organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o326-o327

1-Methyl­piperazine-1,4-dium bis­­(hydrogen oxalate)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: essidmanel@voila.fr

(Received 12 February 2014; accepted 17 February 2014; online 22 February 2014)

In the crystal structure of the title compound, C5H14N22+·2HC2O4, the two crystallographically independent hydrogen oxalate anions are linked by strong inter­molecular O—H⋯O hydrogen bonds, forming two independent corrugated chains parallel to the b axis. These chains are further connected by N—H⋯O and C—H⋯O hydrogen bonds originating from the organic cations, forming a three-dimensional network. The diprotonated piperazine ring adopts a chair conformation, with the methyl group occupying an equatorial position.

Related literature

For the biological activity of piperazines, see: Conrado et al. (2008[Conrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699-707.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]); Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]). For related structures, see: Essid et al. (2013[Essid, M., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o1279.]); Dutkiewicz et al. (2011[Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390-o391.]); Vaidhyanathan et al. (2002[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123-133.]); Ejsmont & Zaleski (2006[Ejsmont, K. & Zaleski, J. (2006). Acta Cryst. E62, o3879-o3880.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C5H14N22+·2C2HO4

  • Mr = 280.24

  • Monoclinic, C 2/c

  • a = 15.649 (2) Å

  • b = 5.681 (3) Å

  • c = 27.230 (2) Å

  • β = 104.05 (2)°

  • V = 2348.4 (13) Å3

  • Z = 8

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 7879 measured reflections

  • 5758 independent reflections

  • 3621 reflections with I > 2σ(I)

  • Rint = 0.027

  • 2 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.162

  • S = 1.01

  • 5757 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.72 2.5242 (17) 167
O5—H5⋯O8ii 0.82 1.74 2.5467 (16) 169
N1—H1⋯O4 0.91 1.92 2.7452 (15) 151
N1—H1⋯O2 0.91 2.27 2.9085 (13) 127
N2—H2C⋯O8iii 0.90 2.03 2.8080 (14) 144
N2—H2C⋯O6iii 0.90 2.51 3.2564 (19) 141
N2—H2D⋯O7iv 0.90 1.93 2.7633 (16) 154
N2—H2D⋯O5iv 0.90 2.32 2.9243 (13) 125
C1—H1B⋯O3v 0.96 2.45 3.2653 (19) 142
C2—H2A⋯O4i 0.97 2.44 3.3533 (18) 157
C3—H3A⋯O6vi 0.97 2.49 3.4334 (18) 163
C3—H3B⋯O8ii 0.97 2.29 3.2319 (15) 164
C4—H4B⋯O7vii 0.97 2.43 3.3665 (18) 163
C5—H5A⋯O3viii 0.97 2.28 3.2269 (16) 165
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (vi) [-x+1, y, -z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, y-{\script{3\over 2}}, z]; (viii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Piperazine and its derivatives have been intensively investigated owing to their interesting pharmacological, cardiovascular and autonomic properties (Conrado et al., 2008). Piperazine derivatives are found in biologically active compounds across a number of different therapeutic areas such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Brockunier et al., 2004; Bogatcheva et al., 2006; Essid et al., 2013). In the present work, we report the preparation and the crystal structure of an organic proton transfer salt (C5H14N2)2+·2(HC2O4)-, (I). The asymmetric unit of (I) contains one 1-methylpiperazin-1,4-diium dication and two semi-oxalate anions (Fig. 1). 1-Methylpiperazine is diprotonated at atom N1 and N2 and oxalic acid is mono-deprotonated. The oxalate monoanions are essentially planar, with dihedral angles between the carboxylate groups of less than 4°. Two strong O–H···O (Table 1) hydrogen bonds generate linear oxalate chains running parallel to the b axis (Fig. 2). The geometrical parameters of these chains correlate well with the corresponding values found in related crystal structures (Essid et al., 2013; Vaidhyanathan et al., 2002; Ejsmont & Zaleski, 2006). Bond distances around atom C7 and C8 indicate a carboxylate group with delocalization of the negative charge between atoms O3 and O4, and between O7 and O8. In the hydrogenoxalate anion HC2O4-, the H atoms are located at O2 and O5. The position of protonation is also indicated by elongation of the corresponding C–O distances [O2–C6 = 1.306 (2) Å, O5–C9 = 1.306 (1) Å]. The bond lengths of C6–C7 and C8–C9 are relatively long [1.553 (2) Å, 1.544 (2) Å] as expected for an oxalate anion. Geometrical parameters of the methylpiperazin-1,4-dium dications are found to be in agreement with those of another similar structure of methylpiperazin-1,4-diium dipicrate (Dutkiewicz et al., 2011). The cyclic amine adopts a chair conformation with the methyl group occupying an equatorial position, with puckering parameters: Q = 0.5772 (11) A, θ = 2.85 (11)° and φ = -174 (2)° (Cremer & Pople, 1975) and atoms N1 and N2 deviating by -0.308 (2) and 0.333 (2) Å from the least-squares plane defined by the remaining atoms in the ring. In addition, the crystal structure of [C5H14N2](HC2O4)2 is stabilized by ionic interactions between the 1-methylpiperazin-1,4-dium dications and the oxalate monoanions chains, as well as by a network of N–H···O and C–H···O hydrogen bonds (Fig. 3 and Table 1) such that all the hydrogen atoms bonded to nitrogen atoms participate in the formation of these hydrogen bonds, with donor-acceptor distances between 2.745 (2) and 3.433 (2) Å (Table 1).

Related literature top

For the biological activity of piperazines, see: Conrado et al. (2008); Brockunier et al. (2004); Bogatcheva et al. (2006). For related structures, see: Essid et al. (2013); Dutkiewicz et al. (2011); Vaidhyanathan et al. (2002); Ejsmont & Zaleski, (2006). For puckering parameters, see Cremer & Pople (1975).

Experimental top

An aqueous solution containing 2 mmol of H2C2O4 in 20 ml of water was added to 1 mmol of 1-methylpiperazine in 10 ml of ethanol. The obtained solution was stirred at 333 K. When the solution became homogeneous it was cooled slowly and kept at room temperature. After several days, transparent colourless crystals formed. Crystals of the title compound, which remained stable under normal conditions of temperature and humidity, were isolated and subjected to X-ray diffraction analysis. M.p. 260°C. Main IR bands (KBr disc, cm-1): (vs = very strong; s = strong; w = weak) 3025 w, 1619 s, 1470 s, 1410 s, 1356 vs, 1269 vs, 1203 w, 1050 vs, 1022 s, 985 s, 713 s.

Refinement top

All H atoms were located in a difference map. Nevertheless, they were geometrically placed and refined using a riding model, with C—H = 0.96 Å (methyl) or 0.97 Å (methylene), N—H = 0.90 Å or 0.91 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C or N) or 1.5Ueq(O).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 45% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Projection of the corrugated hydrogen oxalate chains along the a axis.
[Figure 3] Fig. 3. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted.
1-Methylpiperazine-1,4-dium bis(hydrogen oxalate) top
Crystal data top
C5H14N22+·2C2HO4F(000) = 1184
Mr = 280.24Dx = 1.585 Mg m3
Monoclinic, C2/cAg Kα radiation, λ = 0.56083 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 15.649 (2) Åθ = 9–11°
b = 5.681 (3) ŵ = 0.08 mm1
c = 27.230 (2) ÅT = 293 K
β = 104.05 (2)°Prism, colourless
V = 2348.4 (13) Å30.35 × 0.25 × 0.15 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.1°
Graphite monochromatorh = 2625
non–profiled ω scansk = 29
7879 measured reflectionsl = 145
5758 independent reflections2 standard reflections every 120 min
3621 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0887P)2 + 0.6525P]
where P = (Fo2 + 2Fc2)/3
5757 reflections(Δ/σ)max = 0.006
175 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C5H14N22+·2C2HO4V = 2348.4 (13) Å3
Mr = 280.24Z = 8
Monoclinic, C2/cAg Kα radiation, λ = 0.56083 Å
a = 15.649 (2) ŵ = 0.08 mm1
b = 5.681 (3) ÅT = 293 K
c = 27.230 (2) Å0.35 × 0.25 × 0.15 mm
β = 104.05 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.027
7879 measured reflections2 standard reflections every 120 min
5758 independent reflections intensity decay: none
3621 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
5757 reflectionsΔρmin = 0.40 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.26348 (5)0.43588 (15)0.19137 (4)0.02858 (19)
H50.28920.30990.19800.043*
O60.39346 (6)0.58784 (19)0.23195 (5)0.0436 (3)
O70.19490 (5)0.86264 (16)0.17619 (4)0.02856 (19)
O80.32494 (5)1.02361 (15)0.21317 (4)0.02746 (18)
C80.27389 (6)0.85255 (19)0.19799 (4)0.02018 (18)
C90.31747 (7)0.60820 (19)0.20900 (4)0.02266 (19)
O10.12751 (6)0.01254 (18)0.05548 (4)0.0373 (2)
O20.26291 (6)0.13819 (16)0.08184 (4)0.0348 (2)
H20.23660.26420.07800.052*
O30.20184 (6)0.45041 (16)0.06515 (4)0.0331 (2)
O40.33311 (5)0.28288 (16)0.09557 (4)0.0334 (2)
C60.20627 (7)0.03411 (19)0.07029 (5)0.0231 (2)
C70.25214 (7)0.27840 (19)0.07768 (4)0.02206 (19)
N10.45019 (6)0.07065 (18)0.09040 (4)0.02256 (18)
H10.40220.00410.09630.027*
N20.57669 (6)0.01455 (19)0.18579 (4)0.0264 (2)
H2C0.59330.03810.21790.032*
H2D0.62280.08970.17860.032*
C10.42704 (10)0.1657 (3)0.03769 (5)0.0418 (3)
H1A0.38190.28300.03470.063*
H1B0.40600.04010.01430.063*
H1C0.47830.23510.03020.063*
C20.47453 (7)0.2672 (2)0.12710 (5)0.0261 (2)
H2A0.42450.37220.12370.031*
H2B0.52250.35620.11930.031*
C30.50225 (7)0.1799 (2)0.18088 (5)0.0270 (2)
H3A0.51980.31180.20370.032*
H3B0.45320.10110.18990.032*
C40.55098 (8)0.1872 (2)0.15092 (5)0.0298 (2)
H4A0.50240.27100.15930.036*
H4B0.60020.29520.15470.036*
C50.52395 (7)0.1014 (2)0.09704 (5)0.0284 (2)
H5A0.57390.02740.08810.034*
H5B0.50570.23420.07460.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0224 (3)0.0150 (3)0.0441 (5)0.0008 (3)0.0001 (3)0.0021 (3)
O60.0219 (4)0.0272 (5)0.0706 (7)0.0024 (3)0.0106 (4)0.0053 (5)
O70.0187 (3)0.0206 (4)0.0417 (5)0.0014 (3)0.0019 (3)0.0026 (3)
O80.0244 (4)0.0164 (3)0.0378 (5)0.0035 (3)0.0001 (3)0.0013 (3)
C80.0195 (4)0.0160 (4)0.0237 (4)0.0000 (3)0.0026 (3)0.0004 (3)
C90.0187 (4)0.0172 (4)0.0299 (5)0.0003 (3)0.0016 (3)0.0008 (4)
O10.0189 (4)0.0270 (5)0.0608 (6)0.0032 (3)0.0003 (4)0.0064 (4)
O20.0218 (4)0.0144 (3)0.0647 (6)0.0003 (3)0.0039 (4)0.0006 (4)
O30.0243 (4)0.0166 (4)0.0532 (6)0.0030 (3)0.0006 (4)0.0024 (4)
O40.0180 (3)0.0194 (4)0.0588 (6)0.0012 (3)0.0011 (3)0.0037 (4)
C60.0204 (4)0.0166 (4)0.0308 (5)0.0008 (3)0.0032 (4)0.0021 (4)
C70.0196 (4)0.0146 (4)0.0304 (5)0.0001 (3)0.0029 (3)0.0002 (4)
N10.0172 (3)0.0229 (4)0.0255 (4)0.0018 (3)0.0012 (3)0.0008 (3)
N20.0183 (4)0.0270 (5)0.0298 (5)0.0009 (3)0.0022 (3)0.0022 (4)
C10.0363 (6)0.0563 (10)0.0291 (6)0.0029 (7)0.0009 (5)0.0108 (6)
C20.0234 (4)0.0174 (4)0.0347 (6)0.0014 (4)0.0018 (4)0.0006 (4)
C30.0220 (4)0.0276 (5)0.0298 (5)0.0005 (4)0.0034 (4)0.0054 (4)
C40.0229 (5)0.0185 (5)0.0437 (7)0.0031 (4)0.0006 (4)0.0006 (5)
C50.0221 (4)0.0259 (5)0.0367 (6)0.0013 (4)0.0061 (4)0.0075 (5)
Geometric parameters (Å, º) top
O5—C91.3061 (14)N2—C41.4805 (17)
O5—H50.8200N2—H2C0.9000
O6—C91.2070 (13)N2—H2D0.9000
O7—C81.2358 (12)C1—H1A0.9600
O8—C81.2622 (13)C1—H1B0.9600
C8—C91.5437 (16)C1—H1C0.9600
O1—C61.2063 (13)C2—C31.5068 (18)
O2—C61.3067 (14)C2—H2A0.9700
O2—H20.8200C2—H2B0.9700
O3—C71.2493 (14)C3—H3A0.9700
O4—C71.2424 (13)C3—H3B0.9700
C6—C71.5530 (16)C4—C51.5059 (19)
N1—C21.4854 (16)C4—H4A0.9700
N1—C51.4897 (15)C4—H4B0.9700
N1—C11.4934 (17)C5—H5A0.9700
N1—H10.9100C5—H5B0.9700
N2—C31.4770 (15)
C9—O5—H5109.5H1A—C1—H1B109.5
O7—C8—O8126.96 (10)N1—C1—H1C109.5
O7—C8—C9118.57 (9)H1A—C1—H1C109.5
O8—C8—C9114.46 (9)H1B—C1—H1C109.5
O6—C9—O5125.91 (11)N1—C2—C3111.87 (10)
O6—C9—C8121.33 (10)N1—C2—H2A109.2
O5—C9—C8112.75 (9)C3—C2—H2A109.2
C6—O2—H2109.5N1—C2—H2B109.2
O1—C6—O2125.63 (11)C3—C2—H2B109.2
O1—C6—C7122.46 (10)H2A—C2—H2B107.9
O2—C6—C7111.90 (9)N2—C3—C2109.40 (10)
O4—C7—O3127.31 (10)N2—C3—H3A109.8
O4—C7—C6117.67 (9)C2—C3—H3A109.8
O3—C7—C6115.01 (9)N2—C3—H3B109.8
C2—N1—C5110.32 (9)C2—C3—H3B109.8
C2—N1—C1109.73 (11)H3A—C3—H3B108.2
C5—N1—C1110.72 (11)N2—C4—C5110.04 (10)
C2—N1—H1108.7N2—C4—H4A109.7
C5—N1—H1108.7C5—C4—H4A109.7
C1—N1—H1108.7N2—C4—H4B109.7
C3—N2—C4110.41 (9)C5—C4—H4B109.7
C3—N2—H2C109.6H4A—C4—H4B108.2
C4—N2—H2C109.6N1—C5—C4110.90 (10)
C3—N2—H2D109.6N1—C5—H5A109.5
C4—N2—H2D109.6C4—C5—H5A109.5
H2C—N2—H2D108.1N1—C5—H5B109.5
N1—C1—H1A109.5C4—C5—H5B109.5
N1—C1—H1B109.5H5A—C5—H5B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.722.5242 (17)167
O5—H5···O8ii0.821.742.5467 (16)169
N1—H1···O40.911.922.7452 (15)151
N1—H1···O20.912.272.9085 (13)127
N2—H2C···O8iii0.902.032.8080 (14)144
N2—H2C···O6iii0.902.513.2564 (19)141
N2—H2D···O7iv0.901.932.7633 (16)154
N2—H2D···O5iv0.902.322.9243 (13)125
C1—H1B···O3v0.962.453.2653 (19)142
C2—H2A···O4i0.972.443.3533 (18)157
C3—H3A···O6vi0.972.493.4334 (18)163
C3—H3B···O8ii0.972.293.2319 (15)164
C4—H4B···O7vii0.972.433.3665 (18)163
C5—H5A···O3viii0.972.283.2269 (16)165
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y1, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z; (vi) x+1, y, z+1/2; (vii) x+1/2, y3/2, z; (viii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.722.5242 (17)166.9
O5—H5···O8ii0.821.742.5467 (16)169.3
N1—H1···O40.911.922.7452 (15)150.7
N1—H1···O20.912.272.9085 (13)127.0
N2—H2C···O8iii0.902.032.8080 (14)144.0
N2—H2C···O6iii0.902.513.2564 (19)140.9
N2—H2D···O7iv0.901.932.7633 (16)153.6
N2—H2D···O5iv0.902.322.9243 (13)124.9
C1—H1B···O3v0.962.453.2653 (19)142.3
C2—H2A···O4i0.972.443.3533 (18)157.2
C3—H3A···O6vi0.972.493.4334 (18)163.3
C3—H3B···O8ii0.972.293.2319 (15)163.6
C4—H4B···O7vii0.972.433.3665 (18)162.6
C5—H5A···O3viii0.972.283.2269 (16)165.4
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y1, z+1/2; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z; (vi) x+1, y, z+1/2; (vii) x+1/2, y3/2, z; (viii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of High Education Scientific Research.

References

First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationConrado, D. J., Verli, H., Neves, G., Fraga, C. A., Barreiro, E. J., Rates, S. M. & Dalla-Costa, T. (2008). J. Pharm. Pharmacol. 60, 699–707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390–o391.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006). Acta Cryst. E62, o3879–o3880.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEssid, M., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o1279.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o326-o327
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds