metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m108-m109

(E)-1-Ferrocenyl-3-(2-meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
*Correspondence e-mail: rivero.ken@gmail.com

(Received 29 January 2014; accepted 19 February 2014; online 26 February 2014)

The structure of the title compound, [Fe(C5H5)(C15H13O2)], consists of a ferrocenyl moiety and a 2-meth­oxy­phenyl group linked through a prop-2-en-1-one spacer in an E conformation. In the ferrocene unit, the substituted cyclo­penta­dienyl (Cps) ring and the unsubstituted cyclo­penta­dienyl ring (Cp) are almost parallel to one another [dihedral angle = 1.78 (14)°], and the Cp and Cps rings are in a gauche conformation. The benzene ring is twisted by 10.02 (14) and 11.38 (11)° with respect to the Cp and Cps rings, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into supra­molecular chains running along the b-axis direction.

Related literature

For the synthesis, see: Attar et al. (2011[Attar, S., O'Brien, Z., Alhaddad, H., Golden, M. & Calderon-Urrea, A. (2011). Bioorg. Med. Chem. 19, 2055-2073.]); Kumar et al. (2012[Kumar, C. K., Trivedi, R., Kumar, K. R., Giribabu, L. & Sridhar, B. (2012). J. Organomet. Chem. 718, 64-73.]). For related syntheses and background, see: Liu et al. (2001[Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4447.]); Wu et al. (2002[Wu, X., Wilairat, P. & Go, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 2299-2301.]); Ji et al. (2003[Ji, S.-J., Wang, S.-Y., Shen, Z.-L. & Zhou, M.-F. (2003). Chin. Chem. Lett. 12, 1246-1248.]); Maree et al. (2008[Maree, M. D., Neuse, E. W., Erasmus, E. & Swarts, J. C. (2008). Met. Based Drugs, pp. 1-10.]); Jiao et al. (2009[Jiao, Y., Wilkinson IV, J., Di, X., Wang, W., Hatcher, H., Kock, N., Dagostino, R., Knovich, M., Torti, F. & Torti, S. (2009). Blood, 113, 462-469.]); Cardona et al. (2010[Cardona, R., Hernández, K., Pedró, L., Otaño, M., Montes, I. & Guadalupe, A. (2010). J. Electrochem. Soc. 157, F104-F110.]). For the biological activity of calcones and chalcone derivatives, see: Wu et al. (2002[Wu, X., Wilairat, P. & Go, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 2299-2301.]); Arezki et al. (2009[Arezki, A., Brulé, E. & Jaouen, G. (2009). Organometallics, 28, 1606-1609.]); Nabi & Liu (2011[Nabi, G. & Liu, Z.-Q. (2011). Bioorg. Med. Chem. Lett. 21, 944-946.]); Zhao & Liu (2012[Zhao, C. & Liu, Z.-Q. (2012). Biochimie, pp. 1-7.]). For related structures, see: Lindeman et al. (1997[Lindeman, S. V., Bozak, R. E., Hicks, R. J. & Husebye, S. (1997). Acta Chem. Scand. 51, 966-968.]); Wu et al. (2006[Wu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M. L. (2006). Eur. J. Pharm. Sci. 27, 175-187.]); Liu et al. (2008[Liu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001-m1002.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H13O2)]

  • Mr = 346.19

  • Orthorhombic, P 21 21 21

  • a = 8.8352 (1) Å

  • b = 11.4047 (1) Å

  • c = 16.1327 (2) Å

  • V = 1625.58 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 K

  • 0.22 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.821, Tmax = 0.896

  • 13238 measured reflections

  • 3659 independent reflections

  • 3242 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.05

  • 3658 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1523 Friedel pairs

  • Absolute structure parameter: 0.004 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.48 3.368 (2) 159
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones occur in nature as precursors of flavonoids and exhibit various biological activities such as anti-cancer, anti-inflammatory, nitric oxide regulation and anti-hyperglycemic agents (Liu et al., 2001). They are traditionally synthesized in the laboratory, via the Claisen–Schmidt condensation carried out in basic or acidic media under homogeneous conditions (Attar et al., 2011). Structural modifications of the chalcone template are readily achieved. Biological activities of chalcones are equally wide ranging, such as: anti-bacterial and anti-hyperglycemic, anti-malarial, anti-HIV, anti-oxidant, and anti-tumor (Wu et al., 2002).

The crystal structure of the title compound reveals that the configuration about the C12C13 bond corresponds to the (E)-isomer. The majority of the C and O atoms of the substituted cyclopentadienyl ring (Cps) are sp2-hybridized and the conjugation is lost at the methoxy substituent of C19. In the ferrocenyl moiety, the planes formed by the Cp (unsubstituted cyclopentadienyl ring) and Cps are almost parallel. The C atoms in these two rings have adopted a gauche conformation, and the Fe metal center lies closer to the Cps ring. The Fe—Cg and Fe—Cgs distances are 1.658 (2) and 1.644 (2) Å, respectively, where Cg and Cgs are the centroids of Cp and Cps, respectively. The Cg—Fe—Cgs angle is 178.4 (2)°.

Related literature top

For the synthesis, see: Attar et al. (2011); Kumar et al. (2012). For related syntheses and background, see: Liu et al. (2001); Wu et al. (2002); Ji et al. (2003); Maree et al. (2008); Jiao et al. (2009); Cardona et al. (2010). For the biological activity of calcones and chalcone derivatives, see: Wu et al. (2002); Arezki et al. (2009); Nabi & Liu (2011); Zhao & Liu (2012). For related structures, see: Lindeman et al. (1997); Wu et al. (2006); Liu et al. (2008).

Experimental top

The title compound was synthesized according to the literature procedure (Cardona et al., 2010). An aqueous solution of sodium hydroxide (5%, 2 ml) was added slowly with stirring to acetylferrocene (0.456 g, 0.002 mol). Then, 2-methoxybenzaldehyde (0.272 g, 0.002 mol) in ethanol (2 ml). The resulting mixture was stirred at room temperature for 2 h. The dark-orange-red precipitated solid was filtered off, washed with cold water and ethanol, dried and recrystallized from a mixture of acetone:water (yield, 84%; M·P. 144–145 °C). Dark violet crystals, suitable for X-ray diffraction, were obtained by the slow evaporation of a 1:1 (v/v) acetone:water solution of the title compound at room temperature over a period of 1 day. NMR analyses were performed on a Bruker AV-500 spectrometer by using CDCl3 99.9% pure as a solvent and Me4Si as external standard.1H-NMR (δ in p.p.m., CDCl3): 3.90 (3H, s), 4.20 (5H, s), 4.60 (2H, s), 4.90 (2H, s), 7.05 (1H, d), 6.95, 7.25, 7.35, 8.10 (4H, dd, d,d, dd), 7.65 (1H, d). 13C-NMR (δ in p.p.m., CDCl3): 55.5, 69.7, 70.1, 72.5, 80.9, 111.2, 123.9, 120.7, 124.7, 128.9, 131.2, 136.3, 158.7, 193.5.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
(E)-1-Ferrocenyl-3-(2-methoxyphenyl)prop-2-en-1-one top
Crystal data top
[Fe(C5H5)(C15H13O2)]Dx = 1.415 Mg m3
Mr = 346.19Melting point: 417 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6681 reflections
a = 8.8352 (1) Åθ = 2.9–26.8°
b = 11.4047 (1) ŵ = 0.93 mm1
c = 16.1327 (2) ÅT = 296 K
V = 1625.58 (3) Å3Prism, red
Z = 40.22 × 0.17 × 0.12 mm
F(000) = 720
Data collection top
Bruker APEXII CCD
diffractometer
3659 independent reflections
Radiation source: fine-focus sealed tube3242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1011
Tmin = 0.821, Tmax = 0.896k = 1414
13238 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.0721P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3658 reflectionsΔρmax = 0.21 e Å3
209 parametersΔρmin = 0.13 e Å3
0 restraintsAbsolute structure: Flack (1983), 1523 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (14)
Crystal data top
[Fe(C5H5)(C15H13O2)]V = 1625.58 (3) Å3
Mr = 346.19Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8352 (1) ŵ = 0.93 mm1
b = 11.4047 (1) ÅT = 296 K
c = 16.1327 (2) Å0.22 × 0.17 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
3659 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3242 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.896Rint = 0.022
13238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.13 e Å3
3658 reflectionsAbsolute structure: Flack (1983), 1523 Friedel pairs
209 parametersAbsolute structure parameter: 0.004 (14)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4177 (3)0.4890 (3)0.63912 (15)0.0776 (7)
H10.34080.49250.59990.093*
C20.4854 (3)0.5845 (2)0.6769 (2)0.0889 (10)
H20.46220.66290.66730.107*
C30.5963 (3)0.5420 (3)0.7327 (2)0.0943 (9)
H30.65840.58690.76680.113*
C40.5945 (3)0.4190 (3)0.72679 (18)0.0851 (8)
H40.65660.36790.75610.102*
C50.4835 (3)0.3867 (2)0.66940 (16)0.0754 (7)
H50.45820.31060.65420.091*
C60.2005 (2)0.39864 (16)0.80793 (12)0.0476 (4)
H60.15030.33690.78220.057*
C70.3176 (2)0.3888 (2)0.86594 (13)0.0581 (5)
H70.35820.31880.88540.070*
C80.3639 (2)0.5015 (2)0.88996 (12)0.0623 (5)
H80.43990.51880.92790.075*
C90.2754 (2)0.58371 (17)0.84677 (12)0.0496 (4)
H90.28310.66480.85100.060*
C100.17163 (19)0.52116 (16)0.79522 (10)0.0414 (4)
C110.06791 (18)0.57653 (15)0.73633 (12)0.0437 (4)
C120.00329 (19)0.50151 (17)0.67329 (12)0.0499 (4)
H120.01850.42170.67290.060*
C130.0981 (2)0.54437 (16)0.61665 (11)0.0456 (4)
H130.11670.62460.61880.055*
C140.17574 (19)0.47877 (17)0.55157 (10)0.0442 (4)
C150.1691 (3)0.35727 (18)0.54580 (13)0.0583 (5)
H150.11110.31560.58380.070*
C160.2464 (3)0.2974 (2)0.48517 (15)0.0749 (7)
H160.24080.21600.48290.090*
C170.3305 (3)0.3563 (2)0.42873 (15)0.0774 (7)
H170.38140.31520.38740.093*
C180.3413 (3)0.4771 (2)0.43210 (14)0.0698 (6)
H180.39990.51730.39360.084*
C190.2647 (2)0.53742 (19)0.49291 (12)0.0556 (5)
C200.3610 (4)0.7215 (2)0.44401 (18)0.1102 (12)
H20A0.32700.70870.38820.165*
H20B0.35540.80360.45680.165*
H20C0.46380.69530.44930.165*
O10.04308 (17)0.68202 (11)0.74047 (9)0.0631 (4)
O20.2676 (2)0.65768 (14)0.49974 (10)0.0782 (5)
Fe10.38821 (3)0.48092 (2)0.764458 (16)0.04441 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0711 (15)0.106 (2)0.0554 (13)0.0059 (15)0.0217 (11)0.0055 (13)
C20.095 (2)0.0698 (16)0.102 (2)0.0105 (15)0.055 (2)0.0035 (15)
C30.0524 (14)0.127 (3)0.103 (2)0.0362 (15)0.0215 (18)0.0322 (19)
C40.0488 (13)0.115 (2)0.0920 (19)0.0237 (13)0.0192 (17)0.0047 (16)
C50.0735 (17)0.0777 (16)0.0751 (17)0.0027 (13)0.0224 (15)0.0200 (13)
C60.0461 (11)0.0452 (9)0.0514 (11)0.0029 (8)0.0027 (9)0.0070 (8)
C70.0579 (12)0.0656 (12)0.0507 (12)0.0123 (10)0.0015 (10)0.0139 (10)
C80.0543 (12)0.0874 (16)0.0454 (10)0.0093 (11)0.0110 (9)0.0073 (10)
C90.0504 (11)0.0512 (10)0.0473 (10)0.0025 (9)0.0012 (9)0.0115 (8)
C100.0353 (8)0.0479 (9)0.0409 (8)0.0001 (8)0.0049 (7)0.0008 (8)
C110.0371 (9)0.0465 (9)0.0474 (10)0.0036 (6)0.0046 (8)0.0028 (8)
C120.0429 (10)0.0527 (11)0.0540 (10)0.0055 (8)0.0043 (8)0.0021 (8)
C130.0378 (9)0.0516 (10)0.0475 (10)0.0007 (8)0.0034 (8)0.0074 (7)
C140.0371 (8)0.0533 (9)0.0423 (9)0.0015 (8)0.0048 (7)0.0031 (8)
C150.0647 (13)0.0588 (12)0.0514 (12)0.0030 (10)0.0029 (10)0.0065 (9)
C160.101 (2)0.0594 (13)0.0644 (15)0.0176 (12)0.0059 (15)0.0008 (11)
C170.0956 (19)0.0832 (17)0.0535 (13)0.0280 (14)0.0101 (14)0.0068 (12)
C180.0681 (13)0.0886 (16)0.0525 (12)0.0038 (13)0.0143 (10)0.0043 (12)
C190.0510 (11)0.0675 (13)0.0484 (11)0.0012 (10)0.0038 (9)0.0011 (9)
C200.152 (3)0.0934 (19)0.0852 (19)0.040 (2)0.044 (2)0.0080 (15)
O10.0719 (9)0.0497 (7)0.0677 (9)0.0134 (6)0.0116 (8)0.0000 (7)
O20.1015 (14)0.0633 (9)0.0698 (10)0.0214 (9)0.0350 (10)0.0010 (7)
Fe10.03514 (12)0.04845 (13)0.04965 (14)0.00074 (10)0.00249 (11)0.00507 (10)
Geometric parameters (Å, º) top
C1—C21.385 (4)C9—Fe12.0326 (18)
C1—C51.391 (3)C9—H90.9300
C1—Fe12.041 (2)C10—C111.463 (3)
C1—H10.9300C10—Fe12.0294 (17)
C2—C31.416 (4)C11—O11.225 (2)
C2—Fe12.032 (3)C11—C121.470 (3)
C2—H20.9300C12—C131.332 (2)
C3—C41.406 (4)C12—H120.9300
C3—Fe12.032 (2)C13—C141.460 (3)
C3—H30.9300C13—H130.9300
C4—C51.398 (3)C14—C151.390 (3)
C4—Fe12.047 (2)C14—C191.400 (3)
C4—H40.9300C15—C161.374 (3)
C5—Fe12.053 (2)C15—H150.9300
C5—H50.9300C16—C171.354 (3)
C6—C71.399 (3)C16—H160.9300
C6—C101.435 (3)C17—C181.382 (3)
C6—Fe12.0306 (18)C17—H170.9300
C6—H60.9300C18—C191.376 (3)
C7—C81.404 (3)C18—H180.9300
C7—Fe12.043 (2)C19—O21.376 (3)
C7—H70.9300C20—O21.421 (3)
C8—C91.406 (3)C20—H20A0.9600
C8—Fe12.0496 (19)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C9—C101.429 (3)
C2—C1—C5109.0 (2)C15—C14—C13122.62 (17)
C2—C1—Fe169.79 (15)C19—C14—C13120.33 (17)
C5—C1—Fe170.60 (14)C16—C15—C14121.5 (2)
C2—C1—H1125.5C16—C15—H15119.3
C5—C1—H1125.5C14—C15—H15119.3
Fe1—C1—H1125.7C17—C16—C15120.3 (2)
C1—C2—C3108.0 (2)C17—C16—H16119.8
C1—C2—Fe170.46 (14)C15—C16—H16119.8
C3—C2—Fe169.58 (15)C16—C17—C18120.4 (2)
C1—C2—H2126.0C16—C17—H17119.8
C3—C2—H2126.0C18—C17—H17119.8
Fe1—C2—H2125.5C19—C18—C17119.5 (2)
C4—C3—C2106.9 (2)C19—C18—H18120.3
C4—C3—Fe170.41 (14)C17—C18—H18120.3
C2—C3—Fe169.63 (13)O2—C19—C18123.08 (19)
C4—C3—H3126.6O2—C19—C14115.64 (17)
C2—C3—H3126.6C18—C19—C14121.3 (2)
Fe1—C3—H3125.0O2—C20—H20A109.5
C5—C4—C3108.4 (3)O2—C20—H20B109.5
C5—C4—Fe170.30 (13)H20A—C20—H20B109.5
C3—C4—Fe169.26 (14)O2—C20—H20C109.5
C5—C4—H4125.8H20A—C20—H20C109.5
C3—C4—H4125.8H20B—C20—H20C109.5
Fe1—C4—H4126.2C19—O2—C20118.09 (19)
C1—C5—C4107.7 (3)C10—Fe1—C641.40 (7)
C1—C5—Fe169.67 (13)C10—Fe1—C3146.85 (11)
C4—C5—Fe169.82 (13)C6—Fe1—C3169.96 (12)
C1—C5—H5126.1C10—Fe1—C2115.91 (10)
C4—C5—H5126.1C6—Fe1—C2148.66 (12)
Fe1—C5—H5126.0C3—Fe1—C240.79 (11)
C7—C6—C10107.77 (18)C10—Fe1—C941.18 (7)
C7—C6—Fe170.39 (12)C6—Fe1—C968.92 (8)
C10—C6—Fe169.26 (10)C3—Fe1—C9114.23 (10)
C7—C6—H6126.1C2—Fe1—C9109.02 (10)
C10—C6—H6126.1C10—Fe1—C1110.65 (9)
Fe1—C6—H6125.8C6—Fe1—C1117.87 (10)
C6—C7—C8109.06 (18)C3—Fe1—C167.62 (11)
C6—C7—Fe169.43 (11)C2—Fe1—C139.76 (11)
C8—C7—Fe170.19 (12)C9—Fe1—C1133.16 (10)
C6—C7—H7125.5C10—Fe1—C768.43 (8)
C8—C7—H7125.5C6—Fe1—C740.18 (8)
Fe1—C7—H7126.5C3—Fe1—C7130.91 (13)
C7—C8—C9108.18 (17)C2—Fe1—C7170.14 (12)
C7—C8—Fe169.69 (12)C9—Fe1—C767.87 (8)
C9—C8—Fe169.21 (11)C1—Fe1—C7148.88 (10)
C7—C8—H8125.9C10—Fe1—C4171.98 (10)
C9—C8—H8125.9C6—Fe1—C4132.11 (11)
Fe1—C8—H8126.8C3—Fe1—C440.33 (12)
C8—C9—C10108.20 (17)C2—Fe1—C467.53 (12)
C8—C9—Fe170.51 (11)C9—Fe1—C4146.05 (11)
C10—C9—Fe169.29 (10)C1—Fe1—C466.89 (11)
C8—C9—H9125.9C7—Fe1—C4109.43 (10)
C10—C9—H9125.9C10—Fe1—C868.51 (7)
Fe1—C9—H9125.9C6—Fe1—C868.04 (8)
C9—C10—C6106.80 (16)C3—Fe1—C8107.73 (11)
C9—C10—C11124.36 (17)C2—Fe1—C8131.63 (11)
C6—C10—C11128.62 (17)C9—Fe1—C840.28 (8)
C9—C10—Fe169.53 (10)C1—Fe1—C8170.76 (11)
C6—C10—Fe169.35 (11)C7—Fe1—C840.11 (9)
C11—C10—Fe1121.96 (12)C4—Fe1—C8115.22 (10)
O1—C11—C10120.04 (18)C10—Fe1—C5133.45 (9)
O1—C11—C12122.19 (17)C6—Fe1—C5110.56 (10)
C10—C11—C12117.77 (15)C3—Fe1—C567.68 (11)
C13—C12—C11121.99 (18)C2—Fe1—C567.16 (10)
C13—C12—H12119.0C9—Fe1—C5172.29 (10)
C11—C12—H12119.0C1—Fe1—C539.73 (10)
C12—C13—C14126.90 (18)C7—Fe1—C5117.05 (11)
C12—C13—H13116.6C4—Fe1—C539.88 (10)
C14—C13—H13116.6C8—Fe1—C5147.23 (10)
C15—C14—C19117.04 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.483.368 (2)159
Symmetry code: (i) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.483.368 (2)159
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Pfizer Pharmaceuticals Fellowship Program, the UPR–RP RISE Program (No. 2R25GM61151), and the Materials Characterization Center (MCC)-UPR Río Piedras.

References

First citationArezki, A., Brulé, E. & Jaouen, G. (2009). Organometallics, 28, 1606–1609.  Web of Science CSD CrossRef CAS Google Scholar
First citationAttar, S., O'Brien, Z., Alhaddad, H., Golden, M. & Calderon-Urrea, A. (2011). Bioorg. Med. Chem. 19, 2055–2073.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardona, R., Hernández, K., Pedró, L., Otaño, M., Montes, I. & Guadalupe, A. (2010). J. Electrochem. Soc. 157, F104–F110.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJi, S.-J., Wang, S.-Y., Shen, Z.-L. & Zhou, M.-F. (2003). Chin. Chem. Lett. 12, 1246–1248.  Google Scholar
First citationJiao, Y., Wilkinson IV, J., Di, X., Wang, W., Hatcher, H., Kock, N., Dagostino, R., Knovich, M., Torti, F. & Torti, S. (2009). Blood, 113, 462–469.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, C. K., Trivedi, R., Kumar, K. R., Giribabu, L. & Sridhar, B. (2012). J. Organomet. Chem. 718, 64–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationLindeman, S. V., Bozak, R. E., Hicks, R. J. & Husebye, S. (1997). Acta Chem. Scand. 51, 966–968.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001–m1002.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaree, M. D., Neuse, E. W., Erasmus, E. & Swarts, J. C. (2008). Met. Based Drugs, pp. 1–10.  Google Scholar
First citationNabi, G. & Liu, Z.-Q. (2011). Bioorg. Med. Chem. Lett. 21, 944–946.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M. L. (2006). Eur. J. Pharm. Sci. 27, 175–187.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, X., Wilairat, P. & Go, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 2299–2301.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, C. & Liu, Z.-Q. (2012). Biochimie, pp. 1–7.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m108-m109
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds