organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o398-o399

m-Xylylenediaminium dinitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, bLaboratoire des Matériaux Utiles, Institut National de Recherche et d'Analyse Physico-chimique, Pole Technologique de Sidi-Thabet, 2020 Tunis, Tunisia, and cCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: dhaouadihassouna@yahoo.fr

(Received 13 February 2014; accepted 28 February 2014; online 5 March 2014)

The asymmetric unit of the title salt, C8H14N22+·2NO3, contains two independent dications and four independent nitrate anions. The crystal structure consists of discrete nitrate ions, three of which stack in layers parallel to (001) at z = 0 and 0.5. These layers are connected via m-xylylenediaminium dications. The fourth anion is sandwiched by the two independent organic cations in the asymmetric unit. In the crystal, the ions are connected by a large number of bifurcated and non-bifurcated N—H⋯O(O) hydrogen bonds, forming sheets parallel to (100). These sheets are connected by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related nitrate salts, see: Gatfaoui et al. (2013[Gatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.], 2014[Gatfaoui, S., Rzaigui, M. & Marouani, H. (2014). Acta Cryst. E70, o198.]); Marouani et al. (2012[Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Eur. J. Chem. 9, 772-779.]); Kefi et al. (2013[Kefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.]). For the dichloride salt of the title cation, see: Cheng & Li (2008[Cheng, H. & Li, H. (2008). Acta Cryst. E64, o2060.]). For background to hydrogen bonding and aromatic ππ stacking inter­actions, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Janiak (2000[Janiak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14N22+·2NO3

  • Mr = 262.23

  • Monoclinic, P 21 /c

  • a = 21.4308 (7) Å

  • b = 5.7255 (2) Å

  • c = 20.4476 (5) Å

  • β = 108.502 (1)°

  • V = 2379.28 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 150 K

  • 0.47 × 0.24 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.979

  • 19108 measured reflections

  • 5457 independent reflections

  • 4429 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.04

  • 5457 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.91 2.06 2.9545 (16) 168
N1—H1B⋯O6 0.91 2.34 2.9872 (18) 128
N1—H1B⋯O9i 0.91 2.23 2.9554 (17) 137
N1—H1C⋯O2i 0.91 2.29 3.197 (2) 173
N1—H1C⋯O3i 0.91 2.42 3.0837 (16) 130
N2—H2B⋯O10ii 0.91 2.48 3.032 (2) 119
N2—H2B⋯O12ii 0.91 1.96 2.8391 (19) 162
N2—H2C⋯O10iii 0.91 1.92 2.829 (2) 173
N2—H2C⋯O11iii 0.91 2.51 3.074 (2) 120
N3—H3A⋯O5 0.91 2.42 3.0008 (17) 122
N3—H3A⋯O6 0.91 1.91 2.8155 (16) 175
N3—H3B⋯O4iv 0.91 1.93 2.7974 (17) 159
N3—H3B⋯O6iv 0.91 2.50 2.9910 (16) 114
N3—H3C⋯O3 0.91 2.03 2.8897 (19) 157
N4—H4A⋯O1 0.91 2.35 3.079 (2) 137
N4—H4A⋯O2 0.91 2.15 2.9967 (19) 155
N4—H4B⋯O8v 0.91 2.42 3.0673 (16) 128
N4—H4B⋯O9v 0.91 2.12 2.9368 (17) 150
N4—H4C⋯O7iii 0.91 2.52 3.2192 (18) 134
N4—H4C⋯O8iii 0.91 1.99 2.8810 (16) 165
C7—H7⋯O2i 0.95 2.53 3.309 (2) 140
C8—H8A⋯O12vi 0.99 2.46 3.373 (2) 153
C9—H9B⋯O4vii 0.99 2.31 3.267 (2) 163
C16—H16A⋯O4iii 0.99 2.33 3.267 (2) 157
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [x, -y-{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Experimental top

Synthesis and crystallization top

An aqueous solution containing 4 mmol of HNO3 in 10 ml of water was added to 2 mmol of m-xylylenedi­amine in 10 ml of water. The obtained solution was stirred for 1 h and then left to stand at room temperature. Colorless single crystals of the title compound were obtained after one week.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms bonded to C and N atoms were treated as riding with C—H = 0.99 Å (methyl­ene) or 0.95 Å (aromatic CH), N—H = 0.91 Å (NH3), and with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Results and discussion top

As a part of our study of crystal packing containing the nitrate anion (Marouani et al., 2012; Gatfaoui et al., 2013, 2014; Kefi et al., 2013), we report here the preparation and the structural investigation of a new organic nitrate, (C8H14N2)·(NO3)2 (I). The asymmetric unit of (I) is composed of two m-xylylenediaminium dications and four nitrate anions (Fig. 1). The structure of the compound consists of discrete nitrate ions stacked in layers parallel to the (001) plane at z = 0 and 1/2, for N6/O4/O5/O6, N7/O7/O8/O9, N8/O10/O11/O12 and at z = 0.25 and 0.75 for N5/O1/O2/O3, separated by organic cations. Each organic entity is connected to different nitrate layers at z = 0 and 1/2. At the same time, the N5O3 nitrate groups ensure the cohesion between the organic groups (Fig. 2). The structural cohesion is established by a three-dimensional network of N—H···O and weak C—H···O hydrogen bonds.

Inter­atomic bond lengths and angles of the nitrate anions spread respectively within the ranges 1.2314 (19)–1.2719 (17) Å and 118.69 (15)–121.48 (13)°. These geometrical features have also been noticed in other related crystal structures (Gatfaoui et al., 2013, 2014).

In this crystal arrangement two independent m-xylylediaminium cations are present. Both ammonium groups in each cation adopt a cis conformation with respect to the benzene ring. The trans conformation has been observed in C8H14N22+·2Cl- (Cheng & Li, 2008). Thus, the cation conformation is modified when substituting nitrate anions by chlorides. Examination of the organic cations shows that the bond distances and angles show no significant differences from those obtained in other compounds involving the same organic groups (Cheng & Li, 2008). The aromatic rings are planar with an average deviation of 0.0022 Å and form a dihedral angle of 3.85° in the asymmetric unit. The inter-planar distance between nearby benzene rings in the crystal structure is in the vicinity of 4.59 Å, which is much longer than 3.80 Å, value required for the formation of ππ inter­actions (Janiak, 2000).

The established weak H-bonds (Brown, 1976; Blessing, 1986) of types N—H···O and C—H···O involve oxygen atoms of the nitrate anions as acceptors, and the protonated nitro­gen atoms and carbon atoms of m-xylylenediaminium as donors.

Related literature top

For related nitrate salts, see: Gatfaoui et al. (2013, 2014); Marouani et al. (2012); Kefi et al. (2013). For the dichloride salt of the title cation, see: Cheng & Li (2008). For background to hydrogen bonding and aromatic ππ stacking interactions, see: Brown (1976); Blessing (1986); Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted.
m-Xylylenediaminium dinitrate top
Crystal data top
C8H14N22+·2NO3F(000) = 1104
Mr = 262.23Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6173 reflections
a = 21.4308 (7) Åθ = 3.0–27.3°
b = 5.7255 (2) ŵ = 0.13 mm1
c = 20.4476 (5) ÅT = 150 K
β = 108.502 (1)°Prism, colourless
V = 2379.28 (13) Å30.47 × 0.24 × 0.17 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
4429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2622
Tmin = 0.889, Tmax = 0.979k = 67
19108 measured reflectionsl = 2727
5457 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0626P)2 + 1.0374P]
where P = (Fo2 + 2Fc2)/3
5457 reflections(Δ/σ)max = 0.003
329 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.28 e Å3
0 constraints
Crystal data top
C8H14N22+·2NO3V = 2379.28 (13) Å3
Mr = 262.23Z = 8
Monoclinic, P21/cMo Kα radiation
a = 21.4308 (7) ŵ = 0.13 mm1
b = 5.7255 (2) ÅT = 150 K
c = 20.4476 (5) Å0.47 × 0.24 × 0.17 mm
β = 108.502 (1)°
Data collection top
Bruker APEXII
diffractometer
5457 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
4429 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.979Rint = 0.036
19108 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
5457 reflectionsΔρmin = 0.28 e Å3
329 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.26601 (6)0.0292 (2)0.14220 (7)0.0272 (3)
H1A0.25540.11990.14980.041*
H1B0.23740.08180.10180.041*
H1C0.26350.12230.17740.041*
C10.33450 (8)0.0351 (3)0.13828 (9)0.0329 (4)
H1D0.34900.19910.13760.040*
H1E0.33560.04160.09530.040*
C20.38017 (7)0.0900 (3)0.19976 (8)0.0221 (3)
C30.40757 (7)0.3050 (3)0.19264 (8)0.0236 (3)
H30.39980.37090.14810.028*
C40.44632 (7)0.4234 (3)0.25056 (9)0.0229 (3)
H40.46560.56880.24530.027*
C50.45719 (7)0.3312 (3)0.31598 (8)0.0215 (3)
H50.48270.41530.35550.026*
C60.43055 (7)0.1149 (3)0.32352 (8)0.0198 (3)
C70.39272 (7)0.0044 (3)0.26535 (8)0.0208 (3)
H70.37510.15300.27040.025*
C80.43934 (8)0.0113 (3)0.39380 (9)0.0278 (4)
H8A0.47580.09190.42880.033*
H8B0.45080.15610.39380.033*
N20.37725 (7)0.0370 (3)0.41183 (7)0.0270 (3)
H2A0.34260.01370.37600.041*
H2B0.38020.04950.45000.041*
H2C0.37130.18990.42040.041*
N30.12089 (6)0.4473 (2)0.08345 (7)0.0215 (3)
H3A0.12310.29230.07460.032*
H3B0.11620.53040.04420.032*
H3C0.15850.49200.11660.032*
C90.06349 (8)0.4918 (3)0.10789 (9)0.0267 (4)
H9A0.05520.66200.10760.032*
H9B0.02390.41690.07590.032*
C100.07523 (7)0.3980 (3)0.17964 (8)0.0195 (3)
C110.04955 (7)0.1832 (3)0.19040 (8)0.0205 (3)
H110.02560.09060.15210.025*
C120.05893 (7)0.1046 (3)0.25702 (9)0.0234 (3)
H120.04100.04130.26420.028*
C130.09441 (8)0.2383 (3)0.31318 (8)0.0248 (3)
H130.10050.18380.35870.030*
C140.12113 (7)0.4520 (3)0.30315 (8)0.0242 (3)
C150.11106 (7)0.5290 (3)0.23635 (8)0.0216 (3)
H150.12910.67470.22910.026*
C160.15782 (8)0.6046 (4)0.36295 (10)0.0368 (4)
H16A0.13480.60210.39790.044*
H16B0.15750.76750.34660.044*
N40.22723 (6)0.5286 (2)0.39575 (7)0.0227 (3)
H4A0.24920.53720.36440.034*
H4B0.24700.62340.43220.034*
H4C0.22790.37870.41080.034*
N50.26305 (6)0.4703 (3)0.24641 (7)0.0287 (3)
O10.26758 (7)0.2898 (3)0.28036 (7)0.0436 (4)
O20.26855 (6)0.6677 (3)0.27431 (7)0.0415 (3)
O30.25175 (6)0.4589 (2)0.18215 (6)0.0350 (3)
N60.08581 (6)0.0558 (2)0.00143 (7)0.0236 (3)
O40.07924 (6)0.2525 (2)0.03009 (6)0.0283 (3)
O50.05713 (7)0.1176 (2)0.03262 (6)0.0391 (3)
O60.12308 (5)0.03715 (19)0.06066 (6)0.0246 (3)
N70.23961 (6)0.4784 (2)0.00724 (7)0.0219 (3)
O70.22667 (7)0.3051 (2)0.02227 (7)0.0402 (3)
O80.24994 (6)0.4545 (2)0.06438 (6)0.0290 (3)
O90.24162 (6)0.6782 (2)0.01751 (6)0.0346 (3)
N80.40614 (7)0.0407 (3)0.00192 (7)0.0279 (3)
O100.37062 (6)0.0189 (2)0.06046 (6)0.0332 (3)
O110.43303 (8)0.1319 (3)0.03493 (7)0.0481 (4)
O120.41292 (6)0.2396 (2)0.02899 (6)0.0347 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0203 (6)0.0296 (8)0.0274 (7)0.0020 (5)0.0012 (5)0.0040 (6)
C10.0228 (8)0.0458 (11)0.0301 (9)0.0040 (7)0.0082 (7)0.0153 (8)
C20.0159 (7)0.0263 (8)0.0237 (8)0.0021 (6)0.0056 (6)0.0068 (6)
C30.0215 (7)0.0271 (8)0.0233 (8)0.0056 (6)0.0086 (6)0.0042 (7)
C40.0222 (7)0.0159 (7)0.0332 (9)0.0007 (6)0.0126 (6)0.0017 (6)
C50.0173 (7)0.0213 (8)0.0257 (8)0.0015 (6)0.0063 (6)0.0059 (6)
C60.0152 (6)0.0218 (7)0.0226 (7)0.0026 (6)0.0062 (5)0.0019 (6)
C70.0167 (7)0.0163 (7)0.0307 (8)0.0012 (5)0.0093 (6)0.0023 (6)
C80.0214 (7)0.0342 (9)0.0277 (8)0.0031 (7)0.0076 (6)0.0080 (7)
N20.0245 (7)0.0318 (8)0.0266 (7)0.0001 (6)0.0106 (6)0.0073 (6)
N30.0225 (6)0.0219 (7)0.0205 (6)0.0001 (5)0.0073 (5)0.0005 (5)
C90.0220 (7)0.0303 (9)0.0290 (9)0.0045 (6)0.0100 (6)0.0094 (7)
C100.0167 (7)0.0191 (7)0.0240 (8)0.0035 (5)0.0083 (6)0.0023 (6)
C110.0177 (7)0.0185 (7)0.0247 (8)0.0015 (5)0.0061 (6)0.0030 (6)
C120.0213 (7)0.0187 (7)0.0328 (9)0.0016 (6)0.0121 (6)0.0045 (7)
C130.0224 (7)0.0298 (8)0.0232 (8)0.0072 (6)0.0089 (6)0.0041 (7)
C140.0167 (7)0.0282 (8)0.0266 (8)0.0044 (6)0.0053 (6)0.0089 (7)
C150.0169 (7)0.0161 (7)0.0329 (9)0.0000 (5)0.0095 (6)0.0016 (6)
C160.0233 (8)0.0447 (11)0.0379 (10)0.0055 (8)0.0032 (7)0.0207 (9)
N40.0243 (6)0.0205 (6)0.0205 (7)0.0010 (5)0.0033 (5)0.0015 (5)
N50.0175 (6)0.0420 (9)0.0270 (7)0.0025 (6)0.0077 (5)0.0016 (7)
O10.0410 (8)0.0502 (9)0.0449 (8)0.0155 (6)0.0210 (6)0.0169 (7)
O20.0359 (7)0.0463 (8)0.0471 (8)0.0113 (6)0.0200 (6)0.0128 (7)
O30.0266 (6)0.0554 (8)0.0228 (6)0.0075 (6)0.0077 (5)0.0010 (6)
N60.0241 (7)0.0254 (7)0.0209 (7)0.0023 (5)0.0067 (5)0.0019 (6)
O40.0364 (6)0.0253 (6)0.0220 (6)0.0069 (5)0.0073 (5)0.0029 (5)
O50.0484 (8)0.0304 (7)0.0296 (7)0.0083 (6)0.0002 (6)0.0073 (6)
O60.0269 (6)0.0243 (6)0.0186 (5)0.0021 (4)0.0013 (4)0.0001 (5)
N70.0217 (6)0.0213 (7)0.0212 (7)0.0024 (5)0.0046 (5)0.0005 (5)
O70.0586 (9)0.0290 (7)0.0412 (7)0.0008 (6)0.0275 (7)0.0099 (6)
O80.0389 (7)0.0267 (6)0.0250 (6)0.0006 (5)0.0152 (5)0.0014 (5)
O90.0478 (8)0.0246 (6)0.0266 (6)0.0043 (5)0.0051 (5)0.0072 (5)
N80.0237 (7)0.0338 (8)0.0251 (7)0.0016 (6)0.0063 (6)0.0087 (6)
O100.0302 (6)0.0347 (7)0.0261 (6)0.0003 (5)0.0034 (5)0.0037 (5)
O110.0600 (9)0.0416 (8)0.0322 (7)0.0123 (7)0.0005 (6)0.0127 (6)
O120.0406 (7)0.0324 (7)0.0282 (6)0.0058 (5)0.0070 (5)0.0025 (5)
Geometric parameters (Å, º) top
N1—C11.495 (2)C9—H9B0.9900
N1—H1A0.9100C10—C151.390 (2)
N1—H1B0.9100C10—C111.393 (2)
N1—H1C0.9100C11—C121.388 (2)
C1—C21.507 (2)C11—H110.9500
C1—H1D0.9900C12—C131.389 (2)
C1—H1E0.9900C12—H120.9500
C2—C71.391 (2)C13—C141.393 (2)
C2—C31.392 (2)C13—H130.9500
C3—C41.388 (2)C14—C151.386 (2)
C3—H30.9500C14—C161.506 (2)
C4—C51.387 (2)C15—H150.9500
C4—H40.9500C16—N41.489 (2)
C5—C61.393 (2)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C6—C71.388 (2)N4—H4A0.9100
C6—C81.510 (2)N4—H4B0.9100
C7—H70.9500N4—H4C0.9100
C8—N21.496 (2)N5—O11.2314 (19)
C8—H8A0.9900N5—O21.255 (2)
C8—H8B0.9900N5—O31.2599 (18)
N2—H2A0.9100N6—O41.2566 (17)
N2—H2B0.9100N6—O51.2334 (18)
N2—H2C0.9100N6—O61.2719 (17)
N3—C91.489 (2)N7—O71.2379 (18)
N3—H3A0.9100N7—O81.2637 (17)
N3—H3B0.9100N7—O91.2459 (17)
N3—H3C0.9100N8—O101.2671 (18)
C9—C101.507 (2)N8—O111.2321 (19)
C9—H9A0.9900N8—O121.2542 (19)
C1—N1—H1A109.5N3—C9—C10111.42 (12)
C1—N1—H1B109.5N3—C9—H9A109.3
H1A—N1—H1B109.5C10—C9—H9A109.3
C1—N1—H1C109.5N3—C9—H9B109.3
H1A—N1—H1C109.5C10—C9—H9B109.3
H1B—N1—H1C109.5H9A—C9—H9B108.0
N1—C1—C2109.48 (13)C15—C10—C11119.09 (14)
N1—C1—H1D109.8C15—C10—C9119.82 (14)
C2—C1—H1D109.8C11—C10—C9121.08 (14)
N1—C1—H1E109.8C12—C11—C10120.02 (14)
C2—C1—H1E109.8C12—C11—H11120.0
H1D—C1—H1E108.2C10—C11—H11120.0
C7—C2—C3119.06 (14)C11—C12—C13120.23 (15)
C7—C2—C1119.72 (15)C11—C12—H12119.9
C3—C2—C1121.14 (15)C13—C12—H12119.9
C4—C3—C2120.05 (14)C12—C13—C14120.34 (15)
C4—C3—H3120.0C12—C13—H13119.8
C2—C3—H3120.0C14—C13—H13119.8
C5—C4—C3120.59 (15)C15—C14—C13118.81 (14)
C5—C4—H4119.7C15—C14—C16119.58 (16)
C3—C4—H4119.7C13—C14—C16121.55 (16)
C4—C5—C6119.72 (14)C14—C15—C10121.51 (14)
C4—C5—H5120.1C14—C15—H15119.2
C6—C5—H5120.1C10—C15—H15119.2
C7—C6—C5119.42 (14)N4—C16—C14112.69 (13)
C7—C6—C8119.01 (14)N4—C16—H16A109.1
C5—C6—C8121.52 (14)C14—C16—H16A109.1
C6—C7—C2121.13 (14)N4—C16—H16B109.1
C6—C7—H7119.4C14—C16—H16B109.1
C2—C7—H7119.4H16A—C16—H16B107.8
N2—C8—C6110.10 (12)C16—N4—H4A109.5
N2—C8—H8A109.6C16—N4—H4B109.5
C6—C8—H8A109.6H4A—N4—H4B109.5
N2—C8—H8B109.6C16—N4—H4C109.5
C6—C8—H8B109.6H4A—N4—H4C109.5
H8A—C8—H8B108.2H4B—N4—H4C109.5
C8—N2—H2A109.5O1—N5—O2121.35 (15)
C8—N2—H2B109.5O1—N5—O3119.95 (15)
H2A—N2—H2B109.5O2—N5—O3118.69 (15)
C8—N2—H2C109.5O4—N6—O6118.86 (13)
H2A—N2—H2C109.5O5—N6—O4121.10 (13)
H2B—N2—H2C109.5O5—N6—O6120.04 (13)
C9—N3—H3A109.5O7—N7—O9121.48 (13)
C9—N3—H3B109.5O7—N7—O8119.70 (13)
H3A—N3—H3B109.5O9—N7—O8118.80 (13)
C9—N3—H3C109.5O11—N8—O12121.20 (14)
H3A—N3—H3C109.5O11—N8—O10119.97 (15)
H3B—N3—H3C109.5O12—N8—O10118.83 (14)
N1—C1—C2—C767.34 (19)N3—C9—C10—C1582.48 (18)
N1—C1—C2—C3109.35 (17)N3—C9—C10—C1198.88 (16)
C7—C2—C3—C40.6 (2)C15—C10—C11—C121.1 (2)
C1—C2—C3—C4176.12 (14)C9—C10—C11—C12177.56 (14)
C2—C3—C4—C51.2 (2)C10—C11—C12—C130.6 (2)
C3—C4—C5—C61.8 (2)C11—C12—C13—C140.3 (2)
C4—C5—C6—C70.8 (2)C12—C13—C14—C150.7 (2)
C4—C5—C6—C8178.08 (14)C12—C13—C14—C16177.88 (14)
C5—C6—C7—C21.0 (2)C13—C14—C15—C100.1 (2)
C8—C6—C7—C2176.39 (13)C16—C14—C15—C10177.42 (14)
C3—C2—C7—C61.7 (2)C11—C10—C15—C140.7 (2)
C1—C2—C7—C6175.10 (14)C9—C10—C15—C14177.94 (13)
C7—C6—C8—N273.72 (19)C15—C14—C16—N4102.05 (19)
C5—C6—C8—N2103.59 (16)C13—C14—C16—N480.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.912.062.9545 (16)168
N1—H1B···O60.912.342.9872 (18)128
N1—H1B···O9i0.912.232.9554 (17)137
N1—H1C···O2i0.912.293.197 (2)173
N1—H1C···O3i0.912.423.0837 (16)130
N2—H2B···O10ii0.912.483.032 (2)119
N2—H2B···O12ii0.911.962.8391 (19)162
N2—H2C···O10iii0.911.922.829 (2)173
N2—H2C···O11iii0.912.513.074 (2)120
N3—H3A···O50.912.423.0008 (17)122
N3—H3A···O60.911.912.8155 (16)175
N3—H3B···O4iv0.911.932.7974 (17)159
N3—H3B···O6iv0.912.502.9910 (16)114
N3—H3C···O30.912.032.8897 (19)157
N4—H4A···O10.912.353.079 (2)137
N4—H4A···O20.912.152.9967 (19)155
N4—H4B···O8v0.912.423.0673 (16)128
N4—H4B···O9v0.912.122.9368 (17)150
N4—H4C···O7iii0.912.523.2192 (18)134
N4—H4C···O8iii0.911.992.8810 (16)165
C7—H7···O2i0.952.533.309 (2)140
C8—H8A···O12vi0.992.463.373 (2)153
C9—H9B···O4vii0.992.313.267 (2)163
C16—H16A···O4iii0.992.333.267 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y3/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.912.062.9545 (16)168
N1—H1B···O60.912.342.9872 (18)128
N1—H1B···O9i0.912.232.9554 (17)137
N1—H1C···O2i0.912.293.197 (2)173
N1—H1C···O3i0.912.423.0837 (16)130
N2—H2B···O10ii0.912.483.032 (2)119
N2—H2B···O12ii0.911.962.8391 (19)162
N2—H2C···O10iii0.911.922.829 (2)173
N2—H2C···O11iii0.912.513.074 (2)120
N3—H3A···O50.912.423.0008 (17)122
N3—H3A···O60.911.912.8155 (16)175
N3—H3B···O4iv0.911.932.7974 (17)159
N3—H3B···O6iv0.912.502.9910 (16)114
N3—H3C···O30.912.032.8897 (19)157
N4—H4A···O10.912.353.079 (2)137
N4—H4A···O20.912.152.9967 (19)155
N4—H4B···O8v0.912.423.0673 (16)128
N4—H4B···O9v0.912.122.9368 (17)150
N4—H4C···O7iii0.912.523.2192 (18)134
N4—H4C···O8iii0.911.992.8810 (16)165
C7—H7···O2i0.952.533.309 (2)140
C8—H8A···O12vi0.992.463.373 (2)153
C9—H9B···O4vii0.992.313.267 (2)163
C16—H16A···O4iii0.992.333.267 (2)157
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y1, z; (v) x, y3/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of High Education Scientific Research.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, H. & Li, H. (2008). Acta Cryst. E64, o2060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.  CSD CrossRef IUCr Journals Google Scholar
First citationGatfaoui, S., Rzaigui, M. & Marouani, H. (2014). Acta Cryst. E70, o198.  CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, J. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.  CSD CrossRef IUCr Journals Google Scholar
First citationMarouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). Eur. J. Chem. 9, 772–779.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o398-o399
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds