organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Meth­­oxy­methyl­­idene)di­methyl­aza­nium tetra­phenyl­borate aceto­nitrile monosolvate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 12 February 2014; accepted 17 February 2014; online 22 February 2014)

In the cation of the title salt, C4H10NO+·C24H20B·C2H3N, the C—N bond lengths are 1.2864 (16), 1.4651 (17) and 1.4686 (16) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.2978 (15) Å shows double-bond character, pointing towards charge delocalization within the NCO plane of the iminium ion. C—H⋯π inter­actions are present between the methine H atom and two of the phenyl rings of the tetra­phenyl­borate ion. The latter forms an aromatic pocket in which the cation is embedded. The iminium ion is further connected through a C—H⋯N hydrogen bond to the aceto­nitrile mol­ecule. This leads to the formation of a two-dimensional supramolecular pattern along the bc plane.

Related literature

For the crystal structures of alkali metal tetra­phenyl­borates, see: Behrens et al. (2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]). For the synthesis of 1,3-dioxolanes and 1,3-dioxanes from meth­oxy­methyl­ene-N,N- di­methyl­iminium methyl sulfate, diols and carbonyl compounds, see: Kantlehner & Gutbrod (1979[Kantlehner, W. & Gutbrod, H.-D. (1979). Liebigs Ann. Chem. pp. 1362-1369.]). For the synthesis of acetals from meth­oxy­methyl­ene-N,N-di­methyl­iminium methyl sulfate, alcohols and aliphatic or aromatic aldehydes, see: Kantlehner et al. (1974[Kantlehner, W., Gutbrod, H.-D. & Gross, P. (1974). Liebigs Ann. Chem. pp. 690-692.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C24H20B·C2H3N

  • Mr = 448.39

  • Monoclinic, P 21 /n

  • a = 10.6715 (5) Å

  • b = 16.9824 (9) Å

  • c = 14.4061 (7) Å

  • β = 103.515 (3)°

  • V = 2538.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • 54637 measured reflections

  • 7810 independent reflections

  • 5762 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.136

  • S = 1.01

  • 7810 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1 0.94 (2) 2.75 (2) 3.542 (2) 143 (2)
C3—H3⋯Cg2 0.94 (2) 2.88 (2) 3.272 (2) 106 (2)
C2—H2B⋯N2 0.98 2.66 3.640 (2) 178

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ionic liquid methoxymethylene-N,N-dimethyliminium methyl sulfate is a 1:1 adduct of N,N-dimethylformamide and dimethyl sulfate. It reacts with mixtures of alcohols and aliphatic or aromatic aldehydes giving acetals (Kantlehner et al., 1974). It reacts also with mixtures of carbonyl compounds and 1,2- as well as 1,3-dioles, giving 1,3-dioxolanes and 1,3-dioxanes respectively (Kantlehner et al., 1979). By reacting methoxymethylene-N,N-dimethyliminium methyl sulfate with sodium tetraphenylborate, it was possible to achieve an anion exchange and to obtain the title compound. According to the structure analysis, the C1–N1 bond length is 1.4686 (16) Å, C2–N1 = 1.4651 (17) Å and C3–N1 = 1.2864 (16) Å, showing single and double bond character, respectively. The C–N1–C angles are: 117.79 (10)° (C1–N1–C2), 121.54 (11)° (C1–N1–C3) and 120.64 (11)° (C3–N1–C2), which indicates a nearly trigonal-planar surrounding of the nitrogen centre by the carbon atoms (Fig. 1). The C–O bond length shows with 1.2978 (15) Å double bond character. The positive charge is completely delocalized within the plane formed by the atoms N1, C3 and O1. The bond lengths and angles in the tetraphenylborate ion are in good agreement with the data from the crystal structure analysis of the alkali metal tetraphenylborates (Behrens et al., 2012). C–H···π interactions between the hydrogen atom H3 of the cation and two phenyl rings (centroids) of the tetraphenylborate ion are present (Fig. 2), with hydrogen centroid distances of 2.75 and 2.88 Å (Tab. 1). The phenyl rings form aromatic pockets, in which the iminium ion is embedded. The cation is further connected through a C–H···N hydrogen bond (Fig. 2) with the acetonitrile molecule [d(H2B···N2) = 2.66 Å] (Tab. 1). This leads to the formation of a two-dimensional supramolecular pattern along the bc plane.

Related literature top

For the crystal structures of alkali metal tetraphenylborates, see: Behrens et al. (2012). For the synthesis of 1,3-dioxolanes and 1,3-dioxanes from methoxymethylene-N,N- dimethyliminium methyl sulfate, diols and carbonyl compounds, see: Kantlehner & Gutbrod (1979). For the synthesis of acetals from methoxymethylene-N,N-dimethyliminium methyl sulfate, alcohols and aliphatic or aromatic aldehydes, see: Kantlehner et al. (1974).

Experimental top

The title compound was obtained by reacting equimolar amounts of N,N-dimethylformamide with dimethyl sulfate at room temperature forming methoxymethylene-N,N-dimethyliminium methyl sulfate (I). 1.00 g (5.01 mmol) of crude (I) was dissolved in 20 ml acetonitrile and 1.72 g (5.01 mmol) of sodium tetraphenylborate in 20 ml acetonitrile was added. After stirring for one hour at room temperature, the precipitated sodium methyl sulfate was filtered off. The title compound crystallized from a saturated acetonitrile solution after several days at 273 K, forming colorless single crystals suitable for X-ray analysis.

Dimethyl sulfate is carcinogenic, mutagenic and highly poisonous. During use appropriate precautions should be taken.

Refinement top

The H atom bound to C3 was located in a difference Fourier map and was refined freely [C—H = 0.94 (2) Å]. The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N and C–O bonds to best fit the experimental electron density, with Uiso(H) set to 1.5Ueq(C) and d(C—H) = 0.98 Å. The H atoms in the aromatic rings were placed in calculated positions with (C—H) = 0.95 Å. They were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon bonded hydrogen (except of H3) atoms were omitted for the sake of clarity.
[Figure 2] Fig. 2. C–H···π interactions (red dashed lines) between the hydrogen atom H3 of the cation and the phenyl carbon atoms (centroids) of the tetraphenylborate ion and C–H···N hydrogen bond (black dashed line) between the cation and the acetonitrile molecule.
(Methoxymethylidene)dimethylazanium tetraphenylborate acetonitrile monosolvate top
Crystal data top
C4H10NO+·C24H20B·C2H3NF(000) = 960
Mr = 448.39Dx = 1.173 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 54637 reflections
a = 10.6715 (5) Åθ = 1.9–30.6°
b = 16.9824 (9) ŵ = 0.07 mm1
c = 14.4061 (7) ÅT = 100 K
β = 103.515 (3)°Block, colorless
V = 2538.5 (2) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5762 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 30.6°, θmin = 1.9°
φ scans, and ω scansh = 1515
54637 measured reflectionsk = 2424
7810 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0606P)2 + 1.2901P]
where P = (Fo2 + 2Fc2)/3
7810 reflections(Δ/σ)max < 0.001
315 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C4H10NO+·C24H20B·C2H3NV = 2538.5 (2) Å3
Mr = 448.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6715 (5) ŵ = 0.07 mm1
b = 16.9824 (9) ÅT = 100 K
c = 14.4061 (7) Å0.20 × 0.15 × 0.10 mm
β = 103.515 (3)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
5762 reflections with I > 2σ(I)
54637 measured reflectionsRint = 0.045
7810 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.42 e Å3
7810 reflectionsΔρmin = 0.43 e Å3
315 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.46641 (13)0.40926 (8)0.41370 (10)0.0232 (3)
H1A0.44620.38290.46890.035*
H1B0.38950.43640.37730.035*
H1C0.53550.44760.43570.035*
C20.40869 (13)0.30622 (9)0.28573 (11)0.0250 (3)
H2A0.44940.27100.24760.037*
H2B0.35140.34290.24340.037*
H2C0.35860.27510.32160.037*
N10.50842 (10)0.35056 (6)0.35249 (8)0.0164 (2)
C30.62856 (12)0.33664 (8)0.35858 (9)0.0170 (2)
H30.6545 (15)0.2972 (10)0.3213 (12)0.022 (4)*
O10.71519 (8)0.37622 (6)0.41880 (6)0.0192 (2)
C40.84859 (12)0.35136 (9)0.43104 (10)0.0243 (3)
H4A0.87370.31870.48850.036*
H4B0.90440.39780.43770.036*
H4C0.85750.32080.37520.036*
B10.76218 (12)0.20090 (8)0.12815 (9)0.0131 (2)
C50.69730 (11)0.15845 (7)0.02587 (8)0.0132 (2)
C60.66415 (11)0.20044 (7)0.06029 (9)0.0153 (2)
H6A0.66990.25630.05820.018*
C70.62318 (11)0.16379 (8)0.14890 (9)0.0175 (2)
H7A0.60210.19460.20550.021*
C80.61317 (12)0.08245 (8)0.15432 (9)0.0197 (3)
H8A0.58490.05700.21430.024*
C90.64509 (12)0.03865 (8)0.07057 (9)0.0190 (3)
H9A0.63880.01710.07330.023*
C100.68623 (12)0.07615 (7)0.01730 (9)0.0162 (2)
H10A0.70760.04490.07350.019*
C110.91812 (11)0.19238 (7)0.13791 (8)0.0136 (2)
C120.98740 (12)0.24623 (7)0.09522 (9)0.0168 (2)
H12A0.94340.29080.06350.020*
C131.11786 (12)0.23712 (8)0.09739 (9)0.0196 (3)
H13A1.16100.27560.06840.024*
C141.18458 (12)0.17234 (8)0.14155 (10)0.0210 (3)
H14A1.27370.16600.14370.025*
C151.11920 (13)0.11662 (8)0.18281 (10)0.0212 (3)
H15A1.16340.07130.21250.025*
C160.98875 (12)0.12694 (8)0.18076 (9)0.0178 (2)
H16A0.94610.08810.20950.021*
C170.71395 (11)0.16101 (7)0.21767 (8)0.0141 (2)
C180.58786 (12)0.13210 (8)0.20676 (9)0.0171 (2)
H18A0.53460.12790.14410.021*
C190.53758 (13)0.10938 (8)0.28364 (10)0.0209 (3)
H19A0.45170.09030.27280.025*
C200.61303 (14)0.11463 (9)0.37614 (10)0.0237 (3)
H20A0.57910.10010.42910.028*
C210.73893 (14)0.14146 (9)0.38990 (9)0.0229 (3)
H21A0.79200.14470.45270.027*
C220.78792 (12)0.16375 (8)0.31212 (9)0.0177 (2)
H22A0.87460.18150.32340.021*
C230.71577 (11)0.29311 (7)0.13220 (8)0.0139 (2)
C240.58709 (12)0.31596 (8)0.09488 (10)0.0194 (3)
H24A0.52840.27820.06060.023*
C250.54234 (13)0.39139 (8)0.10609 (10)0.0241 (3)
H25A0.45470.40420.07940.029*
C260.62499 (14)0.44803 (8)0.15603 (10)0.0230 (3)
H26A0.59480.49970.16380.028*
C270.75235 (13)0.42791 (8)0.19436 (10)0.0207 (3)
H27A0.81020.46590.22900.025*
C280.79607 (12)0.35215 (7)0.18238 (9)0.0166 (2)
H28A0.88390.33990.20930.020*
N20.2002 (2)0.44404 (10)0.12761 (13)0.0599 (5)
C290.21400 (16)0.50210 (9)0.09583 (10)0.0284 (3)
C300.2352 (4)0.57636 (13)0.0566 (2)0.0899 (11)
H30A0.21420.61850.09690.135*
H30B0.18010.58110.00790.135*
H30C0.32580.58070.05380.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0197 (6)0.0234 (7)0.0280 (7)0.0057 (5)0.0084 (5)0.0057 (5)
C20.0168 (6)0.0288 (7)0.0291 (7)0.0024 (5)0.0049 (5)0.0071 (6)
N10.0154 (5)0.0165 (5)0.0182 (5)0.0012 (4)0.0058 (4)0.0003 (4)
C30.0163 (5)0.0193 (6)0.0163 (6)0.0007 (5)0.0054 (4)0.0001 (5)
O10.0145 (4)0.0243 (5)0.0190 (4)0.0004 (3)0.0043 (3)0.0037 (4)
C40.0133 (6)0.0354 (8)0.0236 (7)0.0010 (5)0.0035 (5)0.0061 (6)
B10.0135 (6)0.0123 (6)0.0128 (6)0.0008 (4)0.0019 (5)0.0006 (5)
C50.0109 (5)0.0146 (5)0.0141 (5)0.0006 (4)0.0031 (4)0.0004 (4)
C60.0141 (5)0.0161 (6)0.0154 (5)0.0011 (4)0.0029 (4)0.0010 (4)
C70.0127 (5)0.0261 (7)0.0132 (5)0.0013 (5)0.0017 (4)0.0022 (5)
C80.0156 (5)0.0278 (7)0.0157 (6)0.0037 (5)0.0036 (4)0.0073 (5)
C90.0199 (6)0.0168 (6)0.0209 (6)0.0028 (5)0.0061 (5)0.0056 (5)
C100.0176 (5)0.0156 (6)0.0155 (6)0.0012 (4)0.0039 (4)0.0000 (4)
C110.0143 (5)0.0146 (5)0.0112 (5)0.0003 (4)0.0015 (4)0.0023 (4)
C120.0172 (5)0.0166 (6)0.0162 (6)0.0006 (4)0.0035 (4)0.0003 (4)
C130.0183 (6)0.0216 (6)0.0201 (6)0.0041 (5)0.0069 (5)0.0021 (5)
C140.0134 (5)0.0286 (7)0.0206 (6)0.0010 (5)0.0034 (5)0.0039 (5)
C150.0193 (6)0.0238 (7)0.0195 (6)0.0065 (5)0.0023 (5)0.0019 (5)
C160.0178 (6)0.0179 (6)0.0179 (6)0.0016 (5)0.0043 (5)0.0011 (5)
C170.0170 (5)0.0119 (5)0.0134 (5)0.0018 (4)0.0035 (4)0.0010 (4)
C180.0174 (5)0.0183 (6)0.0156 (6)0.0006 (5)0.0037 (4)0.0001 (4)
C190.0208 (6)0.0223 (6)0.0217 (6)0.0006 (5)0.0092 (5)0.0019 (5)
C200.0292 (7)0.0262 (7)0.0189 (6)0.0061 (6)0.0123 (5)0.0047 (5)
C210.0277 (7)0.0272 (7)0.0131 (6)0.0070 (5)0.0036 (5)0.0018 (5)
C220.0177 (5)0.0193 (6)0.0151 (6)0.0025 (5)0.0019 (4)0.0010 (5)
C230.0152 (5)0.0148 (5)0.0119 (5)0.0013 (4)0.0034 (4)0.0007 (4)
C240.0156 (5)0.0180 (6)0.0227 (6)0.0003 (5)0.0007 (5)0.0053 (5)
C250.0197 (6)0.0217 (7)0.0284 (7)0.0052 (5)0.0004 (5)0.0056 (5)
C260.0282 (7)0.0154 (6)0.0254 (7)0.0025 (5)0.0064 (5)0.0039 (5)
C270.0249 (6)0.0157 (6)0.0214 (6)0.0049 (5)0.0053 (5)0.0049 (5)
C280.0165 (5)0.0170 (6)0.0156 (6)0.0020 (4)0.0022 (4)0.0020 (4)
N20.1152 (17)0.0315 (9)0.0441 (10)0.0065 (9)0.0412 (11)0.0027 (7)
C290.0433 (9)0.0261 (7)0.0184 (6)0.0057 (6)0.0126 (6)0.0001 (5)
C300.191 (3)0.0343 (11)0.0705 (17)0.0081 (16)0.084 (2)0.0175 (11)
Geometric parameters (Å, º) top
C1—N11.4686 (16)C13—C141.3822 (19)
C1—H1A0.9800C13—H13A0.9500
C1—H1B0.9800C14—C151.3889 (19)
C1—H1C0.9800C14—H14A0.9500
C2—N11.4651 (17)C15—C161.3966 (17)
C2—H2A0.9800C15—H15A0.9500
C2—H2B0.9800C16—H16A0.9500
C2—H2C0.9800C17—C221.4053 (17)
N1—C31.2864 (16)C17—C181.4062 (17)
C3—O11.2978 (15)C18—C191.3933 (17)
C3—H30.940 (17)C18—H18A0.9500
O1—C41.4555 (15)C19—C201.389 (2)
C4—H4A0.9800C19—H19A0.9500
C4—H4B0.9800C20—C211.388 (2)
C4—H4C0.9800C20—H20A0.9500
B1—C51.6411 (17)C21—C221.3949 (18)
B1—C171.6423 (18)C21—H21A0.9500
B1—C111.6433 (17)C22—H22A0.9500
B1—C231.6477 (18)C23—C281.4044 (17)
C5—C61.4033 (17)C23—C241.4072 (17)
C5—C101.4056 (17)C24—C251.3897 (18)
C6—C71.3954 (17)C24—H24A0.9500
C6—H6A0.9500C25—C261.3872 (19)
C7—C81.3862 (19)C25—H25A0.9500
C7—H7A0.9500C26—C271.3850 (19)
C8—C91.3903 (19)C26—H26A0.9500
C8—H8A0.9500C27—C281.3930 (18)
C9—C101.3933 (17)C27—H27A0.9500
C9—H9A0.9500C28—H28A0.9500
C10—H10A0.9500N2—C291.111 (2)
C11—C161.4023 (17)C29—C301.421 (3)
C11—C121.4049 (17)C30—H30A0.9800
C12—C131.3938 (17)C30—H30B0.9800
C12—H12A0.9500C30—H30C0.9800
N1—C1—H1A109.5C14—C13—C12120.20 (12)
N1—C1—H1B109.5C14—C13—H13A119.9
H1A—C1—H1B109.5C12—C13—H13A119.9
N1—C1—H1C109.5C13—C14—C15118.88 (12)
H1A—C1—H1C109.5C13—C14—H14A120.6
H1B—C1—H1C109.5C15—C14—H14A120.6
N1—C2—H2A109.5C14—C15—C16120.22 (12)
N1—C2—H2B109.5C14—C15—H15A119.9
H2A—C2—H2B109.5C16—C15—H15A119.9
N1—C2—H2C109.5C15—C16—C11122.64 (12)
H2A—C2—H2C109.5C15—C16—H16A118.7
H2B—C2—H2C109.5C11—C16—H16A118.7
C3—N1—C2120.64 (11)C22—C17—C18115.22 (11)
C3—N1—C1121.54 (11)C22—C17—B1122.58 (11)
C2—N1—C1117.79 (10)C18—C17—B1121.57 (10)
N1—C3—O1119.55 (12)C19—C18—C17122.96 (12)
N1—C3—H3120.9 (10)C19—C18—H18A118.5
O1—C3—H3119.5 (10)C17—C18—H18A118.5
C3—O1—C4117.03 (10)C20—C19—C18120.01 (12)
O1—C4—H4A109.5C20—C19—H19A120.0
O1—C4—H4B109.5C18—C19—H19A120.0
H4A—C4—H4B109.5C21—C20—C19118.85 (12)
O1—C4—H4C109.5C21—C20—H20A120.6
H4A—C4—H4C109.5C19—C20—H20A120.6
H4B—C4—H4C109.5C20—C21—C22120.42 (12)
C5—B1—C17112.33 (10)C20—C21—H21A119.8
C5—B1—C11104.15 (9)C22—C21—H21A119.8
C17—B1—C11113.17 (10)C21—C22—C17122.52 (12)
C5—B1—C23112.46 (10)C21—C22—H22A118.7
C17—B1—C23102.26 (9)C17—C22—H22A118.7
C11—B1—C23112.79 (9)C28—C23—C24115.05 (11)
C6—C5—C10115.41 (11)C28—C23—B1122.99 (10)
C6—C5—B1122.49 (10)C24—C23—B1121.53 (10)
C10—C5—B1121.65 (10)C25—C24—C23122.75 (12)
C7—C6—C5122.88 (12)C25—C24—H24A118.6
C7—C6—H6A118.6C23—C24—H24A118.6
C5—C6—H6A118.6C26—C25—C24120.35 (12)
C8—C7—C6119.97 (12)C26—C25—H25A119.8
C8—C7—H7A120.0C24—C25—H25A119.8
C6—C7—H7A120.0C27—C26—C25118.78 (12)
C7—C8—C9118.97 (12)C27—C26—H26A120.6
C7—C8—H8A120.5C25—C26—H26A120.6
C9—C8—H8A120.5C26—C27—C28120.29 (12)
C8—C9—C10120.34 (12)C26—C27—H27A119.9
C8—C9—H9A119.8C28—C27—H27A119.9
C10—C9—H9A119.8C27—C28—C23122.78 (12)
C9—C10—C5122.44 (12)C27—C28—H28A118.6
C9—C10—H10A118.8C23—C28—H28A118.6
C5—C10—H10A118.8N2—C29—C30178.5 (3)
C16—C11—C12115.14 (11)C29—C30—H30A109.5
C16—C11—B1122.47 (11)C29—C30—H30B109.5
C12—C11—B1122.09 (10)H30A—C30—H30B109.5
C13—C12—C11122.89 (12)C29—C30—H30C109.5
C13—C12—H12A118.6H30A—C30—H30C109.5
C11—C12—H12A118.6H30B—C30—H30C109.5
C2—N1—C3—O1179.44 (12)B1—C11—C16—C15175.04 (12)
C1—N1—C3—O11.32 (19)C5—B1—C17—C22154.41 (11)
N1—C3—O1—C4172.58 (12)C11—B1—C17—C2236.81 (15)
C17—B1—C5—C6145.07 (11)C23—B1—C17—C2284.80 (13)
C11—B1—C5—C692.10 (12)C5—B1—C17—C1835.14 (15)
C23—B1—C5—C630.35 (15)C11—B1—C17—C18152.73 (11)
C17—B1—C5—C1043.00 (15)C23—B1—C17—C1885.66 (13)
C11—B1—C5—C1079.83 (13)C22—C17—C18—C191.48 (18)
C23—B1—C5—C10157.72 (10)B1—C17—C18—C19169.64 (12)
C10—C5—C6—C70.15 (17)C17—C18—C19—C200.1 (2)
B1—C5—C6—C7172.26 (11)C18—C19—C20—C211.1 (2)
C5—C6—C7—C80.34 (18)C19—C20—C21—C220.9 (2)
C6—C7—C8—C90.31 (18)C20—C21—C22—C170.6 (2)
C7—C8—C9—C100.12 (19)C18—C17—C22—C211.68 (18)
C8—C9—C10—C50.07 (19)B1—C17—C22—C21169.34 (12)
C6—C5—C10—C90.06 (17)C5—B1—C23—C28146.49 (11)
B1—C5—C10—C9172.53 (11)C17—B1—C23—C2892.80 (13)
C5—B1—C11—C1689.05 (13)C11—B1—C23—C2829.06 (16)
C17—B1—C11—C1633.23 (15)C5—B1—C23—C2441.38 (15)
C23—B1—C11—C16148.72 (11)C17—B1—C23—C2479.33 (13)
C5—B1—C11—C1284.26 (13)C11—B1—C23—C24158.81 (11)
C17—B1—C11—C12153.46 (11)C28—C23—C24—C250.38 (19)
C23—B1—C11—C1237.98 (15)B1—C23—C24—C25173.10 (12)
C16—C11—C12—C131.88 (18)C23—C24—C25—C260.3 (2)
B1—C11—C12—C13175.65 (11)C24—C25—C26—C270.1 (2)
C11—C12—C13—C141.05 (19)C25—C26—C27—C280.2 (2)
C12—C13—C14—C150.47 (19)C26—C27—C28—C230.1 (2)
C13—C14—C15—C161.0 (2)C24—C23—C28—C270.20 (18)
C14—C15—C16—C110.1 (2)B1—C23—C28—C27172.80 (12)
C12—C11—C16—C151.30 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg10.94 (2)2.75 (2)3.542 (2)143 (2)
C3—H3···Cg20.94 (2)2.88 (2)3.272 (2)106 (2)
C2—H2B···N20.982.663.640 (2)178
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg10.94 (2)2.75 (2)3.542 (2)143 (2)
C3—H3···Cg20.94 (2)2.88 (2)3.272 (2)106 (2)
C2—H2B···N20.982.663.640 (2)178
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKantlehner, W. & Gutbrod, H.-D. (1979). Liebigs Ann. Chem. pp. 1362–1369.  CrossRef Google Scholar
First citationKantlehner, W., Gutbrod, H.-D. & Gross, P. (1974). Liebigs Ann. Chem. pp. 690–692.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds