organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(2,3,5,5-tetra­methyl­hexen-2-yl)silane

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 17 February 2014; accepted 25 February 2014; online 28 February 2014)

In the title compound, C40H76Si, the Si atom is located on a special position of site symmetry -4. Thus, there is just a quarter of a mol­ecule in the asymmetric unit. The C=C double bonds exhibit a trans configuration. The Si atom and the tert-butyl group are located on the same side of the plane formed by the C=C double bond and its four substituents. The crystal packing shows no short contacts between the mol­ecules and despite the low crystal density (0.980 Mg m−3), there are no significant voids in the structure.

Related literature

For information on the chemical background, see: Meyer-Wegner et al. (2011[Meyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715-4719.], 2014[Meyer-Wegner, F., Wender, J. H., Falahati, K., Porsch, T., Sinke, T., Bolte, M., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2014). Chem. Eur. J. doi:10.1002/chem.201302544.]).

[Scheme 1]

Experimental

Crystal data
  • C40H76Si

  • Mr = 585.10

  • Tetragonal, I 41 /a

  • a = 12.5780 (11) Å

  • c = 25.053 (3) Å

  • V = 3963.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.16 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.963, Tmax = 0.988

  • 5117 measured reflections

  • 1742 independent reflections

  • 1301 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.136

  • S = 1.08

  • 1742 reflections

  • 95 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Very recently, we have investigated the reaction of Si2Cl6 with NR3 (R = Me, Et) and we have been able to show that amine-complexed dichlorosilylenes represent the key intermediates in this disproportionation reaction (Meyer-Wegner et al., 2011). In the course of these studies we isolated along with SiCl4 the [4 + 1] cycloadduct of dichlorosilylene SiCl2 with 2,3-dimethyl-1,3-butadiene (DMB) in good yield upon treatment of Si2Cl6 with catalytic amounts of NMe3 or NMe2Et in neat DMB (Meyer-Wegner et al., 2014). In this study we report on the reaction of Si2Cl6 with catalytic amounts of NMe2Et in the presence of DMB. Subsequent treatment of this reaction mixture with tBuLi yielded the title compound (I) which could be isolated (Fig. 1).

In the title compound (Fig. 2), the Si centre is located on a special position of site symmtry 4. Thus, there is just a quarter of a molecule in the asymmetric unit. The C=C double bonds show a trans configuration. It is interesting to note, that the Si centre and the t-butyl group are located on the same side of the plane formed by the C=C double bond and its four substituents. The crystal packing (Fig. 3) shows no short contacts between the molecules and despite the fact that the crystal density is rather low [0.980 g/cm3], there are no significant voids in the structure.

Related literature top

For information on the chemical background, see: Meyer-Wegner et al. (2011, 2014).

Experimental top

To Si2Cl6 (0.3 ml, 0.47 g, 1.74 mmol) in DMB (1.2 ml, 0.86 g, 10 mmol) a catalytic amount of NMe2Et (0.012 g, 0.2 mmol) was added. Subsequent treatment of this mixture with a solution of tBuLi (16 mmol) in 10 ml of pentane yielded a colorless precipitate. After filtration all volatiles were removed in vacuo. The obtained residue was dissolved in benzene. This solution was stored at ambient temperature for a period of two days yielding single crystals of the title compound.

Refinement top

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] and with Cmethyl—H = 0.98 Å and Cmethylene—H = 0.99 Å. The methyl groups attached to the double bond were allowed to rotate but not to tip.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction of SiCl4 with tBuLi in the presence of 2,3-dimethyl-1,3-butadiene.
[Figure 2] Fig. 2. Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are omitted for clarity. Symmetry codes: (A) -x + 1, -y + 3/2, z; (B) y - 1/4, -x + 5/4, -z + 1/4; (C) -y + 5/4, x + 1/4, -z + 1/4.
[Figure 3] Fig. 3. Packing diagram of the title compound; hydrogen atoms are omitted for clarity. The view direction is approximately down the a axis.
Tetrakis(2,3,5,5-tetramethylhexen-2-yl)silane top
Crystal data top
C40H76SiDx = 0.980 Mg m3
Mr = 585.10Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 4399 reflections
Hall symbol: -I 4adθ = 3.7–25.9°
a = 12.5780 (11) ŵ = 0.08 mm1
c = 25.053 (3) ÅT = 173 K
V = 3963.5 (7) Å3Block, colourless
Z = 40.32 × 0.28 × 0.16 mm
F(000) = 1320
Data collection top
Stoe IPDS-II two-circle
diffractometer
1742 independent reflections
Radiation source: fine-focus sealed tube1301 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.0°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 814
Tmin = 0.963, Tmax = 0.988k = 1414
5117 measured reflectionsl = 2529
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.753P]
where P = (Fo2 + 2Fc2)/3
1742 reflections(Δ/σ)max = 0.001
95 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C40H76SiZ = 4
Mr = 585.10Mo Kα radiation
Tetragonal, I41/aµ = 0.08 mm1
a = 12.5780 (11) ÅT = 173 K
c = 25.053 (3) Å0.32 × 0.28 × 0.16 mm
V = 3963.5 (7) Å3
Data collection top
Stoe IPDS-II two-circle
diffractometer
1742 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1301 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.988Rint = 0.045
5117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.08Δρmax = 0.25 e Å3
1742 reflectionsΔρmin = 0.17 e Å3
95 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.50000.75000.12500.0457 (3)
C10.52419 (16)0.62670 (16)0.08358 (7)0.0522 (5)
H1A0.57660.64520.05560.063*
H1B0.55810.57310.10700.063*
C20.43057 (17)0.57385 (17)0.05637 (8)0.0564 (5)
C30.38412 (17)0.48729 (17)0.07519 (8)0.0595 (6)
C40.29391 (17)0.42817 (18)0.04703 (8)0.0588 (5)
H4A0.30620.35100.05180.071*
H4B0.29960.44320.00840.071*
C50.17836 (18)0.45239 (19)0.06442 (8)0.0628 (6)
C210.3961 (2)0.62822 (18)0.00476 (8)0.0652 (6)
H21A0.45900.64590.01650.098*
H21B0.35700.69350.01330.098*
H21C0.35000.58020.01560.098*
C310.4258 (2)0.43428 (18)0.12553 (9)0.0695 (6)
H31A0.37910.37500.13530.104*
H31B0.42740.48620.15470.104*
H31C0.49790.40750.11910.104*
C510.1061 (2)0.3674 (2)0.03927 (11)0.0833 (8)
H51A0.11390.36910.00040.125*
H51B0.03200.38180.04880.125*
H51C0.12660.29700.05260.125*
C520.1662 (2)0.4487 (3)0.12469 (10)0.0881 (8)
H52A0.09240.46480.13430.132*
H52B0.21360.50130.14100.132*
H52C0.18480.37750.13760.132*
C530.1450 (2)0.5620 (2)0.04480 (11)0.0825 (7)
H53A0.15280.56540.00590.124*
H53B0.19020.61620.06140.124*
H53C0.07070.57490.05450.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0476 (4)0.0476 (4)0.0418 (5)0.0000.0000.000
C10.0517 (11)0.0526 (11)0.0524 (10)0.0025 (9)0.0010 (8)0.0013 (8)
C20.0612 (12)0.0571 (12)0.0508 (11)0.0073 (10)0.0031 (9)0.0075 (9)
C30.0636 (13)0.0606 (13)0.0543 (11)0.0055 (10)0.0024 (9)0.0053 (9)
C40.0644 (13)0.0599 (12)0.0520 (10)0.0025 (10)0.0035 (9)0.0116 (9)
C50.0613 (13)0.0744 (15)0.0528 (11)0.0074 (11)0.0035 (10)0.0120 (10)
C210.0841 (16)0.0659 (14)0.0457 (10)0.0062 (12)0.0018 (10)0.0016 (9)
C310.0832 (15)0.0641 (13)0.0613 (12)0.0020 (12)0.0165 (11)0.0081 (11)
C510.0674 (15)0.0991 (19)0.0833 (16)0.0160 (14)0.0095 (12)0.0227 (14)
C520.0807 (17)0.122 (2)0.0618 (13)0.0206 (16)0.0092 (12)0.0160 (14)
C530.0744 (16)0.0910 (19)0.0821 (16)0.0154 (14)0.0009 (12)0.0141 (13)
Geometric parameters (Å, º) top
Si1—C1i1.8906 (19)C5—C511.538 (3)
Si1—C1ii1.8906 (19)C21—H21A0.9800
Si1—C11.8907 (19)C21—H21B0.9800
Si1—C1iii1.8907 (19)C21—H21C0.9800
C1—C21.514 (3)C31—H31A0.9800
C1—H1A0.9900C31—H31B0.9800
C1—H1B0.9900C31—H31C0.9800
C2—C31.323 (3)C51—H51A0.9800
C2—C211.526 (3)C51—H51B0.9800
C3—C311.520 (3)C51—H51C0.9800
C3—C41.529 (3)C52—H52A0.9800
C4—C51.548 (3)C52—H52B0.9800
C4—H4A0.9900C52—H52C0.9800
C4—H4B0.9900C53—H53A0.9800
C5—C521.518 (3)C53—H53B0.9800
C5—C531.522 (4)C53—H53C0.9800
C1i—Si1—C1ii107.53 (6)C2—C21—H21A109.5
C1i—Si1—C1113.43 (12)C2—C21—H21B109.5
C1ii—Si1—C1107.53 (6)H21A—C21—H21B109.5
C1i—Si1—C1iii107.53 (6)C2—C21—H21C109.5
C1ii—Si1—C1iii113.43 (12)H21A—C21—H21C109.5
C1—Si1—C1iii107.53 (6)H21B—C21—H21C109.5
C2—C1—Si1118.82 (14)C3—C31—H31A109.5
C2—C1—H1A107.6C3—C31—H31B109.5
Si1—C1—H1A107.6H31A—C31—H31B109.5
C2—C1—H1B107.6C3—C31—H31C109.5
Si1—C1—H1B107.6H31A—C31—H31C109.5
H1A—C1—H1B107.0H31B—C31—H31C109.5
C3—C2—C1122.99 (19)C5—C51—H51A109.5
C3—C2—C21123.0 (2)C5—C51—H51B109.5
C1—C2—C21113.95 (18)H51A—C51—H51B109.5
C2—C3—C31120.3 (2)C5—C51—H51C109.5
C2—C3—C4124.31 (19)H51A—C51—H51C109.5
C31—C3—C4115.20 (19)H51B—C51—H51C109.5
C3—C4—C5118.12 (16)C5—C52—H52A109.5
C3—C4—H4A107.8C5—C52—H52B109.5
C5—C4—H4A107.8H52A—C52—H52B109.5
C3—C4—H4B107.8C5—C52—H52C109.5
C5—C4—H4B107.8H52A—C52—H52C109.5
H4A—C4—H4B107.1H52B—C52—H52C109.5
C52—C5—C53108.7 (2)C5—C53—H53A109.5
C52—C5—C51109.1 (2)C5—C53—H53B109.5
C53—C5—C51109.6 (2)H53A—C53—H53B109.5
C52—C5—C4111.62 (19)C5—C53—H53C109.5
C53—C5—C4110.24 (19)H53A—C53—H53C109.5
C51—C5—C4107.60 (18)H53B—C53—H53C109.5
C1i—Si1—C1—C275.32 (15)C1—C2—C3—C4176.17 (18)
C1ii—Si1—C1—C2165.92 (18)C21—C2—C3—C42.6 (3)
C1iii—Si1—C1—C243.44 (12)C2—C3—C4—C596.9 (3)
Si1—C1—C2—C3101.5 (2)C31—C3—C4—C588.3 (2)
Si1—C1—C2—C2179.6 (2)C3—C4—C5—C5248.5 (3)
C1—C2—C3—C311.6 (3)C3—C4—C5—C5372.4 (2)
C21—C2—C3—C31177.2 (2)C3—C4—C5—C51168.2 (2)
Symmetry codes: (i) x+1, y+3/2, z; (ii) y+5/4, x+1/4, z+1/4; (iii) y1/4, x+5/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC40H76Si
Mr585.10
Crystal system, space groupTetragonal, I41/a
Temperature (K)173
a, c (Å)12.5780 (11), 25.053 (3)
V3)3963.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.28 × 0.16
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.963, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5117, 1742, 1301
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.136, 1.08
No. of reflections1742
No. of parameters95
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Beilstein Institute as part of the NanoBiC research cooperative (project eNet).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeyer-Wegner, F., Nadj, A., Bolte, M., Auner, N., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2011). Chem. Eur. J. 17, 4715–4719.  Web of Science CAS PubMed Google Scholar
First citationMeyer-Wegner, F., Wender, J. H., Falahati, K., Porsch, T., Sinke, T., Bolte, M., Wagner, M., Holthausen, M. C. & Lerner, H.-W. (2014). Chem. Eur. J. doi:10.1002/chem.201302544.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds