metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m147-m148

Chlorido­bis­­(1,10-phenanthroline-κ2N,N′)copper(II) chlorido­(1,10-phen­anthroline-κ2N,N′)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)manganate(II) methanol monosolvate

aTaras Shevchenko National University of Kyiv, Department of Inorganic Chemistry, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine, bNational Taras Shevchenko University of Kyiv, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and cInstitute for Scintillation Materials, "Institute for Single Crystals", National Academy of Sciences of Ukraine, Lenina ave. 60, Kharkov 61001, Ukraine
*Correspondence e-mail: galina.goncharuck@mail.ru

(Received 14 March 2014; accepted 21 March 2014; online 29 March 2014)

The title complex, [CuCl(C12H8N2)2][Mn(C7H3NO4)Cl(C12H8N2)]·CH3OH, consists of discrete [CuCl(phen)2]+ cations (phen is 1,10-phenanthroline), [MnCl(pydc)(phen)] anions (H2pydc is 2,6-pyridine-2,6-di­carb­oxy­lic acid) and one methanol solvent mol­ecule of crystallization per asymmetric unit. It should be noted, that a solvent-masking procedure as implemented in OLEX2 [Dolomanov et al. (2009). J. Appl. Cryst. 42, 339–341[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]] was used to remove the electronic contribution from one disordered solvent molecule, presumably methanol. Only the atoms used in the refined model are reported in chemical formula and related values. The CuII ion is five-coordinated by two phenanthroline ligands and one chloride ion in a distorted trigonal–bipyramidal geometry. The dihedral angle between the phen ligands is 65.21 (5)°. The MnII ion is six-coordinated by one Cl atom, two N atoms from a phen ligand, as well one N atom and two O atoms from pydc in a distorted octa­hedral coordination geometry, with cis angles ranging from 72.00 (8) to 122.07 (8)° and trans angles ranging from 143.98 (8) to 163.15 (6)°. In the crystal, C—H⋯O, O—H⋯O and C—H⋯Cl hydrogen bonds, cation–anion ππ inter­actions between the phen ring systems with centroid–centroid distances in the range 3.881 (34)–4.123 (36) Å, as well as cation–cation, anion–anion ππ inter­actions between the phen rings with centroid–centroid distances in the range 3.763 (4)–3.99 (5) Å and pydc rings with centroid–centroid distances 3.52 (5) Å link the various components.

Related literature

For background to the direct synthesis of heterometallic complexes, see: Chygorin et al. (2012[Chygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386-396.]); Nesterov et al. (2012[Nesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boča, R., Kozlov, Y. N., Shulpina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. & Shulpin, G. B. (2012). Inorg. Chem. 51, 9110-9122.]); Nesterova et al. (2013[Nesterova, O. V., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Omelchenko, I. V., Shishkin, O. V., Titiš, J., Boča, R., Pombeiro, A. J. L. & Ozarowski, A. (2013). Dalton Trans. 42, 16909-16919.]). For the structures of related complexes, see: Wei & Yang (2004[Wei, Y.-B. & Yang, P. (2004). Acta Cryst. E60, m429-m431.]); Lu et al. (2004[Lu, L., Qin, S., Yang, P. & Zhu, M. (2004). Acta Cryst. E60, m574-m576.]); Murphy et al. (1997[Murphy, G., Nagle, P., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2645-2652.]); Liu et al. (2006[Liu, Y., Dou, J., Wang, D., Li, D. & Gao, Z. (2006). J. Chem. Crystallogr. 36, 613-618.]); Ma et al. (2002[Ma, C.-B., Fan, C., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m553-m555.]); Laine et al. (1995[Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156-5165.]); Chatterjee et al. (1998[Chatterjee, M., Ghosh, S., Wu, B.-M. & Mak, T. C. W. (1998). Polyhedron, 17, 1369-1374.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C12H8N2)2][MnCl(C7H3NO4)Cl(C12H8N2)]·CH4O

  • Mr = 927.14

  • Triclinic, [P \overline 1]

  • a = 10.3680 (4) Å

  • b = 12.5332 (4) Å

  • c = 17.2709 (6) Å

  • α = 72.966 (3)°

  • β = 74.709 (3)°

  • γ = 89.262 (3)°

  • V = 2064.78 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.25 × 0.19 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: analytical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.837, Tmax = 0.918

  • 35601 measured reflections

  • 9973 independent reflections

  • 6764 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.05

  • 9973 reflections

  • 543 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯Cl2i 0.93 2.87 3.683 (4) 147
C34—H34⋯Cl2 0.93 2.88 3.492 (3) 124
C30—H30⋯Cl2ii 0.93 2.87 3.751 (3) 158
C44—H44C⋯Cl1iii 0.96 2.86 3.574 (6) 132
O5—H5A⋯O2 0.82 2.03 2.798 (5) 155
C20—H20⋯O3 0.93 2.45 3.337 (4) 159
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) x, y-1, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

This work is a continuation of our research in the field of direct synthesis of heterometallic complexes (Chygorin et al., 2012; Nesterov et al., 2012; Nesterova et al., 2013). In this paper we present a novel Cu/Mn heterometallic ionic complex with pyridine-2,6-dicarboxylic acid in combination with 1,10-phenanthroline as a ligands selected to construct supramolecular heterometallic assemblies.

As is shown in Fig. 1. the unit of the title compound consists of [CuCl(phen)2]+ cations, [MnCl(2,6-pydc)(phen)]- anions and solvent (MeOH) molecule. The CuII ion adopts a distorted trigonal-bipyramidal environment by coordinating with four nitrogen atoms from two phen ligands and one Cl atom. The dihedral angle between the two phen ligands (114.79(0.05)°) as well as the range of Cu—N bond distances of 1.997 (2) - 2.174 (3) Å is in good agreement with the previously reported values for analagous complexes (Wei et al., 2004; Lu et al., 2004; Murphy et al., 1997; Liu et al., 2006). The MnII centre is surrounded by one bidentate phenanthroline ligand, one tridentate dipicolinate ligand and one chlorine atom and exhibits distorted octahedral geometry. The range of Mn—N and Mn—O bond distances of 2.173 (2) - 2.302 (2) Å and 2.257 (2) - 2.266 (2) Å respectively as well as cis angles ranging from 72.00 (8)° to 122.07 (8)° and trans angles ranging from 143.98 (8)° to 163.15 (6)° are in a good agreement with literature values (Ma et al., 2002; Laine et al., 1995; Chatterjee et al., 1998).

In the crystal anions are inolved in the formation of C—H···O hydrogen bonds with solvent molecules and O—H···O and C—H···Cl hydrogen bonds with cations with D···A distances ranging from 2.798 (5) to 3.751 (3) Å. In addition, cation–anion ππ interactions between the phen ring systems with centroid–centroid distances in the range 3.88 (3)-4.12 (4) Å and cation–cation, anion–anion ππ interactions between the phen rings with centroid–centroid distances in the range 3.76 (4)–3.99 (5) Å and pydc rings with centroid–centroid distances 3.52 (5) Å connect the various components together.

Related literature top

For background to the direct synthesis of heterometallic complexes, see: Chygorin et al. (2012); Nesterov et al. (2012); Nesterova et al. (2013). For the structures of related complexes, see: Wei & Yang (2004); Lu et al. (2004); Murphy et al. (1997); Liu et al. (2006); Ma et al. (2002); Laine et al. (1995); Chatterjee et al. (1998).

Experimental top

Copper powder (0.08 g, 1.25 mmol), KMnO4 (0.2 g, 1.25 mmol), phen·H2O (0.50 g, 2.5 mmol) and NH4Cl (0.14 g, 2.5 mmol) in CH3OH (20 mL) were mechanically stirred at 323–333 K in air until total dissolution of copper was observed (3 h). The resulting green solution was filtered from the insignificant quantities of by-products and cooled to the room temperature. The PriOH was added dropwise within 2 days to obtain green crystals of the title complex. Yield 0.23 g (40% by copper).

Refinement top

All non-hydrogen atoms were refined isotropically. All hydrogen atoms were placed at calculated position and refined in a riding-model approximation. Idealised Me and tetrahedral OH refined as rotating groups. Refinement without SQUEEZE procedure clearly shows severely disordered isolated solvent molecule, presumably methanol. However, we were unable to find acceptable model of disorder.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: OLEX2 (Dolomanov et al., 2009); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with hydrogen bonds with solvent molecule shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure showing cation–anion and cation–cation, anion–anion ππ interactions. H atoms are omited for clarity.
Chloridobis(1,10-phenanthroline-κ2N,N')copper(II) chlorido(1,10-phenanthroline-κ2N,N')(pyridine-2,6-dicarboxylato-κ3O2,N,O6)manganate(II) methanol monosolvate top
Crystal data top
[CuCl(C12H8N2)2][MnCl(C7H3NO4)Cl(C12H8N2)]·CH4OZ = 2
Mr = 927.14F(000) = 944
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3680 (4) ÅCell parameters from 6590 reflections
b = 12.5332 (4) Åθ = 2.4–27.2°
c = 17.2709 (6) ŵ = 1.01 mm1
α = 72.966 (3)°T = 293 K
β = 74.709 (3)°Block, clear light green
γ = 89.262 (3)°0.25 × 0.19 × 0.11 mm
V = 2064.78 (13) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
9973 independent reflections
Radiation source: Enhance (Mo) X-ray Source6764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1827 pixels mm-1θmax = 28.0°, θmin = 2.0°
ω and π scansh = 1515
Absorption correction: analytical
(Clark & Reid, 1995)
k = 1818
Tmin = 0.837, Tmax = 0.918l = 2624
35601 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.2578P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
9973 reflectionsΔρmax = 0.44 e Å3
543 parametersΔρmin = 0.51 e Å3
Crystal data top
[CuCl(C12H8N2)2][MnCl(C7H3NO4)Cl(C12H8N2)]·CH4Oγ = 89.262 (3)°
Mr = 927.14V = 2064.78 (13) Å3
Triclinic, P1Z = 2
a = 10.3680 (4) ÅMo Kα radiation
b = 12.5332 (4) ŵ = 1.01 mm1
c = 17.2709 (6) ÅT = 293 K
α = 72.966 (3)°0.25 × 0.19 × 0.11 mm
β = 74.709 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
9973 independent reflections
Absorption correction: analytical
(Clark & Reid, 1995)
6764 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.918Rint = 0.040
35601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
9973 reflectionsΔρmin = 0.51 e Å3
543 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.20341 (4)0.29043 (3)0.50838 (3)0.03953 (12)
Cu10.72013 (3)0.78783 (3)0.01669 (2)0.04942 (12)
Cl10.61596 (9)0.88250 (8)0.08120 (6)0.0714 (3)
Cl20.00242 (8)0.27997 (7)0.62072 (5)0.0585 (2)
O10.2901 (2)0.15048 (16)0.59210 (13)0.0523 (5)
O20.3165 (3)0.03177 (19)0.62979 (16)0.0783 (8)
O30.1150 (2)0.33570 (17)0.39765 (12)0.0512 (5)
O40.0585 (3)0.2738 (2)0.30277 (17)0.0837 (8)
O50.4459 (4)0.0292 (4)0.7352 (3)0.1196 (12)
H5A0.39710.02970.70470.179*
N10.9021 (2)0.8129 (2)0.06475 (14)0.0462 (6)
N20.8308 (2)0.8280 (2)0.09067 (14)0.0448 (5)
N30.5495 (2)0.7495 (2)0.10901 (16)0.0520 (6)
N40.6926 (3)0.6098 (2)0.03421 (18)0.0630 (7)
N70.1860 (2)0.14053 (18)0.47194 (14)0.0408 (5)
N50.4197 (2)0.32798 (18)0.42308 (15)0.0430 (5)
N60.2590 (2)0.47013 (18)0.48676 (14)0.0423 (5)
C11.0019 (3)0.8371 (2)0.03370 (17)0.0403 (6)
C20.9630 (3)0.8457 (2)0.05011 (16)0.0397 (6)
C30.7928 (3)0.8376 (3)0.16789 (18)0.0533 (7)
H30.70210.82620.19630.064*
C40.8819 (4)0.8638 (3)0.2084 (2)0.0649 (9)
H40.85110.86980.26250.078*
C51.0152 (4)0.8804 (3)0.1673 (2)0.0593 (8)
H51.07630.89660.19400.071*
C61.0604 (3)0.8733 (2)0.08529 (18)0.0459 (7)
C71.1967 (3)0.8916 (3)0.0360 (2)0.0555 (8)
H71.26190.91030.05880.067*
C81.2337 (3)0.8827 (3)0.0427 (2)0.0526 (7)
H81.32360.89440.07290.063*
C91.1356 (3)0.8554 (2)0.08018 (18)0.0449 (6)
C101.1656 (3)0.8471 (3)0.1617 (2)0.0585 (8)
H101.25400.85750.19470.070*
C111.0657 (3)0.8237 (3)0.1927 (2)0.0636 (9)
H111.08520.81950.24740.076*
C120.9348 (3)0.8060 (3)0.1429 (2)0.0590 (8)
H120.86750.78880.16470.071*
C130.5034 (3)0.6408 (3)0.1362 (2)0.0540 (8)
C140.5776 (3)0.5656 (3)0.0954 (2)0.0566 (8)
C150.7615 (5)0.5422 (3)0.0057 (3)0.0823 (12)
H150.84150.57050.04660.099*
C160.7186 (6)0.4310 (4)0.0114 (3)0.1014 (15)
H160.76830.38680.01880.122*
C170.6042 (5)0.3875 (4)0.0722 (3)0.0942 (14)
H170.57530.31310.08390.113*
C180.5297 (4)0.4535 (3)0.1174 (3)0.0728 (10)
C190.4089 (4)0.4157 (4)0.1834 (3)0.0880 (14)
H190.37660.34140.19920.106*
C200.3403 (4)0.4854 (4)0.2233 (3)0.0819 (13)
H200.26250.45760.26650.098*
C210.3841 (3)0.6008 (3)0.2010 (2)0.0624 (9)
C220.3149 (3)0.6773 (4)0.2377 (2)0.0698 (10)
H220.23650.65410.28110.084*
C230.3627 (3)0.7868 (4)0.2095 (2)0.0712 (10)
H230.31720.83870.23360.085*
C240.4799 (3)0.8202 (3)0.1446 (2)0.0607 (8)
H240.51070.89520.12530.073*
C250.2817 (3)0.0541 (2)0.58579 (18)0.0488 (7)
C260.2221 (3)0.0444 (2)0.51651 (18)0.0453 (6)
C270.1351 (3)0.1451 (2)0.40829 (18)0.0471 (7)
C280.0989 (3)0.2606 (3)0.36521 (19)0.0500 (7)
C290.1164 (3)0.0505 (3)0.3861 (2)0.0616 (9)
H290.08150.05440.34100.074*
C300.1507 (4)0.0504 (3)0.4324 (2)0.0682 (10)
H300.13690.11560.41950.082*
C310.2059 (4)0.0542 (3)0.4980 (2)0.0605 (8)
H310.23140.12120.52880.073*
C320.4672 (3)0.4359 (2)0.39983 (16)0.0391 (6)
C330.3820 (3)0.5109 (2)0.43562 (16)0.0374 (6)
C340.1806 (3)0.5398 (3)0.5192 (2)0.0559 (8)
H340.09540.51300.55410.067*
C350.2213 (3)0.6513 (3)0.5028 (2)0.0601 (9)
H350.16340.69760.52650.072*
C360.3439 (3)0.6924 (2)0.4529 (2)0.0535 (8)
H360.37190.76660.44280.064*
C370.4295 (3)0.6222 (2)0.41604 (19)0.0440 (6)
C380.5602 (3)0.6602 (3)0.3616 (2)0.0535 (8)
H380.59150.73410.34940.064*
C390.6397 (3)0.5895 (2)0.3272 (2)0.0562 (8)
H390.72450.61570.29150.067*
C400.5944 (3)0.4756 (2)0.34522 (19)0.0497 (7)
C410.6731 (3)0.3983 (3)0.3127 (2)0.0627 (9)
H410.75740.42110.27510.075*
C420.6249 (3)0.2899 (3)0.3368 (2)0.0638 (9)
H420.67630.23760.31650.077*
C430.4988 (3)0.2581 (2)0.3919 (2)0.0537 (8)
H430.46770.18350.40790.064*
C440.5429 (6)0.0325 (7)0.7194 (4)0.148 (3)
H44A0.58490.01040.65990.221*
H44B0.50910.10930.73800.221*
H44C0.60740.02380.74840.221*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0478 (2)0.0291 (2)0.0440 (2)0.00048 (16)0.00924 (18)0.01727 (17)
Cu10.03775 (19)0.0562 (2)0.0496 (2)0.00171 (15)0.00515 (15)0.01451 (17)
Cl10.0576 (5)0.0819 (6)0.0751 (6)0.0079 (4)0.0284 (4)0.0149 (5)
Cl20.0575 (4)0.0610 (5)0.0521 (4)0.0001 (4)0.0054 (3)0.0181 (4)
O10.0729 (14)0.0371 (11)0.0513 (12)0.0012 (9)0.0191 (10)0.0178 (9)
O20.126 (2)0.0424 (13)0.0748 (17)0.0173 (13)0.0472 (16)0.0138 (12)
O30.0658 (13)0.0420 (11)0.0494 (12)0.0049 (9)0.0185 (10)0.0165 (9)
O40.126 (2)0.0696 (17)0.0788 (18)0.0079 (15)0.0622 (18)0.0267 (14)
O50.116 (3)0.146 (3)0.131 (3)0.036 (2)0.051 (2)0.078 (3)
N10.0421 (12)0.0580 (15)0.0396 (13)0.0029 (11)0.0092 (10)0.0175 (11)
N20.0468 (13)0.0479 (14)0.0378 (12)0.0068 (10)0.0078 (10)0.0137 (10)
N30.0415 (13)0.0549 (16)0.0535 (15)0.0003 (11)0.0063 (11)0.0127 (12)
N40.0590 (16)0.0509 (16)0.0680 (18)0.0048 (13)0.0024 (14)0.0145 (14)
N70.0461 (12)0.0333 (12)0.0428 (13)0.0028 (9)0.0065 (10)0.0159 (10)
N50.0486 (13)0.0301 (11)0.0484 (13)0.0012 (9)0.0036 (10)0.0172 (10)
N60.0444 (13)0.0362 (12)0.0511 (14)0.0032 (10)0.0119 (11)0.0214 (10)
C10.0395 (14)0.0398 (15)0.0412 (15)0.0024 (11)0.0097 (11)0.0124 (12)
C20.0419 (14)0.0368 (14)0.0376 (14)0.0036 (11)0.0106 (11)0.0071 (11)
C30.0567 (18)0.0568 (19)0.0394 (16)0.0072 (14)0.0054 (13)0.0107 (14)
C40.083 (3)0.073 (2)0.0423 (18)0.0178 (19)0.0187 (17)0.0222 (16)
C50.070 (2)0.067 (2)0.0500 (18)0.0124 (17)0.0298 (17)0.0186 (16)
C60.0527 (16)0.0423 (16)0.0436 (16)0.0049 (12)0.0166 (13)0.0111 (12)
C70.0500 (17)0.0566 (19)0.066 (2)0.0009 (14)0.0271 (15)0.0171 (16)
C80.0407 (15)0.0582 (19)0.0575 (19)0.0012 (13)0.0098 (13)0.0184 (15)
C90.0409 (14)0.0471 (16)0.0449 (16)0.0006 (12)0.0069 (12)0.0151 (13)
C100.0427 (16)0.076 (2)0.0552 (19)0.0015 (15)0.0000 (14)0.0283 (17)
C110.0574 (19)0.089 (3)0.0452 (18)0.0056 (17)0.0023 (15)0.0319 (18)
C120.0514 (18)0.082 (2)0.0484 (18)0.0056 (16)0.0119 (14)0.0277 (17)
C130.0430 (16)0.061 (2)0.0505 (18)0.0009 (14)0.0122 (13)0.0064 (15)
C140.0525 (18)0.0520 (19)0.0580 (19)0.0057 (14)0.0134 (15)0.0066 (15)
C150.089 (3)0.063 (3)0.082 (3)0.008 (2)0.001 (2)0.025 (2)
C160.119 (4)0.062 (3)0.116 (4)0.016 (3)0.008 (3)0.038 (3)
C170.117 (4)0.051 (2)0.113 (4)0.000 (2)0.033 (3)0.021 (2)
C180.074 (2)0.057 (2)0.082 (3)0.0050 (18)0.028 (2)0.0056 (19)
C190.074 (3)0.065 (3)0.103 (3)0.024 (2)0.023 (2)0.008 (2)
C200.057 (2)0.084 (3)0.078 (3)0.021 (2)0.0114 (19)0.011 (2)
C210.0422 (16)0.080 (3)0.0530 (19)0.0062 (16)0.0116 (14)0.0031 (17)
C220.0420 (17)0.109 (3)0.0502 (19)0.0015 (19)0.0060 (14)0.017 (2)
C230.0467 (18)0.105 (3)0.065 (2)0.0156 (19)0.0124 (16)0.033 (2)
C240.0468 (17)0.068 (2)0.067 (2)0.0076 (15)0.0092 (15)0.0243 (18)
C250.0603 (18)0.0370 (16)0.0460 (16)0.0001 (13)0.0102 (14)0.0113 (13)
C260.0525 (16)0.0322 (14)0.0483 (16)0.0031 (12)0.0044 (13)0.0156 (12)
C270.0487 (16)0.0457 (16)0.0505 (17)0.0043 (12)0.0094 (13)0.0233 (13)
C280.0524 (17)0.0539 (19)0.0455 (17)0.0035 (13)0.0120 (14)0.0187 (14)
C290.072 (2)0.061 (2)0.066 (2)0.0020 (17)0.0222 (17)0.0367 (17)
C300.087 (3)0.048 (2)0.082 (3)0.0043 (17)0.020 (2)0.0406 (18)
C310.075 (2)0.0398 (17)0.070 (2)0.0062 (15)0.0152 (18)0.0256 (16)
C320.0427 (14)0.0333 (14)0.0412 (15)0.0030 (11)0.0101 (11)0.0123 (11)
C330.0422 (14)0.0305 (13)0.0433 (15)0.0034 (10)0.0170 (12)0.0121 (11)
C340.0482 (17)0.0492 (18)0.077 (2)0.0091 (14)0.0132 (15)0.0327 (16)
C350.062 (2)0.0413 (17)0.087 (2)0.0153 (15)0.0195 (18)0.0363 (17)
C360.065 (2)0.0319 (15)0.077 (2)0.0068 (13)0.0282 (17)0.0269 (15)
C370.0508 (16)0.0335 (14)0.0558 (17)0.0045 (12)0.0239 (14)0.0171 (12)
C380.0561 (18)0.0352 (15)0.068 (2)0.0071 (13)0.0190 (15)0.0113 (14)
C390.0523 (17)0.0407 (17)0.066 (2)0.0086 (13)0.0045 (15)0.0110 (15)
C400.0458 (16)0.0417 (16)0.0578 (18)0.0003 (12)0.0085 (13)0.0140 (14)
C410.0529 (18)0.054 (2)0.068 (2)0.0017 (15)0.0075 (16)0.0197 (17)
C420.060 (2)0.0488 (19)0.076 (2)0.0073 (15)0.0053 (17)0.0310 (17)
C430.0583 (18)0.0336 (15)0.066 (2)0.0039 (13)0.0021 (15)0.0236 (14)
C440.104 (5)0.229 (8)0.127 (5)0.018 (5)0.031 (4)0.080 (5)
Geometric parameters (Å, º) top
Mn1—Cl22.4185 (9)C13—C211.411 (4)
Mn1—O12.266 (2)C14—C181.403 (5)
Mn1—O32.257 (2)C15—H150.9300
Mn1—N72.173 (2)C15—C161.391 (6)
Mn1—N52.302 (2)C16—H160.9300
Mn1—N62.230 (2)C16—C171.353 (6)
Cu1—Cl12.2775 (9)C17—H170.9300
Cu1—N11.998 (2)C17—C181.391 (6)
Cu1—N22.090 (2)C18—C191.428 (6)
Cu1—N31.997 (2)C19—H190.9300
Cu1—N42.174 (3)C19—C201.350 (6)
O1—C251.250 (3)C20—H200.9300
O2—C251.234 (3)C20—C211.430 (6)
O3—C281.261 (4)C21—C221.391 (5)
O4—C281.224 (4)C22—H220.9300
O5—H5A0.8200C22—C231.366 (5)
O5—C441.281 (6)C23—H230.9300
N1—C11.359 (3)C23—C241.388 (5)
N1—C121.330 (4)C24—H240.9300
N2—C21.353 (3)C25—C261.518 (4)
N2—C31.328 (4)C26—C311.386 (4)
N3—C131.352 (4)C27—C281.513 (4)
N3—C241.324 (4)C27—C291.379 (4)
N4—C141.362 (4)C29—H290.9300
N4—C151.330 (5)C29—C301.382 (5)
N7—C261.335 (3)C30—H300.9300
N7—C271.326 (4)C30—C311.387 (5)
N5—C321.352 (3)C31—H310.9300
N5—C431.325 (3)C32—C331.441 (4)
N6—C331.351 (3)C32—C401.400 (4)
N6—C341.328 (4)C33—C371.399 (4)
C1—C21.432 (4)C34—H340.9300
C1—C91.390 (4)C34—C351.389 (4)
C2—C61.402 (4)C35—H350.9300
C3—H30.9300C35—C361.343 (5)
C3—C41.390 (5)C36—H360.9300
C4—H40.9300C36—C371.406 (4)
C4—C51.364 (5)C37—C381.425 (4)
C5—H50.9300C38—H380.9300
C5—C61.399 (4)C38—C391.359 (4)
C6—C71.426 (4)C39—H390.9300
C7—H70.9300C39—C401.427 (4)
C7—C81.349 (4)C40—C411.406 (4)
C8—H80.9300C41—H410.9300
C8—C91.434 (4)C41—C421.358 (5)
C9—C101.394 (4)C42—H420.9300
C10—H100.9300C42—C431.381 (4)
C10—C111.355 (5)C43—H430.9300
C11—H110.9300C44—H44A0.9600
C11—C121.383 (4)C44—H44B0.9600
C12—H120.9300C44—H44C0.9600
C13—C141.436 (5)
O1—Mn1—Cl291.88 (6)N4—C15—C16122.6 (4)
O1—Mn1—N584.75 (8)C16—C15—H15118.7
O3—Mn1—Cl299.59 (6)C15—C16—H16120.2
O3—Mn1—O1143.98 (7)C17—C16—C15119.6 (4)
O3—Mn1—N592.69 (8)C17—C16—H16120.2
N7—Mn1—Cl2104.76 (6)C16—C17—H17119.9
N7—Mn1—O172.07 (8)C16—C17—C18120.3 (4)
N7—Mn1—O372.00 (8)C18—C17—H17119.9
N7—Mn1—N589.93 (8)C14—C18—C19118.3 (4)
N7—Mn1—N6155.48 (9)C17—C18—C14116.9 (4)
N5—Mn1—Cl2163.15 (6)C17—C18—C19124.8 (4)
N6—Mn1—Cl295.19 (6)C18—C19—H19119.2
N6—Mn1—O1122.07 (8)C20—C19—C18121.5 (4)
N6—Mn1—O390.94 (8)C20—C19—H19119.2
N6—Mn1—N572.98 (8)C19—C20—H20119.1
N1—Cu1—Cl194.39 (7)C19—C20—C21121.7 (4)
N1—Cu1—N280.86 (9)C21—C20—H20119.1
N1—Cu1—N496.83 (10)C13—C21—C20118.2 (4)
N2—Cu1—Cl1136.84 (7)C22—C21—C13117.6 (3)
N2—Cu1—N4114.64 (10)C22—C21—C20124.2 (3)
N3—Cu1—Cl193.14 (8)C21—C22—H22120.2
N3—Cu1—N1172.42 (10)C23—C22—C21119.6 (3)
N3—Cu1—N294.28 (10)C23—C22—H22120.2
N3—Cu1—N479.84 (11)C22—C23—H23120.3
N4—Cu1—Cl1108.52 (9)C22—C23—C24119.5 (4)
C25—O1—Mn1118.58 (19)C24—C23—H23120.3
C28—O3—Mn1118.40 (19)N3—C24—C23122.6 (3)
C44—O5—H5A109.5N3—C24—H24118.7
C1—N1—Cu1114.18 (18)C23—C24—H24118.7
C12—N1—Cu1127.6 (2)O1—C25—C26115.4 (2)
C12—N1—C1118.2 (2)O2—C25—O1126.6 (3)
C2—N2—Cu1111.40 (17)O2—C25—C26118.0 (3)
C3—N2—Cu1131.1 (2)N7—C26—C25114.6 (2)
C3—N2—C2117.5 (3)N7—C26—C31120.7 (3)
C13—N3—Cu1115.5 (2)C31—C26—C25124.7 (3)
C24—N3—Cu1125.9 (2)N7—C27—C28114.2 (2)
C24—N3—C13118.6 (3)N7—C27—C29121.2 (3)
C14—N4—Cu1110.1 (2)C29—C27—C28124.6 (3)
C15—N4—Cu1132.3 (3)O3—C28—C27115.6 (3)
C15—N4—C14117.5 (3)O4—C28—O3125.8 (3)
C26—N7—Mn1118.99 (19)O4—C28—C27118.6 (3)
C27—N7—Mn1119.67 (18)C27—C29—H29120.7
C27—N7—C26121.3 (2)C27—C29—C30118.5 (3)
C32—N5—Mn1114.83 (17)C30—C29—H29120.7
C43—N5—Mn1127.8 (2)C29—C30—H30120.0
C43—N5—C32117.3 (2)C29—C30—C31119.9 (3)
C33—N6—Mn1116.78 (16)C31—C30—H30120.0
C34—N6—Mn1125.3 (2)C26—C31—C30118.4 (3)
C34—N6—C33117.9 (2)C26—C31—H31120.8
N1—C1—C2116.7 (2)C30—C31—H31120.8
N1—C1—C9122.8 (3)N5—C32—C33117.1 (2)
C9—C1—C2120.5 (2)N5—C32—C40123.0 (2)
N2—C2—C1116.7 (2)C40—C32—C33119.9 (2)
N2—C2—C6123.5 (3)N6—C33—C32118.2 (2)
C6—C2—C1119.8 (2)N6—C33—C37122.9 (2)
N2—C3—H3118.4C37—C33—C32118.9 (2)
N2—C3—C4123.3 (3)N6—C34—H34118.8
C4—C3—H3118.4N6—C34—C35122.4 (3)
C3—C4—H4120.6C35—C34—H34118.8
C5—C4—C3118.9 (3)C34—C35—H35119.9
C5—C4—H4120.6C36—C35—C34120.3 (3)
C4—C5—H5119.9C36—C35—H35119.9
C4—C5—C6120.2 (3)C35—C36—H36120.3
C6—C5—H5119.9C35—C36—C37119.4 (3)
C2—C6—C7118.5 (3)C37—C36—H36120.3
C5—C6—C2116.6 (3)C33—C37—C36117.2 (3)
C5—C6—C7124.9 (3)C33—C37—C38120.2 (3)
C6—C7—H7119.0C36—C37—C38122.6 (3)
C8—C7—C6121.9 (3)C37—C38—H38119.7
C8—C7—H7119.0C39—C38—C37120.6 (3)
C7—C8—H8119.7C39—C38—H38119.7
C7—C8—C9120.6 (3)C38—C39—H39119.6
C9—C8—H8119.7C38—C39—C40120.8 (3)
C1—C9—C8118.9 (3)C40—C39—H39119.6
C1—C9—C10117.2 (3)C32—C40—C39119.5 (3)
C10—C9—C8123.9 (3)C32—C40—C41117.2 (3)
C9—C10—H10120.1C41—C40—C39123.2 (3)
C11—C10—C9119.8 (3)C40—C41—H41120.4
C11—C10—H10120.1C42—C41—C40119.3 (3)
C10—C11—H11120.0C42—C41—H41120.4
C10—C11—C12120.0 (3)C41—C42—H42120.3
C12—C11—H11120.0C41—C42—C43119.4 (3)
N1—C12—C11122.0 (3)C43—C42—H42120.3
N1—C12—H12119.0N5—C43—C42123.7 (3)
C11—C12—H12119.0N5—C43—H43118.2
N3—C13—C14118.0 (3)C42—C43—H43118.2
N3—C13—C21122.1 (3)O5—C44—H44A109.5
C21—C13—C14119.8 (3)O5—C44—H44B109.5
N4—C14—C13116.5 (3)O5—C44—H44C109.5
N4—C14—C18123.1 (3)H44A—C44—H44B109.5
C18—C14—C13120.4 (3)H44A—C44—H44C109.5
N4—C15—H15118.7H44B—C44—H44C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···Cl2i0.932.873.683 (4)147
C34—H34···Cl20.932.883.492 (3)124
C30—H30···Cl2ii0.932.873.751 (3)158
C44—H44C···Cl1iii0.962.863.574 (6)132
O5—H5A···O20.822.032.798 (5)155
C20—H20···O30.932.453.337 (4)159
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22···Cl2i0.932.873.683 (4)146.6
C34—H34···Cl20.932.883.492 (3)124.4
C30—H30···Cl2ii0.932.873.751 (3)157.9
C44—H44C···Cl1iii0.962.863.574 (6)132.4
O5—H5A···O20.822.032.798 (5)154.9
C20—H20···O30.932.453.337 (4)159.1
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y1, z+1.
 

Acknowledgements

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005).

References

First citationChatterjee, M., Ghosh, S., Wu, B.-M. & Mak, T. C. W. (1998). Polyhedron, 17, 1369–1374.  Web of Science CSD CrossRef CAS Google Scholar
First citationChygorin, E. N., Nesterova, O. V., Rusanova, J. A., Kokozay, V. N., Bon, V. V., Boča, R. & Ozarowski, A. (2012). Inorg. Chem. 51, 386–396.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLaine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156–5165.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Y., Dou, J., Wang, D., Li, D. & Gao, Z. (2006). J. Chem. Crystallogr. 36, 613–618.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, L., Qin, S., Yang, P. & Zhu, M. (2004). Acta Cryst. E60, m574–m576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C.-B., Fan, C., Chen, C.-N. & Liu, Q.-T. (2002). Acta Cryst. C58, m553–m555.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMurphy, G., Nagle, P., Murphy, B. & Hathaway, B. (1997). J. Chem. Soc. Dalton Trans. pp. 2645–2652.  CSD CrossRef Web of Science Google Scholar
First citationNesterova, O. V., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Omelchenko, I. V., Shishkin, O. V., Titiš, J., Boča, R., Pombeiro, A. J. L. & Ozarowski, A. (2013). Dalton Trans. 42, 16909–16919.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNesterov, D. S., Chygorin, E. N., Kokozay, V. N., Bon, V. V., Boča, R., Kozlov, Y. N., Shulpina, L. S., Jezierska, J., Ozarowski, A., Pombeiro, A. J. L. & Shulpin, G. B. (2012). Inorg. Chem. 51, 9110–9122.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-B. & Yang, P. (2004). Acta Cryst. E60, m429–m431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m147-m148
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds