metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m104-m105

A one-dimensional polymeric cobalt(III)–potassium complex with 18-crown-6, cyanide and porphyrinate ligands

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, University of Monastir, Tunisia, and bLaboratoire de Chimie de Coordination CNRS UPR 8241, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 6 February 2014; accepted 17 February 2014; online 26 February 2014)

The reaction of CoII(TpivPP) {TpivPP is the dianion of 5,10,15,20-tetra­kis­[2-(2,2-di­methyl­propanamido)­phen­yl]por­ph­yrin} with an excess of KCN salts and an excess of the 18-crown-6 in chloro­benzene leads to the polymeric title compound catena-poly[[dicyanido-2κ2C-(1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-1κ6O){μ3-(2α,2β)-5,10,15,20-tetra­kis­[2-(2,2-di­methyl­propanamido)­phen­yl]porphyrinato-1κO5:2κ4N,N′,N′′,N′′′:1′κO15}cobalt(III)potassium] dihydrate], {[CoK(CN)2(C12H24O6)(C64H64N8O4]·2H2O}n. The CoIII ion lies on an inversion center, and the asymmetric unit contains one half of a [CoIII(2α,2β-TpivPP)(CN)2] ion complex and one half of a [K(18-C-6]+ counter-ion (18-C-6 is 1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne), where the KI ion lies on an inversion center. The CoIII ion is hexa­coordinated by two C-bonded axial cyanide ligands and the four pyrrole N atoms of the porphyrin ligand. The KI ion is chelated by the six O atoms of the 18-crown-6 mol­ecule and is further coordinated by two O atoms of pivalamido groups of the porphyrin ligands, leading to the formation of polymeric chains running along [011]. In the crystal, the polymeric chains and the lattice water mol­ecules are linked by N—H⋯O and O—H⋯N hydrogen bonds, as well as weak C—H⋯O, O—H⋯π and C—H⋯π inter­actions into a three-dimensional supra­molecular architecture.

Related literature

For the synthesis, see: Collman et al. (1978[Collman, J. P., Brauman, J. I., Doxsee, K. M., Halbert, T. R., Hayes, S. E. & Suslick, K. S. (1978). J. Am. Chem. Soc. 100, 2761-2766.]). For related structures, see: Iimuna et al. (1988[Iimuna, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821-826.]); Hoshino et al. (2000[Hoshino, M., Sonoki, H., Miyazaki, Y., Iimura, Y. & Yamamoto, K. (2000). Inorg. Chem. 39, 4850-4857.]); Konarev et al. (2003[Konarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837-3848.]); Ali et al. (2011[Ali, B. B., Belkhiria, M. S., Giorgi, M. & Nasri, H. (2011). Open J. Inorg. Chem. 1, 39-46.]); Pratt (1972[Pratt, J. M. (1972). Inorganic Chemistry of Vitamine B12, pp. 250-251. London: Academic Press.]); Li et al. (2010[Li, J., Noll, B. C., Oliver, A. G., Ferraudi, G., Lappin, A. G. & Scheidt, W. R. (2010). Inorg. Chem. 49, 2398-2406.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [CoK(CN)2(C12H24O6)(C64H64N8O4]·2H2O

  • Mr = 1459.70

  • Triclinic, [P \overline 1]

  • a = 9.1885 (3) Å

  • b = 14.4631 (4) Å

  • c = 14.6845 (4) Å

  • α = 98.342 (2)°

  • β = 102.170 (2)°

  • γ = 93.101 (2)°

  • V = 1880.20 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 180 K

  • 0.48 × 0.40 × 0.30 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.86, Tmax = 0.90

  • 38025 measured reflections

  • 7400 independent reflections

  • 5986 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.07

  • 7400 reflections

  • 475 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Co—N1 1.9853 (13)
Co—N2 1.9834 (14)
Co—C33 1.9129 (18)
K—O2i 2.7789 (15)
K—O3 2.8633 (13)
K—O4 2.7917 (13)
K—O5 2.7505 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg5 are the centroids of the N1/C2–C5, N2/C7–C10, Co/N1/C2/C1/C10′/N2′ and Co/N2/C10/C1′/C2′/N1′ rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN3⋯O6 0.88 2.09 2.966 (2) 172
O6—H1O6⋯N5ii 0.87 1.95 (2) 2.810 (3) 172 (2)
C20—H20C⋯O6 0.98 2.51 3.413 (3) 153
O6—H2O6⋯Cg2iii 0.88 2.73 (2) 3.272 (2) 121 (2)
O6—H2O6⋯Cg3 0.88 2.81 (2) 3.455 (2) 131 (2)
O6—H2O6⋯Cg5iii 0.88 2.81 (2) 3.455 (2) 131 (2)
C21—H21BCg1iv 0.98 2.82 3.737 (3) 156
Symmetry codes: (ii) -x+2, -y+2, -z+2; (iii) -x+1, -y+2, -z+2; (iv) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In the Cambridge Structural Database (CSD, Version 5.35; Allen, 2002) there are more than ninety structures of cyano-metalloporphyrins. This large number of structures reflects the importance of this type of compounds. Nevertheless, only one structure of cyano-porphyrin species with a cobalt as central ion is known (Hoshino et al.., 2000). The cyano-cobalt porphyrin derivatives are good model for the B12 vitamin called cobalamin, which is a cobalt porphyrin-like protein responsible, inter alia, of the formation of blood.

We reports herein the crystal structure of the poly[(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(+)(dicyano)(2α,2β-5,10,15,20-tetrakis[2-(2,2-dimethylpropanamido)-phenyl]porphyrinato-κ4N,N',N'',N''')cobaltate(III) dihydrate] with formula{[K(18-C-6)][CoIII(2α,2β-TpivPP)(CN)2].2H2O}n.

In this complex, the cobalt is coordinated to the four N atoms of the porphyrin ring and the carbons of the two trans cyano axial ligands (Fig. 1).

It has been noticed that there is a relationship between the ruffling of the porphyrinato core and the mean equatorial Co—Np distance; the porphyrinato core is ruffled as the Co—Np distance decreases (Iimuna et al., 1988). Indeed, for the very ruffled structure [CoII(TPP)] (Konarev et al., 2003) the Co—Np bond length value is 1.923 (4) Å while the practically planar porphyrin core of the ion complex [CoIII(OEP)(NO2)2]- (OEP is the dianion of the octaethylporphyrin; Ali et al., 2011) presents a Co—Np distance of 1.988 (2) Å. Therefore, the Co—Np bond length in the title complex [1.9844 (14) Å] is normal for a cobalt planar porphyrin species. It is noteworthy that the related dicyano-cobalt(III) derivative

{[K(18-C-6)H2O]2[(CN)2CoIII(TPP)]}[(CN)2CoIII(TPP)].C7H8 (Hoshino et al., 2000) exhibits a very short Co__Np distance [1.93 (1) Å] which is in accordance with a very ruffled porphyrin core.

The Co—C(cyano) bond length value [1.9129 (18) Å] is very close to that of vitamin B12 (1.92 Å ) (Pratt, 1972). This distances is slightly shorter compared to those of the related dicyano-cobalt species mentioned above [Co—C(CN) = 1.98 (2) Å and 1.94 (2) Å].

The potassium anion is coordinated to the six oxygen atoms of the 18-crown-6 where the K—O bond length values are in the range [2.7505 (13) Å - 2.8633 (13) Å]. This cation is also linked to the oxygen O2 of one pivalamido group of the 2α,2β-TpivPP porphyrin with a K__O2 distance of 2.7789 (15) Å leading to a 1D coordination polymer. One water molecule is linked to the nitrogen atom (N3) of one pivalamido group and the nitrogen N5 of the cyano axial ligand via the two intramolecular hydrogen bonds N3-HN3···O6 [2.966 (3) Å] and O6-H1O6···N5 [2.810 (3) Å].

The crystal packing features weak C—H···π interactions between the 1D polymer chains (Table 1 and Fig. 2).

An interesting phenomenon concerning the structure title compound where the porphyrin starting material is the atropisomer α,α,α,α-TpivPP but the final product contains the 2α,2β-TpivPP atropisomer in the polymer {[K(18-C-6)][CoIII(2α,2β-TpivPP)(CN)2].2H2O}n. This kind of stereoisomerism of the TpivPP porphyrin was mentioned in the literature (Li et al., 2010).

Related literature top

For the synthesis, see: Collman et al. (1978). For related structures, see: Iimuna et al. (1988); Hoshino et al. (2000); Konarev et al. (2003); Ali et al. (2011); Pratt (1972); Li et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a solution of [CoII(TpivPP)] (Collman et al., 1978) (100 mg, 0.067 mmol) in chlorobenzene (10 mL) was added an excess of 18-crown-6 (150 mg, 0.567 mmol) and potassium cyanide (100 mg, 0.378 mmol). A rapid color change from orange-red to green occurred. The resulting material was crystallized by diffusion of hexanes through the chlorobenzene solution which yields {[K(18-C-6)][CoIII(2α,2β-TpivPP)(CN)2].2H2O}n crystals as synthesis product.

Refinement top

The two hydrogens of the water molecule were found in the difference Fourier map and were included in the refinement using restraints (O-H = 0.85 (1) Å) with Uiso(H) = 1.2Ueq(O6). Other H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.99 Å (methylene), 0.95 Å (aromatic) and 0.98 Å with Uiso(H) = 1.2Ueq(Caromatic, methylene, methyl) and N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the molecular structure of the title molecule with the atom-numbering. Displacement ellipsoids are drawn at 50%. The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure of the title compound plotted in projection along [100]. H atoms have been omitted.
catena-poly[[dicyanido-2κ2C-(1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O){µ3-(2α,2β)-5,10,15,20-tetrakis[2-(2,2-dimethylpropanamido)phenyl]porphyrinato-1κO5:2κ4N,N',N'',N''':1'κO15}cobalt(III)potassium] dihydrate] top
Crystal data top
[CoK(CN)2(C12H24O6)(C64H64N8O4]·2H2OZ = 1
Mr = 1459.70F(000) = 772
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1885 (3) ÅCell parameters from 7400 reflections
b = 14.4631 (4) Åθ = 2.9–26.1°
c = 14.6845 (4) ŵ = 0.35 mm1
α = 98.342 (2)°T = 180 K
β = 102.170 (2)°Prism, dark purple
γ = 93.101 (2)°0.48 × 0.40 × 0.30 mm
V = 1880.20 (10) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
7400 independent reflections
Radiation source: Enhance (Mo) X-ray Source5986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1978 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1717
Tmin = 0.86, Tmax = 0.90l = 1818
38025 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.4188P]
where P = (Fo2 + 2Fc2)/3
7400 reflections(Δ/σ)max = 0.001
475 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
[CoK(CN)2(C12H24O6)(C64H64N8O4]·2H2Oγ = 93.101 (2)°
Mr = 1459.70V = 1880.20 (10) Å3
Triclinic, P1Z = 1
a = 9.1885 (3) ÅMo Kα radiation
b = 14.4631 (4) ŵ = 0.35 mm1
c = 14.6845 (4) ÅT = 180 K
α = 98.342 (2)°0.48 × 0.40 × 0.30 mm
β = 102.170 (2)°
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
7400 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5986 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.90Rint = 0.034
38025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.38 e Å3
7400 reflectionsΔρmin = 0.26 e Å3
475 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50001.00001.00000.02133 (10)
N10.52932 (15)0.88932 (9)1.06541 (9)0.0234 (3)
N20.39217 (15)0.91778 (9)0.88238 (10)0.0241 (3)
N30.94155 (17)0.88392 (11)1.27847 (11)0.0329 (3)
HN30.95900.92491.24240.039*
N40.57697 (19)0.65256 (12)0.83577 (12)0.0397 (4)
HN40.62940.69520.88150.048*
N50.7928 (2)0.97203 (13)0.93683 (14)0.0464 (4)
O10.97516 (19)0.73834 (11)1.31093 (12)0.0533 (4)
O20.5711 (2)0.57652 (13)0.69039 (11)0.0646 (5)
C10.66304 (19)0.96624 (12)1.22370 (12)0.0265 (4)
C20.60058 (19)0.88825 (12)1.15701 (12)0.0252 (4)
C30.6008 (2)0.79372 (13)1.17555 (13)0.0316 (4)
H30.64320.77421.23370.038*
C40.5306 (2)0.73807 (12)1.09608 (13)0.0315 (4)
H40.51440.67161.08690.038*
C50.48427 (19)0.79756 (12)1.02721 (12)0.0253 (4)
C60.40387 (19)0.76506 (12)0.93650 (12)0.0262 (4)
C70.36008 (19)0.82279 (12)0.87009 (12)0.0264 (4)
C80.2772 (2)0.78898 (13)0.77591 (13)0.0330 (4)
H80.24000.72590.75030.040*
C90.2623 (2)0.86297 (13)0.73112 (13)0.0331 (4)
H90.21280.86230.66730.040*
C100.33430 (19)0.94339 (12)0.79678 (12)0.0260 (4)
C110.7262 (2)0.95246 (12)1.32261 (12)0.0303 (4)
C120.6505 (2)0.98329 (15)1.39281 (14)0.0403 (5)
H120.56191.01401.37700.048*
C130.7022 (3)0.96996 (16)1.48480 (15)0.0467 (5)
H130.64940.99091.53190.056*
C140.8304 (3)0.92624 (16)1.50768 (14)0.0470 (5)
H140.86570.91651.57090.056*
C150.9088 (2)0.89617 (14)1.43992 (14)0.0394 (5)
H150.99780.86611.45660.047*
C160.8571 (2)0.91008 (13)1.34684 (13)0.0310 (4)
C170.9971 (2)0.79926 (14)1.26544 (14)0.0355 (4)
C181.0893 (2)0.78598 (16)1.18982 (14)0.0421 (5)
C191.1415 (3)0.68749 (19)1.18373 (18)0.0592 (7)
H19A1.20300.67991.24490.089*
H19B1.20060.67801.13540.089*
H19C1.05440.64121.16700.089*
C200.9932 (3)0.7967 (2)1.09392 (16)0.0614 (7)
H20A0.90850.74861.07640.092*
H20B1.05360.78921.04610.092*
H20C0.95600.85901.09780.092*
C211.2242 (3)0.85800 (19)1.21753 (18)0.0542 (6)
H21A1.19040.92131.22100.081*
H21B1.28520.84871.17020.081*
H21C1.28390.85041.27930.081*
C220.3639 (2)0.66159 (12)0.90657 (12)0.0291 (4)
C230.2404 (2)0.61838 (14)0.92750 (16)0.0428 (5)
H230.18230.65430.96340.051*
C240.1995 (3)0.52378 (15)0.89726 (17)0.0509 (6)
H240.11380.49500.91200.061*
C250.2836 (3)0.47170 (14)0.84571 (16)0.0467 (5)
H250.25530.40670.82430.056*
C260.4078 (3)0.51240 (14)0.82480 (14)0.0419 (5)
H260.46620.47550.78980.050*
C270.4487 (2)0.60767 (13)0.85471 (13)0.0319 (4)
C280.6291 (2)0.63779 (15)0.75535 (14)0.0403 (5)
C290.7599 (2)0.70560 (17)0.75141 (15)0.0457 (5)
C300.8447 (3)0.6566 (2)0.6829 (2)0.0762 (9)
H30A0.89310.60470.70940.114*
H30B0.92090.70140.67220.114*
H30C0.77500.63210.62280.114*
C310.6936 (3)0.79227 (19)0.71477 (19)0.0628 (7)
H31A0.62520.77270.65310.094*
H31B0.77450.83620.70840.094*
H31C0.63890.82310.75950.094*
C320.8650 (3)0.73621 (19)0.84737 (17)0.0562 (6)
H32A0.81440.77610.88850.084*
H32B0.95450.77150.83970.084*
H32C0.89380.68070.87570.084*
C330.6838 (2)0.98363 (12)0.96064 (12)0.0290 (4)
K0.50000.50000.50000.03158 (14)
O30.22357 (15)0.57249 (10)0.52236 (9)0.0391 (3)
O40.45230 (16)0.68329 (10)0.47014 (10)0.0403 (3)
O50.68531 (15)0.59387 (9)0.41262 (10)0.0381 (3)
C340.8311 (2)0.56578 (16)0.41702 (15)0.0428 (5)
H34A0.89600.59110.47950.051*
H34B0.87440.59010.36800.051*
C350.1781 (2)0.53796 (16)0.59851 (15)0.0436 (5)
H35A0.07930.55940.60390.052*
H35B0.25070.56300.65820.052*
C360.2412 (3)0.67115 (15)0.53654 (16)0.0464 (5)
H36A0.31020.69460.59810.056*
H36B0.14340.69630.53780.056*
C370.3018 (3)0.70415 (16)0.45976 (17)0.0497 (5)
H37A0.24250.67260.39770.060*
H37B0.29570.77260.46300.060*
C380.5214 (3)0.71294 (16)0.40086 (16)0.0470 (5)
H38A0.51530.78120.40180.056*
H38B0.46910.68000.33760.056*
C390.6799 (2)0.69204 (14)0.42005 (16)0.0445 (5)
H39A0.73070.71610.37400.053*
H39B0.73160.72300.48420.053*
O60.97562 (19)1.03103 (13)1.16135 (13)0.0560 (4)
H1O61.053 (2)1.032 (2)1.136 (2)0.084*
H2O60.890 (2)1.038 (2)1.1234 (17)0.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.02503 (18)0.01677 (16)0.02392 (17)0.00123 (12)0.00987 (13)0.00257 (12)
N10.0261 (7)0.0199 (7)0.0256 (7)0.0015 (5)0.0096 (6)0.0030 (6)
N20.0294 (8)0.0185 (7)0.0268 (7)0.0021 (6)0.0119 (6)0.0031 (6)
N30.0344 (9)0.0331 (8)0.0345 (8)0.0009 (7)0.0114 (7)0.0117 (7)
N40.0441 (10)0.0353 (9)0.0378 (9)0.0003 (7)0.0152 (8)0.0081 (7)
N50.0391 (10)0.0504 (11)0.0590 (11)0.0087 (8)0.0280 (9)0.0125 (9)
O10.0638 (10)0.0423 (9)0.0683 (10)0.0127 (8)0.0343 (9)0.0243 (8)
O20.0722 (12)0.0741 (12)0.0382 (9)0.0237 (9)0.0190 (8)0.0202 (8)
C10.0288 (9)0.0280 (9)0.0253 (8)0.0022 (7)0.0111 (7)0.0055 (7)
C20.0261 (9)0.0244 (8)0.0280 (9)0.0014 (7)0.0112 (7)0.0059 (7)
C30.0366 (10)0.0274 (9)0.0324 (9)0.0006 (8)0.0077 (8)0.0107 (7)
C40.0380 (10)0.0218 (9)0.0354 (10)0.0017 (7)0.0082 (8)0.0071 (7)
C50.0288 (9)0.0200 (8)0.0294 (9)0.0029 (7)0.0111 (7)0.0044 (7)
C60.0304 (9)0.0201 (8)0.0307 (9)0.0030 (7)0.0131 (7)0.0028 (7)
C70.0301 (9)0.0214 (8)0.0288 (9)0.0015 (7)0.0109 (7)0.0017 (7)
C80.0440 (11)0.0220 (9)0.0308 (9)0.0001 (8)0.0081 (8)0.0018 (7)
C90.0422 (11)0.0287 (9)0.0271 (9)0.0019 (8)0.0073 (8)0.0010 (7)
C100.0294 (9)0.0242 (9)0.0261 (9)0.0021 (7)0.0115 (7)0.0018 (7)
C110.0380 (10)0.0261 (9)0.0274 (9)0.0046 (7)0.0099 (8)0.0046 (7)
C120.0479 (12)0.0417 (11)0.0342 (10)0.0005 (9)0.0169 (9)0.0055 (9)
C130.0596 (14)0.0496 (13)0.0332 (11)0.0040 (11)0.0203 (10)0.0030 (9)
C140.0638 (15)0.0462 (12)0.0282 (10)0.0153 (11)0.0082 (10)0.0069 (9)
C150.0446 (12)0.0362 (11)0.0346 (10)0.0079 (9)0.0027 (9)0.0096 (8)
C160.0364 (10)0.0272 (9)0.0288 (9)0.0074 (7)0.0074 (8)0.0057 (7)
C170.0294 (10)0.0406 (11)0.0372 (10)0.0011 (8)0.0064 (8)0.0112 (9)
C180.0416 (12)0.0512 (13)0.0376 (11)0.0113 (10)0.0129 (9)0.0119 (9)
C190.0670 (16)0.0624 (16)0.0539 (14)0.0226 (13)0.0226 (13)0.0087 (12)
C200.0686 (17)0.0807 (19)0.0368 (12)0.0225 (14)0.0115 (11)0.0100 (12)
C210.0397 (12)0.0689 (16)0.0620 (15)0.0056 (11)0.0215 (11)0.0215 (12)
C220.0377 (10)0.0211 (9)0.0274 (9)0.0016 (7)0.0059 (8)0.0032 (7)
C230.0487 (12)0.0308 (10)0.0512 (12)0.0017 (9)0.0213 (10)0.0006 (9)
C240.0595 (14)0.0321 (11)0.0621 (15)0.0131 (10)0.0230 (12)0.0027 (10)
C250.0666 (15)0.0200 (9)0.0500 (13)0.0018 (9)0.0085 (11)0.0030 (9)
C260.0586 (13)0.0252 (10)0.0413 (11)0.0085 (9)0.0116 (10)0.0006 (8)
C270.0399 (10)0.0247 (9)0.0303 (9)0.0043 (8)0.0071 (8)0.0022 (7)
C280.0408 (11)0.0446 (12)0.0332 (10)0.0065 (9)0.0081 (9)0.0021 (9)
C290.0418 (12)0.0561 (14)0.0371 (11)0.0009 (10)0.0137 (9)0.0054 (10)
C300.0638 (17)0.092 (2)0.0712 (18)0.0076 (15)0.0391 (15)0.0223 (16)
C310.0665 (17)0.0651 (17)0.0558 (15)0.0081 (13)0.0110 (13)0.0149 (13)
C320.0459 (13)0.0666 (16)0.0499 (14)0.0052 (11)0.0062 (11)0.0014 (12)
C330.0339 (10)0.0238 (9)0.0307 (9)0.0018 (7)0.0105 (8)0.0046 (7)
K0.0369 (3)0.0262 (3)0.0338 (3)0.0001 (2)0.0138 (2)0.0039 (2)
O30.0444 (8)0.0407 (8)0.0360 (7)0.0079 (6)0.0158 (6)0.0073 (6)
O40.0450 (8)0.0373 (8)0.0433 (8)0.0077 (6)0.0140 (6)0.0143 (6)
O50.0345 (7)0.0349 (7)0.0473 (8)0.0021 (6)0.0142 (6)0.0086 (6)
C340.0333 (11)0.0562 (13)0.0420 (11)0.0004 (9)0.0112 (9)0.0149 (10)
C350.0399 (11)0.0586 (14)0.0377 (11)0.0109 (10)0.0169 (9)0.0104 (10)
C360.0466 (12)0.0400 (12)0.0550 (13)0.0098 (10)0.0181 (10)0.0029 (10)
C370.0508 (13)0.0432 (12)0.0599 (14)0.0148 (10)0.0138 (11)0.0182 (11)
C380.0568 (14)0.0400 (12)0.0509 (13)0.0039 (10)0.0171 (11)0.0220 (10)
C390.0504 (13)0.0358 (11)0.0506 (13)0.0068 (9)0.0144 (10)0.0170 (9)
O60.0493 (10)0.0643 (11)0.0697 (12)0.0116 (8)0.0359 (9)0.0250 (9)
Geometric parameters (Å, º) top
Co—N11.9853 (13)C21—H21A0.9800
Co—N1i1.9853 (13)C21—H21B0.9800
Co—N21.9834 (14)C21—H21C0.9800
Co—N2i1.9834 (14)C22—C231.378 (3)
Co—C331.9129 (18)C22—C271.392 (2)
Co—C33i1.9129 (18)C23—C241.381 (3)
N1—C51.369 (2)C23—H230.9500
N1—C21.369 (2)C24—C251.372 (3)
N2—C71.367 (2)C24—H240.9500
N2—C101.369 (2)C25—C261.368 (3)
N3—C171.355 (2)C25—H250.9500
N3—C161.416 (2)C26—C271.390 (3)
N3—HN30.8800C26—H260.9500
N4—C281.359 (2)C28—C291.526 (3)
N4—C271.413 (3)C29—C301.519 (3)
N4—HN40.8800C29—C321.521 (3)
N5—C331.141 (2)C29—C311.540 (4)
O1—C171.213 (2)C30—H30A0.9800
O2—C281.212 (3)C30—H30B0.9800
O2—K2.7789 (15)C30—H30C0.9800
C1—C10i1.383 (2)C31—H31A0.9800
C1—C21.390 (2)C31—H31B0.9800
C1—C111.492 (2)C31—H31C0.9800
C2—C31.432 (2)C32—H32A0.9800
C3—C41.334 (3)C32—H32B0.9800
C3—H30.9500C32—H32C0.9800
C4—C51.433 (2)K—O2ii2.7789 (15)
C4—H40.9500K—O3ii2.8633 (13)
C5—C61.381 (2)K—O32.8633 (13)
C6—C71.385 (2)K—O4ii2.7917 (13)
C6—C221.500 (2)K—O42.7917 (13)
C7—C81.432 (3)K—O5ii2.7505 (13)
C8—C91.334 (3)K—O52.7505 (13)
C8—H80.9500O3—C361.407 (3)
C9—C101.429 (3)O3—C351.418 (2)
C9—H90.9500O4—C381.411 (2)
C10—C1i1.383 (2)O4—C371.413 (3)
C11—C161.383 (3)O5—C341.412 (2)
C11—C121.395 (3)O5—C391.412 (2)
C12—C131.379 (3)C34—C35ii1.480 (3)
C12—H120.9500C34—H34A0.9900
C13—C141.369 (3)C34—H34B0.9900
C13—H130.9500C35—C34ii1.480 (3)
C14—C151.382 (3)C35—H35A0.9900
C14—H140.9500C35—H35B0.9900
C15—C161.397 (3)C36—C371.484 (3)
C15—H150.9500C36—H36A0.9900
C17—C181.530 (3)C36—H36B0.9900
C18—C211.520 (3)C37—H37A0.9900
C18—C191.524 (3)C37—H37B0.9900
C18—C201.530 (3)C38—C391.480 (3)
C19—H19A0.9800C38—H38A0.9900
C19—H19B0.9800C38—H38B0.9900
C19—H19C0.9800C39—H39A0.9900
C20—H20A0.9800C39—H39B0.9900
C20—H20B0.9800O6—H1O60.869 (10)
C20—H20C0.9800O6—H2O60.881 (10)
C33—Co—C33i180.000 (1)C26—C25—C24120.64 (19)
C33—Co—N289.44 (7)C26—C25—H25119.7
C33i—Co—N290.56 (7)C24—C25—H25119.7
C33—Co—N2i90.56 (7)C25—C26—C27119.98 (19)
C33i—Co—N2i89.44 (7)C25—C26—H26120.0
N2—Co—N2i180.000 (1)C27—C26—H26120.0
C33—Co—N189.73 (6)C26—C27—C22120.04 (18)
C33i—Co—N190.27 (7)C26—C27—N4122.02 (17)
N2—Co—N190.40 (6)C22—C27—N4117.93 (16)
N2i—Co—N189.60 (6)O2—C28—N4121.5 (2)
C33—Co—N1i90.27 (7)O2—C28—C29122.94 (19)
C33i—Co—N1i89.73 (6)N4—C28—C29115.55 (17)
N2—Co—N1i89.60 (6)C30—C29—C32109.7 (2)
N2i—Co—N1i90.40 (6)C30—C29—C28107.74 (19)
N1—Co—N1i180.000 (1)C32—C29—C28112.59 (19)
C5—N1—C2105.66 (14)C30—C29—C31110.3 (2)
C5—N1—Co126.80 (11)C32—C29—C31109.3 (2)
C2—N1—Co127.53 (11)C28—C29—C31107.20 (18)
C7—N2—C10105.43 (14)C29—C30—H30A109.5
C7—N2—Co126.81 (12)C29—C30—H30B109.5
C10—N2—Co127.76 (11)H30A—C30—H30B109.5
C17—N3—C16123.67 (16)C29—C30—H30C109.5
C17—N3—HN3118.2H30A—C30—H30C109.5
C16—N3—HN3118.2H30B—C30—H30C109.5
C28—N4—C27127.75 (17)C29—C31—H31A109.5
C28—N4—HN4116.1C29—C31—H31B109.5
C27—N4—HN4116.1H31A—C31—H31B109.5
C28—O2—K152.04 (16)C29—C31—H31C109.5
C10i—C1—C2122.97 (16)H31A—C31—H31C109.5
C10i—C1—C11118.31 (15)H31B—C31—H31C109.5
C2—C1—C11118.70 (15)C29—C32—H32A109.5
N1—C2—C1126.06 (15)C29—C32—H32B109.5
N1—C2—C3109.87 (15)H32A—C32—H32B109.5
C1—C2—C3124.07 (16)C29—C32—H32C109.5
C4—C3—C2107.40 (16)H32A—C32—H32C109.5
C4—C3—H3126.3H32B—C32—H32C109.5
C2—C3—H3126.3N5—C33—Co178.67 (17)
C3—C4—C5107.01 (16)O5ii—K—O5180.0
C3—C4—H4126.5O5ii—K—O272.53 (5)
C5—C4—H4126.5O5—K—O2107.47 (5)
N1—C5—C6126.14 (15)O5ii—K—O2ii107.47 (5)
N1—C5—C4110.06 (15)O5—K—O2ii72.53 (5)
C6—C5—C4123.80 (16)O2—K—O2ii180.000 (1)
C5—C6—C7123.56 (16)O5ii—K—O4ii60.15 (4)
C5—C6—C22118.87 (15)O5—K—O4ii119.85 (4)
C7—C6—C22117.55 (16)O2—K—O4ii94.94 (5)
N2—C7—C6126.18 (16)O2ii—K—O4ii85.06 (5)
N2—C7—C8110.27 (15)O5ii—K—O4119.85 (4)
C6—C7—C8123.51 (16)O5—K—O460.15 (4)
C9—C8—C7106.85 (16)O2—K—O485.06 (5)
C9—C8—H8126.6O2ii—K—O494.94 (5)
C7—C8—H8126.6O4ii—K—O4180.0
C8—C9—C10107.43 (16)O5ii—K—O3ii119.74 (4)
C8—C9—H9126.3O5—K—O3ii60.26 (4)
C10—C9—H9126.3O2—K—O3ii100.93 (5)
N2—C10—C1i126.01 (16)O2ii—K—O3ii79.07 (5)
N2—C10—C9110.00 (15)O4ii—K—O3ii61.01 (4)
C1i—C10—C9123.91 (16)O4—K—O3ii118.99 (4)
C16—C11—C12119.00 (17)O5ii—K—O360.26 (4)
C16—C11—C1122.11 (16)O5—K—O3119.74 (4)
C12—C11—C1118.89 (17)O2—K—O379.07 (5)
C13—C12—C11121.1 (2)O2ii—K—O3100.93 (5)
C13—C12—H12119.5O4ii—K—O3118.99 (4)
C11—C12—H12119.5O4—K—O361.01 (4)
C14—C13—C12119.4 (2)O3ii—K—O3180.00 (5)
C14—C13—H13120.3C36—O3—C35111.99 (15)
C12—C13—H13120.3C36—O3—K109.43 (12)
C13—C14—C15120.76 (19)C35—O3—K109.30 (11)
C13—C14—H14119.6C38—O4—C37113.48 (16)
C15—C14—H14119.6C38—O4—K114.07 (11)
C14—C15—C16119.9 (2)C37—O4—K114.16 (12)
C14—C15—H15120.1C34—O5—C39112.95 (16)
C16—C15—H15120.1C34—O5—K118.22 (11)
C11—C16—C15119.81 (17)C39—O5—K117.03 (11)
C11—C16—N3120.22 (16)O5—C34—C35ii108.25 (17)
C15—C16—N3119.93 (18)O5—C34—H34A110.0
O1—C17—N3122.09 (18)C35ii—C34—H34A110.0
O1—C17—C18122.41 (18)O5—C34—H34B110.0
N3—C17—C18115.49 (17)C35ii—C34—H34B110.0
C21—C18—C19109.60 (19)H34A—C34—H34B108.4
C21—C18—C17109.07 (18)O3—C35—C34ii110.08 (16)
C19—C18—C17108.66 (18)O3—C35—H35A109.6
C21—C18—C20110.6 (2)C34ii—C35—H35A109.6
C19—C18—C20108.8 (2)O3—C35—H35B109.6
C17—C18—C20110.01 (17)C34ii—C35—H35B109.6
C18—C19—H19A109.5H35A—C35—H35B108.2
C18—C19—H19B109.5O3—C36—C37110.25 (17)
H19A—C19—H19B109.5O3—C36—H36A109.6
C18—C19—H19C109.5C37—C36—H36A109.6
H19A—C19—H19C109.5O3—C36—H36B109.6
H19B—C19—H19C109.5C37—C36—H36B109.6
C18—C20—H20A109.5H36A—C36—H36B108.1
C18—C20—H20B109.5O4—C37—C36108.89 (18)
H20A—C20—H20B109.5O4—C37—H37A109.9
C18—C20—H20C109.5C36—C37—H37A109.9
H20A—C20—H20C109.5O4—C37—H37B109.9
H20B—C20—H20C109.5C36—C37—H37B109.9
C18—C21—H21A109.5H37A—C37—H37B108.3
C18—C21—H21B109.5O4—C38—C39109.51 (17)
H21A—C21—H21B109.5O4—C38—H38A109.8
C18—C21—H21C109.5C39—C38—H38A109.8
H21A—C21—H21C109.5O4—C38—H38B109.8
H21B—C21—H21C109.5C39—C38—H38B109.8
C23—C22—C27118.63 (17)H38A—C38—H38B108.2
C23—C22—C6120.80 (16)O5—C39—C38108.63 (17)
C27—C22—C6120.55 (16)O5—C39—H39A110.0
C22—C23—C24121.24 (19)C38—C39—H39A110.0
C22—C23—H23119.4O5—C39—H39B110.0
C24—C23—H23119.4C38—C39—H39B110.0
C25—C24—C23119.5 (2)H39A—C39—H39B108.3
C25—C24—H24120.3H1O6—O6—H2O6115 (3)
C23—C24—H24120.3
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg5 are the centroids of the N1/C2–C5, N2/C7–C10, Co/N1/C2/C1/C10'/N2' and Co/N2/C10/C1'/C2'/N1' rings respectively.
D—H···AD—HH···AD···AD—H···A
N3—HN3···O60.882.092.966 (2)172
O6—H1O6···N5iii0.871.95 (2)2.810 (3)172 (2)
C20—H20C···O60.982.513.413 (3)153
O6—H2O6···Cg2i0.882.73 (2)3.272 (2)121 (2)
O6—H2O6···Cg30.882.81 (2)3.455 (2)131 (2)
O6—H2O6···Cg5i0.882.81 (2)3.455 (2)131 (2)
C21—H21B···Cg1iv0.982.823.737 (3)156
Symmetry codes: (i) x+1, y+2, z+2; (iii) x+2, y+2, z+2; (iv) x+1, y, z.
Selected bond lengths (Å) top
Co—N11.9853 (13)K—O32.8633 (13)
Co—N21.9834 (14)K—O42.7917 (13)
Co—C331.9129 (18)K—O52.7505 (13)
K—O2i2.7789 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg5 are the centroids of the N1/C2–C5, N2/C7–C10, Co/N1/C2/C1/C10'/N2' and Co/N2/C10/C1'/C2'/N1' rings respectively.
D—H···AD—HH···AD···AD—H···A
N3—HN3···O60.882.092.966 (2)172
O6—H1O6···N5ii0.871.95 (2)2.810 (3)172 (2)
C20—H20C···O60.982.513.413 (3)153
O6—H2O6···Cg2iii0.882.73 (2)3.272 (2)121 (2)
O6—H2O6···Cg30.882.81 (2)3.455 (2)131 (2)
O6—H2O6···Cg5iii0.882.81 (2)3.455 (2)131 (2)
C21—H21B···Cg1iv0.982.823.737 (3)156
Symmetry codes: (ii) x+2, y+2, z+2; (iii) x+1, y+2, z+2; (iv) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAli, B. B., Belkhiria, M. S., Giorgi, M. & Nasri, H. (2011). Open J. Inorg. Chem. 1, 39–46.  CrossRef CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCollman, J. P., Brauman, J. I., Doxsee, K. M., Halbert, T. R., Hayes, S. E. & Suslick, K. S. (1978). J. Am. Chem. Soc. 100, 2761–2766.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoshino, M., Sonoki, H., Miyazaki, Y., Iimura, Y. & Yamamoto, K. (2000). Inorg. Chem. 39, 4850–4857.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIimuna, Y., Sakurai, T. & Yamamoto, K. (1988). Bull. Chem. Soc. Jpn, 61, 821–826.  Google Scholar
First citationKonarev, D., Khasanov, S. S., Saito, G., Lybovskaya, R. N., Yoshida, Y. & Otsuka, A. (2003). Chem. Eur. J. 9, 3837–3848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, J., Noll, B. C., Oliver, A. G., Ferraudi, G., Lappin, A. G. & Scheidt, W. R. (2010). Inorg. Chem. 49, 2398–2406.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPratt, J. M. (1972). Inorganic Chemistry of Vitamine B12, pp. 250–251. London: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m104-m105
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds