10.5716 (3), 12.0747 (3)
β (°) 90.124 (2)
V3)947.79 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.55
Crystal size (mm)0.38 × 0.38 × 0.14
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (CrysAlis PRO, Agilent, 2012)
Tmin, Tmax0.860, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4370, 2511, 2490
Rint0.012
θmax (°)60.7
(sin θ/λ)max1)0.566
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.04
No. of reflections2511
No. of parameters225
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14
Absolute structureRefined as an inversion twin.
Absolute structure parameter0.0 (3)

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) ORTEP-3 for Windows (Farrugia, 2012).

 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBarrero, A. F., Quílez del Moral, J. F., Lucas, R., Payá, M., Akssira, M., Akaad, S. & Mellouki, F. (2003). J. Nat. Prod. 66, 844–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernabeu, A., Shapiro, S. & Villalain, J. (2002). Chem. Phys. Lipids, 119, 33–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaraguchi, H., Oike, S., Muroi, H. & Kubo, I. (1996). Planta Med. 62, 122–125.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarcos, I. S., Cubillo, M. A. & Moro, R. F. (2003). Tetrahedron Lett. 44, 8831–8835.  Web of Science CSD CrossRef CAS Google Scholar
First citationPettit, G. R., Tan, R., Northen, J. S., Herald, D. L., Chapuis, J.-C. & Pettit, R. K. (2004). J. Nat. Prod. 67, 1476–1482.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShort, W. F. & Stromberg, H. (1937). J. Chem. Soc. pp. 516–520.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTacon, C., Drguantaieric, M., Smith, P. J. & Chibale, K. (2012). Bioorg. Med. Chem. 20, 893–902.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZeroual, A., Mazoir, N., Daran, J.-C., Akssira, M. & Benharref, A. (2008). Acta Cryst. E64, o604–o605.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds