organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Fluoro-2-methyl-3-(3-methyl­phenyl­sulfon­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 20 March 2014; accepted 21 March 2014; online 26 March 2014)

In the title compound, C16H13FO3S, the dihedral angle between the mean planes of the benzo­furan ring system and the 3-methyl­phenyl ring is 80.96 (4)°. In the crystal, mol­ecules are linked via pairs of ππ inter­actions between furan and benzene rings, with centroid–centroid distances of 3.758 (1) and 3.771 (1) Å. A similar inter­action is found between furan rings, with a centroid–centroid distance of 3.661 (1) Å between neighbouring mol­ecules. The mol­ecules stack along the a-axis direction. In addition, C—H⋯O and C—H⋯π hydrogen bonds are observed between inversion-related dimers.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o258.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1909.], 2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o455.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13FO3S

  • Mr = 304.32

  • Triclinic, [P \overline 1]

  • a = 7.4406 (1) Å

  • b = 9.1291 (2) Å

  • c = 11.2073 (2) Å

  • α = 82.891 (1)°

  • β = 73.301 (1)°

  • γ = 77.613 (1)°

  • V = 710.62 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.37 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.746

  • 12591 measured reflections

  • 3263 independent reflections

  • 2868 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.07

  • 3263 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 3-methyl­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O2i 0.95 2.51 3.450 (2) 172
C6—H6⋯Cg3ii 0.95 2.76 3.556 (2) 142
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Experimental top

Synthesis and crystallization top

3-Chloro­per­oxy­benzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-fluoro-2-methyl-3-(3-methyl­phenyl­sulfanyl)-1-benzo­furan (245 mg, 0.9 mmol) in di­chloro­methane (30 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with a saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 71%, m.p. 375–376 K; Rf = 0.51 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diiso­propyl ether, at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Results and discussion top

As a part of our ongoing study of 5-fluoro-2-methyl-1-benzo­furan derivatives containing phenyl­sulfonyl (Choi et al., 2010a), 4-fluoro­phenyl­sulfonyl (Choi et al., 2010b) and 4-methyl­phenyl­sulfonyl (Choi et al., 2012) substituents in the 3-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzo­furan ring system is essentially planar, with a mean deviation of 0.006 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-methyl­phenyl ring is essentially planar, with a mean deviation of 0.003 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzo­furan ring system and the 3-methyl­phenyl ring is 80.96 (4)°.

In the crystal structure (Fig. 2), the molecules are linked via pairs of π···π inter­actions between the furan and benzene rings, and between the furan rings of neighbouring molecules. The molecules stack along the a-axis direction. The relevant centroid names for π···π stacking inter­actions are Cg1 for the furan ring (C1/C2/C7/O1/O8) and Cg2 for the benzene ring (C2–C7). The centroid-centroid separations of Cg1···Cg2ii [(ii): - x + 1, - y + 1, - z + 1], Cg1···Cg2iii and Cg1···Cg1iii [(iii): - x + 2,- y + 1, - z + 1] are 3.758 (1), 3.771 (1) and 3.661 (1) Å, respectively. The slippages of Cg1···Cg2ii, Cg1···Cg2iii and Cg1···Cg1iii are 1.227 (1), 1.266 (1) Å and 0.887 (1) Å, respectively. In the crystal packing (Fig. 2), inter­molecular C—H···O and C—H···π hydrogen bonds are observed between inversion-related dimers.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2010a,b, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H..O, C—H···π and π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 2, - y, - z + 1 ; (ii) - x + 1,- y + 1,- z + 1; (iii)- x + 2,- y + 1, - z + 1
5-Fluoro-2-methyl-3-(3-methylphenylsulfonyl)-1-benzofuran top
Crystal data top
C16H13FO3SZ = 2
Mr = 304.32F(000) = 316
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Melting point = 375–376 K
a = 7.4406 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1291 (2) ÅCell parameters from 5506 reflections
c = 11.2073 (2) Åθ = 2.9–27.5°
α = 82.891 (1)°µ = 0.25 mm1
β = 73.301 (1)°T = 173 K
γ = 77.613 (1)°Block, colourless
V = 710.62 (2) Å30.37 × 0.30 × 0.28 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3263 independent reflections
Radiation source: rotating anode2868 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.695, Tmax = 0.746l = 1414
12591 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.056P)2 + 0.1689P]
where P = (Fo2 + 2Fc2)/3
3263 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C16H13FO3Sγ = 77.613 (1)°
Mr = 304.32V = 710.62 (2) Å3
Triclinic, P1Z = 2
a = 7.4406 (1) ÅMo Kα radiation
b = 9.1291 (2) ŵ = 0.25 mm1
c = 11.2073 (2) ÅT = 173 K
α = 82.891 (1)°0.37 × 0.30 × 0.28 mm
β = 73.301 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3263 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2868 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.746Rint = 0.026
12591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
3263 reflectionsΔρmin = 0.41 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87603 (5)0.18979 (4)0.70443 (3)0.03242 (12)
F10.84714 (17)0.30138 (12)0.19261 (9)0.0556 (3)
O10.69505 (15)0.60973 (11)0.60126 (11)0.0391 (3)
O21.02286 (15)0.10305 (12)0.61294 (11)0.0395 (3)
O30.91181 (16)0.21354 (13)0.81879 (11)0.0432 (3)
C10.80671 (19)0.36430 (15)0.63233 (14)0.0310 (3)
C20.79931 (18)0.39130 (15)0.50423 (14)0.0295 (3)
C30.8409 (2)0.30421 (15)0.40267 (14)0.0338 (3)
H30.88850.19900.40760.041*
C40.8087 (2)0.38018 (17)0.29498 (15)0.0382 (3)
C50.7414 (2)0.53393 (18)0.28163 (16)0.0404 (4)
H50.72400.57920.20370.048*
C60.7004 (2)0.61985 (16)0.38156 (16)0.0389 (4)
H60.65450.72520.37560.047*
C70.7292 (2)0.54522 (15)0.49103 (15)0.0333 (3)
C80.7415 (2)0.49761 (17)0.68625 (15)0.0371 (3)
C90.7072 (3)0.5457 (2)0.81330 (18)0.0531 (5)
H9A0.56970.57840.84940.080*
H9B0.77290.62920.80910.080*
H9C0.75620.46130.86560.080*
C100.6704 (2)0.10864 (15)0.74169 (13)0.0300 (3)
C110.6516 (2)0.01107 (16)0.66260 (14)0.0354 (3)
H110.74960.01550.58880.042*
C120.4846 (2)0.04647 (17)0.69504 (16)0.0404 (4)
H120.46780.11380.64270.048*
C130.3430 (2)0.00721 (16)0.80208 (16)0.0373 (3)
H130.22980.04800.82200.045*
C140.3615 (2)0.09077 (15)0.88184 (14)0.0319 (3)
C150.5287 (2)0.14767 (16)0.85034 (13)0.0311 (3)
H150.54650.21370.90340.037*
C160.2048 (2)0.13571 (19)0.99669 (14)0.0414 (4)
H16A0.11150.22020.97460.062*
H16B0.25890.16581.05790.062*
H16C0.14150.05051.03270.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02348 (19)0.0338 (2)0.0379 (2)0.00384 (14)0.00764 (15)0.00143 (14)
F10.0765 (8)0.0477 (6)0.0407 (5)0.0112 (5)0.0125 (5)0.0050 (4)
O10.0349 (6)0.0270 (5)0.0518 (6)0.0042 (4)0.0050 (5)0.0076 (4)
O20.0261 (5)0.0355 (5)0.0482 (6)0.0016 (4)0.0033 (5)0.0008 (5)
O30.0350 (6)0.0538 (7)0.0446 (6)0.0116 (5)0.0163 (5)0.0018 (5)
C10.0224 (6)0.0298 (7)0.0390 (7)0.0061 (5)0.0045 (6)0.0022 (5)
C20.0202 (6)0.0248 (6)0.0407 (7)0.0046 (5)0.0047 (6)0.0014 (5)
C30.0300 (7)0.0251 (6)0.0421 (8)0.0036 (5)0.0050 (6)0.0009 (6)
C40.0370 (8)0.0356 (7)0.0403 (8)0.0089 (6)0.0062 (7)0.0025 (6)
C50.0354 (8)0.0374 (8)0.0460 (9)0.0085 (6)0.0112 (7)0.0091 (7)
C60.0309 (8)0.0252 (7)0.0568 (10)0.0034 (6)0.0106 (7)0.0058 (6)
C70.0230 (7)0.0253 (6)0.0478 (8)0.0043 (5)0.0034 (6)0.0036 (6)
C80.0279 (7)0.0357 (7)0.0464 (8)0.0093 (6)0.0042 (6)0.0065 (6)
C90.0540 (11)0.0512 (10)0.0535 (10)0.0120 (8)0.0058 (9)0.0193 (8)
C100.0257 (7)0.0277 (6)0.0346 (7)0.0026 (5)0.0089 (6)0.0033 (5)
C110.0317 (7)0.0290 (7)0.0405 (8)0.0006 (6)0.0056 (6)0.0045 (6)
C120.0374 (8)0.0281 (7)0.0556 (10)0.0032 (6)0.0113 (7)0.0110 (6)
C130.0303 (7)0.0280 (7)0.0519 (9)0.0065 (6)0.0093 (7)0.0009 (6)
C140.0282 (7)0.0289 (7)0.0354 (7)0.0022 (5)0.0090 (6)0.0059 (5)
C150.0295 (7)0.0311 (7)0.0319 (7)0.0031 (5)0.0103 (6)0.0008 (5)
C160.0314 (8)0.0525 (9)0.0358 (8)0.0078 (7)0.0045 (6)0.0025 (7)
Geometric parameters (Å, º) top
S1—O31.4319 (12)C8—C91.478 (2)
S1—O21.4346 (11)C9—H9A0.9800
S1—C11.7394 (14)C9—H9B0.9800
S1—C101.7626 (14)C9—H9C0.9800
F1—C41.3575 (18)C10—C111.385 (2)
O1—C81.368 (2)C10—C151.389 (2)
O1—C71.3686 (18)C11—C121.387 (2)
C1—C81.357 (2)C11—H110.9500
C1—C21.441 (2)C12—C131.377 (2)
C2—C31.393 (2)C12—H120.9500
C2—C71.3954 (19)C13—C141.393 (2)
C3—C41.372 (2)C13—H130.9500
C3—H30.9500C14—C151.386 (2)
C4—C51.390 (2)C14—C161.499 (2)
C5—C61.371 (2)C15—H150.9500
C5—H50.9500C16—H16A0.9800
C6—C71.377 (2)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
O3—S1—O2119.73 (7)C8—C9—H9A109.5
O3—S1—C1108.28 (7)C8—C9—H9B109.5
O2—S1—C1107.74 (7)H9A—C9—H9B109.5
O3—S1—C10108.10 (7)C8—C9—H9C109.5
O2—S1—C10108.25 (7)H9A—C9—H9C109.5
C1—S1—C10103.57 (6)H9B—C9—H9C109.5
C8—O1—C7107.14 (11)C11—C10—C15121.75 (13)
C8—C1—C2107.50 (13)C11—C10—S1120.15 (11)
C8—C1—S1127.01 (12)C15—C10—S1118.09 (11)
C2—C1—S1125.42 (11)C10—C11—C12117.64 (14)
C3—C2—C7119.40 (14)C10—C11—H11121.2
C3—C2—C1136.00 (13)C12—C11—H11121.2
C7—C2—C1104.60 (13)C13—C12—C11120.88 (14)
C4—C3—C2115.65 (13)C13—C12—H12119.6
C4—C3—H3122.2C11—C12—H12119.6
C2—C3—H3122.2C12—C13—C14121.61 (14)
F1—C4—C3118.38 (14)C12—C13—H13119.2
F1—C4—C5116.81 (15)C14—C13—H13119.2
C3—C4—C5124.80 (15)C15—C14—C13117.73 (14)
C6—C5—C4119.62 (15)C15—C14—C16120.97 (13)
C6—C5—H5120.2C13—C14—C16121.30 (14)
C4—C5—H5120.2C14—C15—C10120.38 (13)
C5—C6—C7116.43 (13)C14—C15—H15119.8
C5—C6—H6121.8C10—C15—H15119.8
C7—C6—H6121.8C14—C16—H16A109.5
O1—C7—C6125.55 (13)C14—C16—H16B109.5
O1—C7—C2110.36 (13)H16A—C16—H16B109.5
C6—C7—C2124.09 (14)C14—C16—H16C109.5
C1—C8—O1110.40 (14)H16A—C16—H16C109.5
C1—C8—C9134.70 (16)H16B—C16—H16C109.5
O1—C8—C9114.88 (14)
O3—S1—C1—C818.19 (15)C1—C2—C7—C6179.58 (13)
O2—S1—C1—C8149.03 (13)C2—C1—C8—O10.94 (16)
C10—S1—C1—C896.42 (14)S1—C1—C8—O1178.00 (10)
O3—S1—C1—C2165.25 (11)C2—C1—C8—C9177.59 (17)
O2—S1—C1—C234.41 (13)S1—C1—C8—C90.5 (3)
C10—S1—C1—C280.14 (13)C7—O1—C8—C10.89 (16)
C8—C1—C2—C3178.42 (16)C7—O1—C8—C9177.96 (13)
S1—C1—C2—C31.3 (2)O3—S1—C10—C11149.08 (12)
C8—C1—C2—C70.61 (15)O2—S1—C10—C1118.00 (14)
S1—C1—C2—C7177.72 (10)C1—S1—C10—C1196.18 (13)
C7—C2—C3—C40.2 (2)O3—S1—C10—C1532.04 (13)
C1—C2—C3—C4179.12 (15)O2—S1—C10—C15163.13 (11)
C2—C3—C4—F1179.80 (13)C1—S1—C10—C1582.69 (12)
C2—C3—C4—C50.8 (2)C15—C10—C11—C120.4 (2)
F1—C4—C5—C6179.85 (14)S1—C10—C11—C12178.41 (11)
C3—C4—C5—C60.8 (3)C10—C11—C12—C130.1 (2)
C4—C5—C6—C70.2 (2)C11—C12—C13—C140.2 (2)
C8—O1—C7—C6179.87 (14)C12—C13—C14—C150.3 (2)
C8—O1—C7—C20.49 (15)C12—C13—C14—C16178.60 (14)
C5—C6—C7—O1179.25 (14)C13—C14—C15—C100.8 (2)
C5—C6—C7—C21.2 (2)C16—C14—C15—C10178.06 (13)
C3—C2—C7—O1179.16 (12)C11—C10—C15—C140.9 (2)
C1—C2—C7—O10.07 (15)S1—C10—C15—C14177.93 (10)
C3—C2—C7—C61.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 3-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.952.513.450 (2)172
C6—H6···Cg3ii0.952.763.556 (2)142
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 3-methylphenyl ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···O2i0.952.513.450 (2)172.3
C6—H6···Cg3ii0.952.763.556 (2)141.8
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds