organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o354-o355

[2-Benzyl-3-(naphthalen-1-yl)-2,3-di­hydro-1,2-oxazole-4,5-di­yl]bis­­(phenyl­methanone)

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 21 January 2014; accepted 12 February 2014; online 26 February 2014)

In the title compound, C34H25NO3, the five-membered heterocyclic ring adopts an envelope conformation with the N atom as the flap. The plane through the four basal atoms of this ring makes dihedral angles of 69.78 (13), 53.15 (12) and 86.42 (13)°, respectively, with the benzene rings of the benzyl group and the two phenyl­methanone groups at the 4 and 5 positions, and of 78.60 (11)° with the naphthalenyl system. In the crystal, the mol­ecules are linked through C—H⋯O and C—H⋯π contacts into layers parallel to (101).

Related literature

For background to isoxazoline dervatives and their applications, see: Gahlot et al. (2003[Gahlot, U. S., Rao, S. S., Jhala, Y. S., Dulawat, S. S. & Verma, B. L. (2003). Indian J. Heterocycl. Chem. 13, 111-114.]); Kiss et al. (2009[Kiss, L., Nonn, M., Forro, E., Sillanpaa, R. & Fulop, F. (2009). Tetrahedron Lett. 50, 2605-2608.]); Norman et al. (2007[Norman, A. L., Shurrush, K. A., Calleroz, A. T. & Mosher, M. D. (2007). Tetrahedron Lett. 48, 6849-6851.]); Shi et al. (2012[Shi, L., Hu, R., Wei, Y., Liang, Y., Yang, Z. & Ke, S. (2012). Eur. J. Med. Chem. 54, 549-556.]); Habeeb et al. (2001[Habeeb, A. G., Rao, P. N. P. & Knaus, E. E. (2001). J. Med. Chem. 44, 2921-2927.]). For the synthesis of related compounds, see: Chakraborty et al. (2012[Chakraborty, B., Sharma, P. K. & Samanta, A. (2012). Indian J. Chem. Sect. B, 51, 1180-1185.]). For a related structure, see: Sandhya et al. (2013[Sandhya, R., Sithambaresan, M., Prathapan, S. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1284-o1285.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J.Am. Chem.Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C34H25NO3

  • Mr = 495.55

  • Monoclinic, P 21 /n

  • a = 14.4105 (10) Å

  • b = 10.9408 (9) Å

  • c = 16.0924 (13) Å

  • β = 94.235 (4)°

  • V = 2530.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.976

  • 12772 measured reflections

  • 5822 independent reflections

  • 3603 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.181

  • S = 1.02

  • 6092 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.60 3.392 (3) 144
C12—H12⋯O3ii 0.93 2.55 3.443 (3) 161
C13—H13⋯Cg1ii 0.93 2.63 3.523 (3) 161
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Isoxazoline derivatives exhibit a wide spectrum of biological activities such as anti-microbial (Gahlot et al., 2003), anti-diabetic (Norman et al., 2007), anti-cancer (Shi et al., 2012) and anti-inflammatory activities (Habeeb et al., 2001). Besides of their pharmacological properties, isoxazolines are also used as intermediates in organic synthesis (Kiss et al., 2009). Herein we report the structure of an isoxazoline derivative synthesized by the 1,3-dipolar cycloaddition reaction of N-naphthylidene-N-benzylnitrone with dibenzoylacetylene. As a continuous work (Sandhya et al., 2013) on the isoxazoline derivatives, a new compound, (2-benzyl-3-(naphthalen-1-yl)-2,3-dihydroisoxazole-4,5-diyl)bis(phenylmethanone), was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.

The compound crystallizes in the monoclinic space group P21/n. The dihedral angles between the three aromatic six-membered rings of the benzophenyl (C1–C6 and C11–C16) and benzyl (C29–C34) moieties attached to the heterocyclic ring are 80.27 (12), 60.20 (11) and 63.96 (12)° respectively. The five-membered heterocyclic ring C8/C9/C17/O2/N1 is in an envelope conformation on N1 [φ = 3.9 (3)°] (Cremer & Pople, 1975).

There are two intermolecular C–H···O hydrogen bond interactions (Fig. 2) between the H atoms attached at the C5 & C12 and O1 & O3 atoms of the neighbouring molecule with D···A distances of 3.392 (3) and 3.443 (3) Å respectively. One of the above interaction (C5–H5···O1) forms a centerosymmetric dimer with the adjacent molecule while the other connects such dimers together to build a molecular chain (Fig. 3) in the lattice. An intermolecular C–H···π interaction (Fig. 4) between the H at C13 and the C1-C6 aromatic ring of the neighbouring molecule with H···π distance of 2.63 Å interconnects the molecular chains together. Thus, these intermolecular hydrogen bonding interactions augmented by a C–H···π interaction play a major role to form a supramolecular network in the lattice of the molecular system. Similar intermolecular interactions are found in the compound (2-tert-butyl-3-phenyl-2,3-dihydroisoxazole-4,5-diyl)bis(phenylmethanone) (Sandhya et al., 2013). Fig. 5 shows the packing diagram of the title compound along a axis.

Related literature top

For background to isoxazoline dervatives and their applications, see: Gahlot et al. (2003); Kiss et al. (2009); Norman et al. (2007); Shi et al. (2012); Habeeb et al. (2001). For the synthesis of related compounds, see: Chakraborty et al. (2012). For a related structure, see: Sandhya et al. (2013). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by adapting a reported procedure (Chakraborty et al., 2012). N-naphthylidene-N-benzylnitrone, (3 mmol) and dibenzoylacetylene (3 mmol) were added into 15 mL of acetonitrile and stirred for 4 h at room temperature. The reaction was monitored by TLC using EtOAc/hexane (1:5). The solvent was removed under reduced pressure and the product was purified from the crude by column chromatography on silica gel. Colourless crystals suitable for X-ray structure determination were grown from ethanol by slow evaporation (m.p: 134 °C).

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C–H bond distances of 0.93–0.98 Å. H atoms were assigned Uiso=1.2Ueq(carrier) or 1.5Ueq (methyl C). Omitted owing to bad disagreement was the reflection (-1 0 1).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. C—H···O intermolecular hydrogen bonding interactions found in the title compound.
[Figure 3] Fig. 3. C—H···π interaction found in the title compound.
[Figure 4] Fig. 4. C—H···O intermolecular hydrogen bonding connecting dimers into layers.
[Figure 5] Fig. 5. Packing diagram of the compound along the a axis.
[2-Benzyl-3-(naphthalen-1-yl)-2,3-dihydro-1,2-oxazole-4,5-diyl]bis(phenylmethanone) top
Crystal data top
C34H25NO3F(000) = 1040
Mr = 495.55Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3803 reflections
a = 14.4105 (10) Åθ = 2.3–27.8°
b = 10.9408 (9) ŵ = 0.08 mm1
c = 16.0924 (13) ÅT = 296 K
β = 94.235 (4)°Block, colourless
V = 2530.2 (3) Å30.40 × 0.35 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5822 independent reflections
Radiation source: fine-focus sealed tube3603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and φ scanθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS, Bruker, 2007)
h = 1618
Tmin = 0.968, Tmax = 0.976k = 614
12772 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0908P)2 + 0.7195P]
where P = (Fo2 + 2Fc2)/3
6092 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C34H25NO3V = 2530.2 (3) Å3
Mr = 495.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.4105 (10) ŵ = 0.08 mm1
b = 10.9408 (9) ÅT = 296 K
c = 16.0924 (13) Å0.40 × 0.35 × 0.30 mm
β = 94.235 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5822 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2007)
3603 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.976Rint = 0.028
12772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
6092 reflectionsΔρmin = 0.22 e Å3
343 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39550 (11)0.44858 (16)0.08868 (12)0.0624 (5)
O20.19673 (10)0.34089 (13)0.03919 (9)0.0432 (4)
O30.26338 (13)0.62696 (16)0.20136 (11)0.0630 (5)
N10.10514 (11)0.30910 (15)0.07285 (10)0.0390 (4)
C30.2856 (2)0.7599 (3)0.12462 (16)0.0723 (8)
H30.27820.81970.16560.087*
C40.3717 (2)0.7075 (3)0.10706 (16)0.0686 (8)
H40.42190.73150.13630.082*
C50.38332 (17)0.6192 (2)0.04588 (15)0.0537 (6)
H50.44160.58480.03310.064*
C60.30779 (14)0.58189 (18)0.00355 (13)0.0402 (5)
C70.32028 (14)0.48646 (19)0.06095 (13)0.0409 (5)
C80.23384 (13)0.42734 (18)0.09116 (12)0.0381 (4)
C90.19231 (13)0.44248 (18)0.16161 (12)0.0366 (4)
C170.11552 (13)0.34732 (18)0.16270 (12)0.0364 (4)
H170.13560.27810.19830.044*
C180.02157 (13)0.39606 (18)0.18652 (12)0.0384 (4)
C190.02994 (13)0.3363 (2)0.24645 (12)0.0398 (5)
C200.00101 (16)0.2282 (2)0.28950 (14)0.0478 (5)
H200.05610.19340.27980.057*
C210.05523 (18)0.1743 (3)0.34471 (15)0.0602 (6)
H210.03460.10350.37230.072*
C220.14162 (19)0.2239 (3)0.36060 (16)0.0702 (8)
H220.17840.18540.39790.084*
C10.22138 (16)0.6349 (2)0.02256 (15)0.0523 (6)
H10.17040.60960.00520.063*
C20.2108 (2)0.7250 (3)0.08236 (17)0.0677 (7)
H20.15320.76200.09400.081*
C280.09503 (15)0.17655 (19)0.06203 (13)0.0446 (5)
H28A0.04950.14640.09850.054*
H28B0.15400.13720.07790.054*
C290.06476 (14)0.14371 (18)0.02659 (12)0.0388 (5)
C340.11531 (16)0.0652 (2)0.07236 (15)0.0540 (6)
H340.17060.03210.04880.065*
C330.08423 (19)0.0350 (3)0.15369 (17)0.0665 (7)
H330.11920.01820.18390.080*
C320.0036 (2)0.0818 (3)0.18963 (16)0.0656 (7)
H320.01610.06190.24430.079*
C310.0483 (2)0.1589 (3)0.14438 (17)0.0718 (8)
H310.10410.19050.16800.086*
C300.01775 (18)0.1895 (2)0.06364 (16)0.0586 (6)
H300.05340.24190.03350.070*
C100.21642 (14)0.53967 (19)0.22180 (13)0.0413 (5)
C110.18224 (13)0.53279 (19)0.30646 (12)0.0388 (5)
C160.15152 (16)0.6376 (2)0.34411 (14)0.0511 (6)
H160.15210.71200.31610.061*
C150.12022 (18)0.6322 (3)0.42265 (16)0.0612 (7)
H150.09910.70260.44750.073*
C140.12018 (18)0.5226 (3)0.46435 (16)0.0630 (7)
H140.09880.51920.51740.076*
C130.15140 (19)0.4183 (3)0.42821 (15)0.0616 (7)
H130.15210.34460.45710.074*
C120.18182 (16)0.4228 (2)0.34900 (13)0.0481 (5)
H120.20210.35190.32410.058*
C230.17159 (18)0.3275 (3)0.32192 (16)0.0673 (8)
H230.22880.36030.33330.081*
C240.11730 (15)0.3873 (2)0.26426 (14)0.0497 (6)
C250.14949 (17)0.4948 (3)0.22237 (17)0.0617 (7)
H250.20660.52780.23390.074*
C260.09828 (18)0.5506 (2)0.16541 (17)0.0613 (7)
H260.11970.62170.13880.074*
C270.01301 (16)0.4992 (2)0.14757 (15)0.0495 (5)
H270.02130.53650.10790.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0422 (9)0.0586 (11)0.0866 (13)0.0009 (7)0.0058 (8)0.0176 (9)
O20.0480 (8)0.0400 (8)0.0431 (8)0.0091 (6)0.0131 (6)0.0046 (6)
O30.0778 (12)0.0517 (10)0.0607 (10)0.0289 (9)0.0140 (9)0.0076 (8)
N10.0434 (9)0.0356 (9)0.0388 (9)0.0078 (7)0.0088 (7)0.0023 (7)
C30.104 (2)0.0635 (18)0.0487 (14)0.0184 (16)0.0017 (14)0.0174 (13)
C40.086 (2)0.0664 (18)0.0564 (16)0.0176 (15)0.0268 (14)0.0029 (13)
C50.0564 (13)0.0514 (14)0.0556 (14)0.0056 (11)0.0204 (11)0.0035 (11)
C60.0467 (11)0.0341 (11)0.0405 (11)0.0041 (8)0.0083 (9)0.0034 (9)
C70.0389 (10)0.0365 (11)0.0485 (12)0.0032 (8)0.0111 (9)0.0024 (9)
C80.0386 (10)0.0314 (10)0.0442 (11)0.0030 (8)0.0037 (8)0.0012 (8)
C90.0358 (10)0.0336 (10)0.0404 (10)0.0049 (8)0.0035 (8)0.0021 (8)
C170.0396 (10)0.0331 (10)0.0369 (10)0.0041 (8)0.0040 (8)0.0008 (8)
C180.0389 (10)0.0355 (11)0.0404 (11)0.0026 (8)0.0001 (8)0.0042 (9)
C190.0402 (10)0.0440 (12)0.0350 (10)0.0045 (9)0.0024 (8)0.0094 (9)
C200.0496 (12)0.0472 (13)0.0465 (12)0.0027 (10)0.0033 (10)0.0005 (10)
C210.0656 (15)0.0671 (17)0.0486 (13)0.0081 (13)0.0085 (12)0.0088 (12)
C220.0658 (17)0.098 (2)0.0493 (15)0.0126 (15)0.0192 (13)0.0066 (15)
C10.0514 (13)0.0501 (14)0.0553 (13)0.0036 (10)0.0037 (10)0.0066 (11)
C20.0729 (17)0.0639 (18)0.0640 (16)0.0023 (13)0.0105 (13)0.0147 (13)
C280.0518 (12)0.0354 (11)0.0465 (12)0.0080 (9)0.0027 (9)0.0000 (9)
C290.0430 (11)0.0315 (10)0.0422 (11)0.0090 (8)0.0054 (9)0.0015 (8)
C340.0439 (12)0.0585 (15)0.0599 (14)0.0020 (10)0.0050 (10)0.0097 (12)
C330.0683 (17)0.0738 (19)0.0587 (15)0.0083 (14)0.0132 (13)0.0241 (14)
C320.0844 (19)0.0665 (18)0.0447 (13)0.0212 (15)0.0026 (13)0.0066 (13)
C310.0698 (17)0.073 (2)0.0683 (17)0.0023 (14)0.0215 (14)0.0094 (15)
C300.0627 (15)0.0543 (15)0.0584 (15)0.0121 (12)0.0015 (12)0.0016 (12)
C100.0419 (11)0.0340 (11)0.0475 (12)0.0049 (8)0.0011 (9)0.0014 (9)
C110.0394 (10)0.0360 (11)0.0402 (11)0.0039 (8)0.0030 (8)0.0035 (8)
C160.0616 (14)0.0389 (12)0.0522 (13)0.0008 (10)0.0001 (11)0.0040 (10)
C150.0645 (15)0.0602 (17)0.0593 (15)0.0035 (12)0.0077 (12)0.0161 (13)
C140.0679 (16)0.0777 (19)0.0441 (13)0.0106 (14)0.0084 (11)0.0074 (13)
C130.0794 (17)0.0563 (16)0.0475 (14)0.0108 (13)0.0069 (12)0.0084 (12)
C120.0613 (14)0.0392 (12)0.0425 (12)0.0001 (10)0.0035 (10)0.0020 (9)
C230.0542 (14)0.095 (2)0.0547 (15)0.0045 (14)0.0191 (12)0.0079 (15)
C240.0451 (12)0.0604 (15)0.0439 (12)0.0026 (10)0.0055 (9)0.0119 (11)
C250.0494 (13)0.0660 (17)0.0698 (16)0.0146 (12)0.0064 (12)0.0136 (14)
C260.0595 (15)0.0477 (15)0.0758 (17)0.0142 (11)0.0016 (13)0.0008 (13)
C270.0504 (12)0.0413 (12)0.0566 (13)0.0013 (10)0.0019 (10)0.0037 (10)
Geometric parameters (Å, º) top
O1—C71.214 (3)C28—C291.504 (3)
O2—C81.347 (2)C28—H28A0.9700
O2—N11.504 (2)C28—H28B0.9700
O3—C101.229 (2)C29—C341.375 (3)
N1—C281.467 (3)C29—C301.384 (3)
N1—C171.502 (2)C34—C331.392 (3)
C3—C21.371 (4)C34—H340.9300
C3—C41.376 (4)C33—C321.359 (4)
C3—H30.9300C33—H330.9300
C4—C51.381 (4)C32—C311.372 (4)
C4—H40.9300C32—H320.9300
C5—C61.387 (3)C31—C301.382 (4)
C5—H50.9300C31—H310.9300
C6—C11.387 (3)C30—H300.9300
C6—C71.474 (3)C10—C111.484 (3)
C7—C81.515 (3)C11—C121.385 (3)
C8—C91.331 (3)C11—C161.385 (3)
C9—C101.463 (3)C16—C151.374 (3)
C9—C171.520 (3)C16—H160.9300
C17—C181.530 (3)C15—C141.374 (4)
C17—H170.9800C15—H150.9300
C18—C271.367 (3)C14—C131.372 (4)
C18—C191.419 (3)C14—H140.9300
C19—C201.418 (3)C13—C121.379 (3)
C19—C241.425 (3)C13—H130.9300
C20—C211.360 (3)C12—H120.9300
C20—H200.9300C23—C241.417 (4)
C21—C221.399 (4)C23—H230.9300
C21—H210.9300C24—C251.416 (4)
C22—C231.349 (4)C25—C261.363 (4)
C22—H220.9300C25—H250.9300
C1—C21.378 (3)C26—C271.400 (3)
C1—H10.9300C26—H260.9300
C2—H20.9300C27—H270.9300
C8—O2—N1104.92 (13)C29—C28—H28B109.3
C28—N1—C17113.05 (16)H28A—C28—H28B108.0
C28—N1—O2105.55 (14)C34—C29—C30117.9 (2)
C17—N1—O2104.76 (13)C34—C29—C28122.0 (2)
C2—C3—C4120.8 (3)C30—C29—C28120.1 (2)
C2—C3—H3119.6C29—C34—C33120.4 (2)
C4—C3—H3119.6C29—C34—H34119.8
C3—C4—C5119.9 (2)C33—C34—H34119.8
C3—C4—H4120.1C32—C33—C34121.1 (3)
C5—C4—H4120.1C32—C33—H33119.5
C4—C5—C6119.8 (2)C34—C33—H33119.5
C4—C5—H5120.1C33—C32—C31119.2 (2)
C6—C5—H5120.1C33—C32—H32120.4
C5—C6—C1119.5 (2)C31—C32—H32120.4
C5—C6—C7119.6 (2)C32—C31—C30120.0 (3)
C1—C6—C7120.83 (19)C32—C31—H31120.0
O1—C7—C6124.05 (19)C30—C31—H31120.0
O1—C7—C8117.97 (19)C31—C30—C29121.4 (2)
C6—C7—C8117.89 (17)C31—C30—H30119.3
C9—C8—O2115.69 (17)C29—C30—H30119.3
C9—C8—C7130.71 (18)O3—C10—C9119.74 (19)
O2—C8—C7113.49 (16)O3—C10—C11120.77 (19)
C8—C9—C10123.70 (18)C9—C10—C11119.48 (17)
C8—C9—C17107.34 (17)C12—C11—C16119.3 (2)
C10—C9—C17128.87 (17)C12—C11—C10120.78 (19)
N1—C17—C9101.55 (15)C16—C11—C10119.87 (19)
N1—C17—C18108.13 (15)C15—C16—C11120.3 (2)
C9—C17—C18114.99 (16)C15—C16—H16119.9
N1—C17—H17110.6C11—C16—H16119.9
C9—C17—H17110.6C14—C15—C16119.9 (2)
C18—C17—H17110.6C14—C15—H15120.0
C27—C18—C19120.04 (19)C16—C15—H15120.0
C27—C18—C17118.18 (18)C13—C14—C15120.5 (2)
C19—C18—C17121.78 (18)C13—C14—H14119.8
C20—C19—C18124.51 (19)C15—C14—H14119.8
C20—C19—C24117.42 (19)C14—C13—C12119.9 (2)
C18—C19—C24118.1 (2)C14—C13—H13120.0
C21—C20—C19121.2 (2)C12—C13—H13120.0
C21—C20—H20119.4C13—C12—C11120.1 (2)
C19—C20—H20119.4C13—C12—H12120.0
C20—C21—C22120.9 (3)C11—C12—H12120.0
C20—C21—H21119.6C22—C23—C24121.1 (2)
C22—C21—H21119.6C22—C23—H23119.4
C23—C22—C21120.1 (2)C24—C23—H23119.4
C23—C22—H22120.0C25—C24—C23121.2 (2)
C21—C22—H22120.0C25—C24—C19119.5 (2)
C2—C1—C6120.3 (2)C23—C24—C19119.3 (2)
C2—C1—H1119.9C26—C25—C24121.2 (2)
C6—C1—H1119.9C26—C25—H25119.4
C3—C2—C1119.7 (3)C24—C25—H25119.4
C3—C2—H2120.2C25—C26—C27119.0 (2)
C1—C2—H2120.2C25—C26—H26120.5
N1—C28—C29111.61 (17)C27—C26—H26120.5
N1—C28—H28A109.3C18—C27—C26122.2 (2)
C29—C28—H28A109.3C18—C27—H27118.9
N1—C28—H28B109.3C26—C27—H27118.9
C8—O2—N1—C28141.69 (16)C6—C1—C2—C31.7 (4)
C8—O2—N1—C1722.12 (18)C17—N1—C28—C29167.93 (16)
C2—C3—C4—C50.4 (4)O2—N1—C28—C2978.14 (19)
C3—C4—C5—C61.3 (4)N1—C28—C29—C34123.4 (2)
C4—C5—C6—C10.7 (3)N1—C28—C29—C3058.8 (3)
C4—C5—C6—C7179.2 (2)C30—C29—C34—C330.9 (4)
C5—C6—C7—O110.7 (3)C28—C29—C34—C33178.7 (2)
C1—C6—C7—O1169.4 (2)C29—C34—C33—C320.1 (4)
C5—C6—C7—C8165.92 (19)C34—C33—C32—C310.9 (4)
C1—C6—C7—C814.0 (3)C33—C32—C31—C301.0 (4)
N1—O2—C8—C912.1 (2)C32—C31—C30—C290.2 (4)
N1—O2—C8—C7171.20 (15)C34—C29—C30—C310.8 (4)
O1—C7—C8—C978.7 (3)C28—C29—C30—C31178.7 (2)
C6—C7—C8—C9104.5 (3)C8—C9—C10—O315.1 (3)
O1—C7—C8—O297.4 (2)C17—C9—C10—O3161.0 (2)
C6—C7—C8—O279.4 (2)C8—C9—C10—C11166.10 (19)
O2—C8—C9—C10173.65 (18)C17—C9—C10—C1117.8 (3)
C7—C8—C9—C1010.3 (3)O3—C10—C11—C12140.3 (2)
O2—C8—C9—C173.2 (2)C9—C10—C11—C1240.9 (3)
C7—C8—C9—C17172.8 (2)O3—C10—C11—C1638.8 (3)
C28—N1—C17—C9137.38 (16)C9—C10—C11—C16140.0 (2)
O2—N1—C17—C922.96 (18)C12—C11—C16—C150.5 (3)
C28—N1—C17—C18101.25 (19)C10—C11—C16—C15179.7 (2)
O2—N1—C17—C18144.34 (15)C11—C16—C15—C140.6 (4)
C8—C9—C17—N116.8 (2)C16—C15—C14—C130.1 (4)
C10—C9—C17—N1159.83 (19)C15—C14—C13—C120.9 (4)
C8—C9—C17—C18133.25 (18)C14—C13—C12—C111.0 (4)
C10—C9—C17—C1843.4 (3)C16—C11—C12—C130.3 (3)
N1—C17—C18—C2764.1 (2)C10—C11—C12—C13178.8 (2)
C9—C17—C18—C2748.5 (3)C21—C22—C23—C240.6 (4)
N1—C17—C18—C19115.07 (19)C22—C23—C24—C25178.7 (3)
C9—C17—C18—C19132.28 (19)C22—C23—C24—C190.5 (4)
C27—C18—C19—C20179.1 (2)C20—C19—C24—C25179.5 (2)
C17—C18—C19—C200.1 (3)C18—C19—C24—C250.2 (3)
C27—C18—C19—C240.2 (3)C20—C19—C24—C231.3 (3)
C17—C18—C19—C24179.36 (18)C18—C19—C24—C23178.1 (2)
C18—C19—C20—C21178.4 (2)C23—C24—C25—C26178.4 (2)
C24—C19—C20—C210.9 (3)C19—C24—C25—C260.2 (4)
C19—C20—C21—C220.2 (4)C24—C25—C26—C270.9 (4)
C20—C21—C22—C231.0 (4)C19—C18—C27—C260.9 (3)
C5—C6—C1—C20.8 (3)C17—C18—C27—C26179.9 (2)
C7—C6—C1—C2179.3 (2)C25—C26—C27—C181.3 (4)
C4—C3—C2—C11.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.603.392 (3)144
C12—H12···O3ii0.932.553.443 (3)161
C13—H13···Cg1ii0.932.633.523 (3)161
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.93002.603.392 (3)144
C12—H12···O3ii0.93002.553.443 (3)161
C13—H13···Cg1ii0.932.633.523 (3)161
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

RS is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Senior Research Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India for single-crystal X-ray diffraction measurements.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, B., Sharma, P. K. & Samanta, A. (2012). Indian J. Chem. Sect. B, 51, 1180–1185.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J.Am. Chem.Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGahlot, U. S., Rao, S. S., Jhala, Y. S., Dulawat, S. S. & Verma, B. L. (2003). Indian J. Heterocycl. Chem. 13, 111–114.  CAS Google Scholar
First citationHabeeb, A. G., Rao, P. N. P. & Knaus, E. E. (2001). J. Med. Chem. 44, 2921–2927.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKiss, L., Nonn, M., Forro, E., Sillanpaa, R. & Fulop, F. (2009). Tetrahedron Lett. 50, 2605–2608.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorman, A. L., Shurrush, K. A., Calleroz, A. T. & Mosher, M. D. (2007). Tetrahedron Lett. 48, 6849–6851.  Web of Science CrossRef CAS Google Scholar
First citationSandhya, R., Sithambaresan, M., Prathapan, S. & Kurup, M. R. P. (2013). Acta Cryst. E69, o1284–o1285.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Hu, R., Wei, Y., Liang, Y., Yang, Z. & Ke, S. (2012). Eur. J. Med. Chem. 54, 549–556.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o354-o355
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds