organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Fluoro­benz­yl)-2-(pyridin-2-yl)-1H-benzimidazole

aDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakır, Turkey, bDepartment of Physics, Institute of Sciences, Dicle University, 21280, Diyarbakır, Turkey, and cDepartment of Chemistry, Faculty of Science & Art, Harran University, 63300, Şanlıurfa, Turkey
*Correspondence e-mail: omer.celik@dicle.edu.tr

(Received 27 February 2014; accepted 17 March 2014; online 26 March 2014)

In the title compound, C19H14FN3, the dihedral angles between the benzimidazole unit (r.m.s. deviation= 0.017 Å) and the pyridine and benzene rings are 24.46 (4) and 81.87 (3)°, respectively. In the crystal, mol­ecules are stacked along the a-axis direction by C—H⋯π inter­actions.

Related literature

For the use of 2-(2-pyrid­yl)benzimidazole in coordination chemistry, see: Boca et al. (1997[Boca, R., Baran, P., Dlhan, L., Sima, J., Wiesinger, G., Renz, F., El-Ayaan, U. & Linert, W. (1997). Polyhedron, 16, 47-55.]); De Castro et al. (1991[De Castro, B., Freire, C., Domingues, D. & Gomes, J. (1991). Polyhedron, 10, 2541-2549.]); Khalil et al. (2001[Khalil, M. M. H., Ali, S. A. & Ramadan, R. M. (2001). Spectrochim. Acta Part A, 57, 1017-1024.]); Maekawa et al. (1994[Maekawa, M., Munakata, M., Kuroda-Sowa, T. & Hachiya, K. (1994). Inorg. Chim. Acta, 227, 137-143.]). For deprotonation of the NH group in 2-(2-pyrid­yl)benzimidazole, see: Chiswell et al. (1964[Chiswell, B., Lions, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110-114.]); Harkins et al. (1956[Harkins, T. R., Walter, J. L., Harris, O. E. & Freiser, H. (1956). J. Am. Chem. Soc. 78, 260-264.]); Haga (1983[Haga, M. (1983). Inorg. Chim. Acta, 75, 29-35.]). For functionalization of 2-(2-pyrid­yl)benzimidazole, see: Ali et al. (1998[Ali, M. M., Sato, H., Haga, M., Tanaka, K., Yoshimura, A. & Ohno, T. (1998). Inorg. Chem. 37, 6176-6180.]); Hossain et al. (2001[Hossain, M. D., Haga, M., Gholamkhass, B., Nozaki, K., Tsushima, M., Ikeda, N. & Ohno, T. (2001). Collect Czech. Chem. Commun, 66, 307-337.]); Sahin et al. (2010[Sahin, C., Ulusoy, M., Zafer, C., Ozsoy, C., Varlikli, C., Dittrich, T., Cetinkaya, B. & Icli, S. (2010). Dyes Pigm. 84, 88-94.]). For related structures, see: Çelik et al. (2007[Çelik, Ö., Ulusoy, M., Taş, E. & Íde, S. (2007). Anal. Sci. 23, 185-186.], 2009[Çelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14FN3

  • Mr = 303.33

  • Monoclinic, P 21 /c

  • a = 4.7363 (5) Å

  • b = 15.4102 (17) Å

  • c = 20.953 (2) Å

  • β = 95.363 (8)°

  • V = 1522.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.984, Tmax = 0.984

  • 13325 measured reflections

  • 3133 independent reflections

  • 2355 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 0.93

  • 3133 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACgi 0.97 2.94 3.486 (2) 117
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The N—N type ligand system, 2-(2-pyridyl)benzimidazole has a venerable history in coordination chemistry (Harkins et al., 1956; Chiswell et al., 1964; De Castro et al., 1991; Maekawa et al., 1994; Khalil et al., 2001; Boca et al., 1997). Many of the reported complexes of 2-(2-pyridyl) benzimidazole have been of interest because of the possibility of deprotonation of the NH group of the imidazole unit, converting the ligand from neutral to anionic form with different properties (Harkins et al., 1956; Chiswell et al., 1964; Haga, 1983). The functionalization of 2-(2-pyridyl)benzimidazole at the externally directed NH position allows simple incorporation of 2-(2-pyridyl)benzimidazole units (Sahin et al., 2010; Hossain et al., 2001; Ali et al., 1998).

The molecular structure of title compound is shown in Figure 1. In the compound, the bond lengths of F—C17, N3—C12 and C1—C2 are 1.3671 (18) Å, 1.336 (2) Å and 1.373 (2) Å, respectively. C18—C17—F and N3—C8—C7 bond angles are 118.58 (13)° and 117.91 (13)°. F—C17—C18—C19 and C12—N3—C8—C7 torsion angles are -178.74 (15)° and -178.95 (14)°. Similar results are observed in the study of (Çelik et al., 2009; Çelik et al., 2007).

In the title compound, (Fig. 1), four planes were named as P1(N1/C5/C6/N2/C7), P2(N3/C8/C9/C10/C11/C12), P3(C1/C2/C3/C4/C5/C6), P4(C14/C15/C16/C17/C18/C19) and P5(N1/C5/C4/C3/C2/C1/C6/N2/C7). The five- and six-membered rings (N1/C5/C6/N2/C7) and (C1—C6) of the benzimidazole groups are almost co-planar with maximum deviations of -0.011Å for C5 and -0.017 Å for C6, respectively. Moreover the maximum deviations from P2 plane of C8, P4 plane of C17 and P5 plane of N2 are -0.007 Å, -0.003 Å and -0.034 Å, respectively.

In the compound, dihedral angles between P1—P2, P1—P3, P1—P4, P1—P5, P2—P3, P2—P4, P2—P5, P3—P4, P3—P5 and P4—P5 are 23.37 (5)°, 2.29 (5)°, 81.87 (3)°, 1.18 (4)°, 25.51 (5)°, and 73.68 (4)°, 24.46 (4)°, 81.94 (4)°, 1.11 (4)° and 81.87 (3)° respectively.

There is intermolecular C—H···Cg(π) type hydrogen bonds interactions in the crystal structure with the contact distances of 2.9345 Å between acceptor and donor atom and π-ring system defined as C1–C6 ring (Table 1.) and the molecules are stacked along a-axis with these C—H···π type hydrogen-bond interactions (Figure 2.).

Related literature top

For the use of 2-(2-pyridyl)benzimidazole in coordination chemistry, see: Boca et al. (1997); De Castro et al. (1991); Khalil et al. (2001); Maekawa et al. (1994). For deprotonation of the NH group in 2-(2-pyridyl)benzimidazole, see: Chiswell et al. (1964); Harkins et al. (1956); Haga (1983). For functionalization of 2-(2-pyridyl)benzimidazole, see: Ali et al. (1998); Hossain et al. (2001); Sahin et al. (2010). For related structures, see: Çelik et al. (2007, 2009).

Experimental top

A solution of the 2-pyridiylbenzimidazole (1.95 g, 10.0 mmol) in toluene (10 ml) and KOH was added (616 mg, 11.0 mmol) and stirred at 60 °C for 4 h. To this reaction mixture 4-florobenzyl bromide (1.89 g, 10.0 mmol) was added, then heated at this temperature for 24 h. Then volatiles were evaporated in vacuum to dryness. The residue was dissolved in CH2Cl2 and filtered via cannula on celite. The desired product was obtained after concentration of CH2Cl2 (15 ml) and then precipitating with hexane (30 ml). The off-white solid obtained in 80% yield. M.p. 94 °C. 1H NMR (400 MHz, CDCl3, δ p.p.m.): 6.13 (s, 2H, N—CH2); 6.90–6.94 (t, J = 8.0 Hz, 2H, Ar—CH); 7.15–7.18 (m, 2H, Ar—CH); 7.26–7.32 (m, 4H, Ar—CH); 7.81–7.86 (m, 2H, Ar—CH); 8.44 (d, J = 8.0 Hz, 1H, Ar—CH); 8.62 (d, J = 4.0 Hz, 1H, Ar—CH). 13C NMR (100.56 MHz, CDCl3, δ p.p.m.): 110.2; 115.1; 120.1; 122.2; 123.8; 124.3; 128.0; 142.2; 148.5; 150.1; 161.4. 19F NMR (376.266 MHz, CDCl3, δ p.p.m.): - 115.59.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. ORTEP III diagram of the compound, showing the molecular numbering scheme. Displacement ellipsoids are drawn at 50% probability for all atoms except H.
[Figure 2] Fig. 2. The stacking of the title compound along a-axis with C—H···π type hydrogen-bond interactions.
1-(4-Fluorobenzyl)-2-(pyridin-2-yl)-1H-benzimidazole top
Crystal data top
C19H14FN3F(000) = 632
Mr = 303.33Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 0 reflections
a = 4.7363 (5) Åθ = 2.4–26.7°
b = 15.4102 (17) ŵ = 0.09 mm1
c = 20.953 (2) ÅT = 296 K
β = 95.363 (8)°Stick, orange
V = 1522.6 (3) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3133 independent reflections
Radiation source: sealed tube2355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.7°, θmin = 2.4°
Absorption correction: multi-scan
(Blessing, 1995)
h = 55
Tmin = 0.984, Tmax = 0.984k = 1918
13325 measured reflectionsl = 2622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.103H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.1779P]
where P = (Fo2 + 2Fc2)/3
3133 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C19H14FN3V = 1522.6 (3) Å3
Mr = 303.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.7363 (5) ŵ = 0.09 mm1
b = 15.4102 (17) ÅT = 296 K
c = 20.953 (2) Å0.2 × 0.2 × 0.2 mm
β = 95.363 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
3133 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2355 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.984Rint = 0.027
13325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.103H-atom parameters constrained
S = 0.93Δρmax = 0.14 e Å3
3133 reflectionsΔρmin = 0.17 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3612 (2)0.95634 (7)0.32306 (5)0.0598 (3)
N20.1288 (2)1.03423 (7)0.24400 (6)0.0669 (3)
C140.3980 (3)0.81860 (8)0.38380 (6)0.0574 (3)
C60.0419 (3)1.05982 (8)0.30241 (7)0.0629 (3)
C50.1882 (3)1.01343 (8)0.35209 (7)0.0607 (3)
C130.5514 (3)0.89547 (9)0.35911 (7)0.0661 (4)
H13A0.65120.92560.39510.079*
H13B0.69150.87500.33170.079*
C70.3181 (3)0.97274 (8)0.25818 (7)0.0602 (3)
C170.1266 (4)0.67652 (9)0.42898 (8)0.0785 (4)
F0.0115 (3)0.60689 (7)0.45190 (6)0.1195 (4)
C10.1590 (3)1.12201 (9)0.31618 (9)0.0762 (4)
H10.26381.15210.28360.091*
C40.1534 (3)1.02938 (10)0.41615 (8)0.0719 (4)
H40.25550.99890.44900.086*
C150.2114 (3)0.76997 (10)0.34407 (7)0.0736 (4)
H150.17660.78560.30120.088*
N30.5846 (3)0.85244 (9)0.22169 (7)0.0831 (4)
C190.4444 (3)0.79317 (11)0.44710 (7)0.0770 (4)
H190.56960.82480.47490.092*
C160.0746 (4)0.69844 (11)0.36643 (8)0.0856 (5)
H160.05060.66610.33910.103*
C80.4713 (3)0.93024 (9)0.20851 (7)0.0635 (4)
C110.7609 (4)0.85310 (15)0.11857 (10)0.0983 (6)
H110.86320.82510.08890.118*
C20.1960 (4)1.13709 (10)0.37944 (10)0.0835 (5)
H20.32861.17810.38970.100*
C180.3089 (4)0.72168 (11)0.47001 (8)0.0865 (5)
H180.34230.70500.51270.104*
C30.0396 (4)1.09246 (11)0.42858 (9)0.0818 (5)
H30.06641.10560.47090.098*
C90.4926 (4)0.97168 (11)0.15093 (8)0.0861 (5)
H90.40761.02540.14280.103*
C120.7260 (4)0.81593 (13)0.17637 (10)0.0989 (6)
H120.80600.76150.18480.119*
C100.6421 (5)0.93216 (14)0.10555 (9)0.1017 (6)
H100.66130.95930.06650.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0538 (6)0.0525 (6)0.0728 (7)0.0057 (5)0.0044 (5)0.0023 (5)
N20.0652 (7)0.0542 (6)0.0812 (8)0.0007 (6)0.0058 (6)0.0017 (5)
C140.0518 (7)0.0561 (7)0.0633 (8)0.0052 (6)0.0008 (6)0.0061 (6)
C60.0578 (7)0.0471 (7)0.0847 (9)0.0100 (6)0.0115 (7)0.0031 (6)
C50.0533 (7)0.0503 (7)0.0792 (9)0.0144 (6)0.0099 (6)0.0060 (6)
C130.0524 (7)0.0691 (9)0.0748 (9)0.0043 (6)0.0048 (6)0.0033 (7)
C70.0565 (7)0.0506 (7)0.0730 (9)0.0085 (6)0.0037 (6)0.0018 (6)
C170.1041 (12)0.0522 (8)0.0826 (10)0.0003 (8)0.0259 (9)0.0004 (7)
F0.1701 (11)0.0738 (6)0.1201 (9)0.0228 (7)0.0432 (8)0.0116 (6)
C10.0679 (9)0.0543 (8)0.1076 (12)0.0041 (7)0.0143 (8)0.0013 (8)
C40.0684 (9)0.0682 (9)0.0801 (10)0.0188 (8)0.0117 (7)0.0090 (7)
C150.0845 (10)0.0723 (9)0.0620 (8)0.0157 (8)0.0036 (7)0.0007 (7)
N30.0868 (9)0.0744 (9)0.0890 (9)0.0175 (7)0.0135 (7)0.0045 (7)
C190.0821 (10)0.0777 (10)0.0679 (9)0.0005 (8)0.0102 (7)0.0059 (7)
C160.1046 (12)0.0715 (10)0.0801 (10)0.0271 (9)0.0046 (9)0.0079 (8)
C80.0572 (8)0.0603 (8)0.0726 (9)0.0070 (6)0.0036 (6)0.0066 (7)
C110.0899 (12)0.1126 (15)0.0951 (13)0.0017 (12)0.0224 (10)0.0276 (11)
C20.0741 (10)0.0606 (9)0.1198 (14)0.0072 (8)0.0304 (10)0.0160 (9)
C180.1154 (13)0.0768 (11)0.0666 (9)0.0084 (10)0.0046 (9)0.0092 (8)
C30.0811 (11)0.0713 (10)0.0966 (12)0.0190 (9)0.0276 (9)0.0210 (9)
C90.1051 (13)0.0737 (10)0.0802 (10)0.0003 (9)0.0134 (9)0.0007 (8)
C120.0997 (13)0.0955 (13)0.1023 (13)0.0277 (11)0.0142 (11)0.0161 (11)
C100.1226 (16)0.1067 (15)0.0795 (11)0.0147 (13)0.0283 (11)0.0091 (10)
Geometric parameters (Å, º) top
N1—C71.3790 (17)C4—H40.9300
N1—C51.3815 (17)C15—C161.382 (2)
N1—C131.4612 (17)C15—H150.9300
N2—C71.3192 (17)N3—C81.3319 (19)
N2—C61.3845 (18)N3—C121.336 (2)
C14—C151.3778 (18)C19—C181.383 (2)
C14—C191.381 (2)C19—H190.9300
C14—C131.5065 (19)C16—H160.9300
C6—C51.393 (2)C8—C91.377 (2)
C6—C11.399 (2)C11—C101.359 (3)
C5—C41.389 (2)C11—C121.364 (3)
C13—H13A0.9700C11—H110.9300
C13—H13B0.9700C2—C31.392 (2)
C7—C81.4765 (19)C2—H20.9300
C17—C181.353 (2)C18—H180.9300
C17—C161.354 (2)C3—H30.9300
C17—F1.3671 (18)C9—C101.379 (2)
C1—C21.373 (2)C9—H90.9300
C1—H10.9300C12—H120.9300
C4—C31.376 (2)C10—H100.9300
C7—N1—C5106.14 (11)C16—C15—H15119.2
C7—N1—C13130.90 (12)C8—N3—C12116.78 (15)
C5—N1—C13122.93 (12)C14—C19—C18121.46 (14)
C7—N2—C6104.92 (12)C14—C19—H19119.3
C15—C14—C19117.49 (13)C18—C19—H19119.3
C15—C14—C13121.54 (12)C17—C16—C15118.58 (15)
C19—C14—C13120.95 (12)C17—C16—H16120.7
N2—C6—C5110.25 (12)C15—C16—H16120.7
N2—C6—C1129.90 (14)N3—C8—C9122.55 (15)
C5—C6—C1119.85 (14)N3—C8—C7117.91 (13)
N1—C5—C4131.82 (14)C9—C8—C7119.54 (14)
N1—C5—C6105.78 (12)C10—C11—C12118.21 (18)
C4—C5—C6122.37 (14)C10—C11—H11120.9
N1—C13—C14112.85 (10)C12—C11—H11120.9
N1—C13—H13A109.0C1—C2—C3121.54 (15)
C14—C13—H13A109.0C1—C2—H2119.2
N1—C13—H13B109.0C3—C2—H2119.2
C14—C13—H13B109.0C17—C18—C19118.58 (15)
H13A—C13—H13B107.8C17—C18—H18120.7
N2—C7—N1112.87 (12)C19—C18—H18120.7
N2—C7—C8121.89 (13)C4—C3—C2121.72 (16)
N1—C7—C8125.19 (13)C4—C3—H3119.1
C18—C17—C16122.33 (15)C2—C3—H3119.1
C18—C17—F118.58 (15)C8—C9—C10118.93 (17)
C16—C17—F119.09 (16)C8—C9—H9120.5
C2—C1—C6117.76 (16)C10—C9—H9120.5
C2—C1—H1121.1N3—C12—C11124.37 (18)
C6—C1—H1121.1N3—C12—H12117.8
C3—C4—C5116.67 (16)C11—C12—H12117.8
C3—C4—H4121.7C11—C10—C9119.15 (18)
C5—C4—H4121.7C11—C10—H10120.4
C14—C15—C16121.56 (14)C9—C10—H10120.4
C14—C15—H15119.2
C7—N2—C6—C51.27 (14)C19—C14—C15—C160.1 (2)
C7—N2—C6—C1178.94 (13)C13—C14—C15—C16178.76 (15)
C7—N1—C5—C4176.42 (14)C15—C14—C19—C180.1 (2)
C13—N1—C5—C41.7 (2)C13—C14—C19—C18178.73 (14)
C7—N1—C5—C61.84 (13)C18—C17—C16—C150.5 (3)
C13—N1—C5—C6179.92 (11)F—C17—C16—C15178.77 (15)
N2—C6—C5—N11.96 (14)C14—C15—C16—C170.2 (3)
C1—C6—C5—N1178.22 (11)C12—N3—C8—C90.9 (2)
N2—C6—C5—C4176.50 (12)C12—N3—C8—C7178.95 (14)
C1—C6—C5—C43.32 (19)N2—C7—C8—N3158.51 (13)
C7—N1—C13—C14106.39 (15)N1—C7—C8—N324.2 (2)
C5—N1—C13—C1476.04 (15)N2—C7—C8—C921.6 (2)
C15—C14—C13—N150.84 (18)N1—C7—C8—C9155.75 (14)
C19—C14—C13—N1130.59 (14)C6—C1—C2—C30.1 (2)
C6—N2—C7—N10.06 (15)C16—C17—C18—C190.6 (3)
C6—N2—C7—C8177.69 (11)F—C17—C18—C19178.74 (15)
C5—N1—C7—N21.16 (14)C14—C19—C18—C170.2 (3)
C13—N1—C7—N2179.03 (12)C5—C4—C3—C21.1 (2)
C5—N1—C7—C8176.39 (12)C1—C2—C3—C41.9 (2)
C13—N1—C7—C81.5 (2)N3—C8—C9—C101.4 (3)
N2—C6—C1—C2177.38 (14)C7—C8—C9—C10178.46 (15)
C5—C6—C1—C22.40 (19)C8—N3—C12—C110.1 (3)
N1—C5—C4—C3179.55 (13)C10—C11—C12—N30.7 (3)
C6—C5—C4—C31.5 (2)C12—C11—C10—C90.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.972.943.486 (2)117
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Cgi0.9702.93453.486 (2)117.17
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer.

References

First citationAli, M. M., Sato, H., Haga, M., Tanaka, K., Yoshimura, A. & Ohno, T. (1998). Inorg. Chem. 37, 6176–6180.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoca, R., Baran, P., Dlhan, L., Sima, J., Wiesinger, G., Renz, F., El-Ayaan, U. & Linert, W. (1997). Polyhedron, 16, 47–55.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÇelik, Ö., Ulusoy, M., Taş, E. & Íde, S. (2007). Anal. Sci. 23, 185–186.  Google Scholar
First citationChiswell, B., Lions, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110–114.  CrossRef CAS Web of Science Google Scholar
First citationDe Castro, B., Freire, C., Domingues, D. & Gomes, J. (1991). Polyhedron, 10, 2541–2549.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaga, M. (1983). Inorg. Chim. Acta, 75, 29–35.  CrossRef CAS Web of Science Google Scholar
First citationHarkins, T. R., Walter, J. L., Harris, O. E. & Freiser, H. (1956). J. Am. Chem. Soc. 78, 260–264.  CrossRef CAS Web of Science Google Scholar
First citationHossain, M. D., Haga, M., Gholamkhass, B., Nozaki, K., Tsushima, M., Ikeda, N. & Ohno, T. (2001). Collect Czech. Chem. Commun, 66, 307–337.  Web of Science CrossRef CAS Google Scholar
First citationKhalil, M. M. H., Ali, S. A. & Ramadan, R. M. (2001). Spectrochim. Acta Part A, 57, 1017–1024.  Web of Science CrossRef Google Scholar
First citationMaekawa, M., Munakata, M., Kuroda-Sowa, T. & Hachiya, K. (1994). Inorg. Chim. Acta, 227, 137–143.  CrossRef CAS Web of Science Google Scholar
First citationSahin, C., Ulusoy, M., Zafer, C., Ozsoy, C., Varlikli, C., Dittrich, T., Cetinkaya, B. & Icli, S. (2010). Dyes Pigm. 84, 88–94.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds