organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o382-o383

2-(3-{(3R,4R)-4-Methyl-3-[meth­yl(7H-pyrrolo­[2,3-d]pyrimidin-4-yl)amino]­piperidin-1-yl}oxetan-3-yl)aceto­nitrile monohydrate

aEberhard-Karls-University Tuebingen, Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Auf der Morgenstelle 8, 72076 Tuebingen, Germany, and bUniversity Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 24 February 2014; accepted 26 February 2014; online 5 March 2014)

In the title compound, C18H24N6O·H2O, the piperidine ring adopts a chair conformation with an N—C—C—C torsion angle of 39.5 (5)° between the cis-related substituents. The pyrrole N—H group forms a water-mediated inter­molecular hydrogen bond to one of the N atoms of the annelated pyrimidine ring. The water mol­ecule connects two organic mol­ecules and is disorderd over two positions (occupancies of 0.48 and 0.52). The crystal packing shows zigzag chains of alternating organic and water mol­ecules running parallel to the a axis.

Related literature

For the biological activity and structure–activity relationships of tofacitinib {systematic name: 3-[(3R,4R)-4-methyl-3-[meth­yl(7H-pyrrolo­[2,3-d]pyrimidin-4-yl)amino]­piperidin-1-yl]-3-oxo­propane­nitrile} derivatives, see: Flanagan et al. (2010[Flanagan, M. E., Blumenkopf, T. A., Brissette, W. H., Brown, M. F., Casavant, J. M., Shang-Poa, C., Doty, J. L., Elliott, E. A., Fisher, M. B., Hines, M., Kent, C., Kudlacz, E. M., Lillie, B. M., Magnuson, K. S., McCurdy, S. P., Munchhof, M. J., Perry, B. D., Sawyer, P. S., Strelevitz, T. J., Subramanyam, C., Sun, J., Whipple, D. A. & Changelian, P. S. (2010). J. Med. Chem. 53, 8468-8484.]). For a general overview on the JAK–STAT pathway, see: Shuai & Liu (2003[Shuai, K. & Liu, B. (2003). Nat. Rev. Immunol. 3, 900-911.]). The use of oxetanes as carbonyl bioisosteres has been reviewed extensively by Wuitschik et al. (2010[Wuitschik, G., Carreira, E. M., Wagner, B., Fischer, H., Parrilla, I., Schuler, F., Rogers-Evans, M. & Mueller, K. J. (2010). J. Med. Chem. 53, 3227-3246.]). For a recent application of this concept towards tofacitinib-derived JAK3 inhibitors, see: Gehringer et al. (2014[Gehringer, M., Pfaffenrot, E., Bauer, S. & Laufer, S. A. (2014). ChemMedChem, 9, 277-281.]).

[Scheme 1]

Experimental

Crystal data
  • C18H24N6O·H2O

  • Mr = 358.45

  • Orthorhombic, P 21 21 21

  • a = 6.6088 (6) Å

  • b = 10.1483 (8) Å

  • c = 26.813 (2) Å

  • V = 1798.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 193 K

  • 0.29 × 0.27 × 0.06 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • 6672 measured reflections

  • 4184 independent reflections

  • 1716 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.150

  • S = 0.90

  • 4184 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1L 0.88 1.90 2.783 (8) 178
N1—H1⋯O2L 0.88 2.06 2.816 (7) 144
O1L—H1L2⋯N8i 0.84 2.27 2.868 (8) 129
O2L—H2L2⋯N8i 0.84 2.20 2.733 (7) 121
O2L—H2L2⋯N25ii 0.84 2.43 3.026 (10) 129
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2010[Stoe & Cie (2010). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2010[Stoe & Cie (2010). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Janus Kinases (JAKs) are non-receptor protein tyrosine kinases mediating signalling through the JAK-STAT (Signal Transducer and Activator of Transcription) pathway. Being crucial signal transducers for a variety of cytokines, growth factors, and interferons, JAKs are involved in numerous pathologies including malignancies, myeloproliferative disorders and autoimmune diseases (Shuai & Liu, 2003). Recently, Tofacitinib (CP690,550; 3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d] pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropanenitrile) a small-molecule pan-JAK inhibitor was approved by the US Food and Drug Administration for the treatment of rheumatoid athritis (Flanagan et al., 2010). The compound also shows promising results in late stage clinical trials for psoriasis, transplant rejection, and other disorders of the immune system. In search for novel JAK inhibitors, the title compound was prepared as a Tofacitinib bioisostere with altered physicochemical properties (Wuitschik et al., 2010).

In the crystal structure of the title compound, C18H24N6O, the exocyclic amino substituent is oriented almost coplanar to the heteroaromatic ring system with a torsion angle of 0.6 (2)° for C11-N10-C5-C4. The piperidine ring adopts a chair conformation with a torsion angle of 39.5 (5) ° between the cis substituents. One of the protons (H23B) of the methylene group between the oxetane ring and the nitrile function is involved in an intermolecular C—H···π interaction while the other methylene proton forms an intermolecular C—H···N interaction with the nitrile group. The oxygen atom of the oxetane ring makes two intermolecular C—H···O contacts with two H atoms (H13A and H15B) of the piperidine ring. The heterocyclic pyrrol N—H forms an intermolecular water mediated hydrogen bond to one of the nitrogen atoms (N8) in the 6-membered pyrmidine heterocycle with a length of 2.78 (2) Å for the N—H···O and 2.86 (8) Å for the O—H···N contact. The water molecule connecting two molecules is disorderd over two positions (s.o.f. 0.48/0.52). The crystal packing is shows N—H···OH···N hydrogen bonds resulting in infinite chains parallel to the a axis.

Related literature top

For the biological activity and structure-activity relationships of Tofacitinib {systematic name: 3-[(3R,4R)-4-methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropanenitrile} derivatives, see: Flanagan et al. (2010). For a general overview on the JAK–STAT pathway, see Shuai & Liu (2003). The use of oxetanes as carbonyl bioisosteres has been reviewed extensively by Wuitschik et al. (2010). For a recent application of this concept towards Tofacitinib-derived JAK3 inhibitors, see: Gehringer et al. (2014).

Experimental top

In an HPLC-vial, (3R,4R)-N,4-dimethyl-N-{7H-pyrrolo[2,3-d]pyrimidin-4- yl}piperidin-3-amine (50.0 mg, 204 µmol) and (oxetan-3-ylidene)acetonitrile (19.9 mg, 210 µmol) were dissolved in dry ethanol (400 µl) and the mixture stirred at 323 K during 48 h. The solvent was evaporated under reduced pressure and the product purified by column chromatography (SiO2, ethyl acetate + 2% methanol). The product was obtained as off-white solid (57.0 mg, 82%). Crystals of the title compound were obtained by slow evaporation of a solution in chloroform + 10% methanol at 298 K.

Refinement top

Site occupation factors of the disordered water molecule were fixed assuming similar isotropic displacement parameters for alternative positions of the oxygen atom. Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.99–1.00 Å (sp3 C-atom). All H atoms were refined with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom). One of the H atoms of the disordered water molecule could be position to make a hydrogen bond to an N atom. The other one was positioneded with idealized geometric with respect to the first one. The absolute configuration was assigned according to the synthesis.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2010); cell refinement: X-AREA (Stoe & Cie, 2010); data reduction: X-RED (Stoe & Cie, 2010); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Water molecules are disorderd with s.o.f. 0.52/0.48.
2-(3-{(3R,4R)-4-Methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl}oxetan-3-yl)acetonitrile monohydrate top
Crystal data top
C18H24N6O·H2OF(000) = 768
Mr = 358.45Dx = 1.324 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6886 reflections
a = 6.6088 (6) Åθ = 2.5–27.8°
b = 10.1483 (8) ŵ = 0.09 mm1
c = 26.813 (2) ÅT = 193 K
V = 1798.3 (3) Å3Plate, colourless
Z = 40.29 × 0.27 × 0.06 mm
Data collection top
Stoe IPDS 2T
diffractometer
1716 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.079
Graphite monochromatorθmax = 28.0°, θmin = 3.2°
Detector resolution: 6.67 pixels mm-1h = 78
rotation method scansk = 1113
6672 measured reflectionsl = 2935
4184 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0523P)2]
where P = (Fo2 + 2Fc2)/3
4184 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H24N6O·H2OV = 1798.3 (3) Å3
Mr = 358.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6088 (6) ŵ = 0.09 mm1
b = 10.1483 (8) ÅT = 193 K
c = 26.813 (2) Å0.29 × 0.27 × 0.06 mm
Data collection top
Stoe IPDS 2T
diffractometer
1716 reflections with I > 2σ(I)
6672 measured reflectionsRint = 0.079
4184 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.90Δρmax = 0.19 e Å3
4184 reflectionsΔρmin = 0.22 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1280 (5)0.1062 (4)0.42472 (12)0.0485 (10)
H10.11600.12760.45640.058*
C20.2919 (7)0.0433 (4)0.40332 (16)0.0485 (12)
H20.41060.01630.42050.058*
C30.2563 (7)0.0264 (4)0.35393 (15)0.0439 (11)
H30.34460.01390.33050.053*
C40.0579 (7)0.0814 (4)0.34361 (15)0.0423 (11)
C50.0680 (7)0.1060 (4)0.30217 (14)0.0391 (10)
N60.2486 (6)0.1667 (4)0.30983 (12)0.0449 (9)
C70.2941 (7)0.2044 (4)0.35573 (15)0.0476 (11)
H70.42110.24730.35910.057*
N80.1909 (6)0.1916 (4)0.39726 (12)0.0470 (9)
C90.0105 (7)0.1291 (4)0.38869 (14)0.0413 (10)
N100.0216 (5)0.0778 (3)0.25423 (11)0.0396 (8)
C110.1748 (6)0.0150 (4)0.24320 (14)0.0451 (11)
H11A0.18850.00290.20710.068*
H11B0.18150.07090.25980.068*
H11C0.28470.07120.25540.068*
C120.1610 (7)0.1075 (4)0.21317 (14)0.0415 (10)
H120.26990.16340.22810.050*
C130.0683 (7)0.1906 (4)0.17183 (13)0.0419 (11)
H13A0.17820.23390.15280.050*
H13B0.01600.26060.18700.050*
N140.0562 (5)0.1135 (3)0.13743 (11)0.0401 (9)
C150.0684 (7)0.0153 (4)0.11233 (14)0.0437 (11)
H15A0.01300.03180.08700.052*
H15B0.18320.05880.09530.052*
C160.1472 (7)0.0818 (4)0.15091 (15)0.0474 (11)
H16A0.03140.12840.16630.057*
H16B0.23310.14830.13410.057*
C170.2698 (7)0.0137 (4)0.19154 (14)0.0424 (11)
H170.39700.01890.17550.051*
C180.3324 (7)0.1107 (5)0.23178 (15)0.0506 (11)
H18A0.43240.17240.21820.076*
H18B0.39200.06270.25990.076*
H18C0.21350.15980.24320.076*
C190.1743 (7)0.1946 (4)0.10400 (14)0.0421 (10)
C200.3401 (7)0.2731 (5)0.12998 (15)0.0528 (13)
H20A0.32550.36960.12590.063*
H20B0.35710.24970.16560.063*
O210.4946 (5)0.2159 (3)0.09772 (13)0.0672 (10)
C220.3494 (7)0.1203 (5)0.07878 (17)0.0539 (12)
H22A0.37010.03030.09200.065*
H22B0.34000.11900.04190.065*
C230.0478 (7)0.2774 (5)0.06772 (15)0.0472 (12)
H23A0.03180.21790.04600.057*
H23B0.04860.33220.08690.057*
C240.1729 (8)0.3629 (5)0.03667 (16)0.0484 (12)
N250.2739 (7)0.4295 (4)0.01284 (15)0.0658 (12)
O1L0.0901 (13)0.1801 (9)0.5242 (3)0.077 (2)0.48
H1L10.17830.24030.50360.115*0.48
H1L20.14060.16620.55250.115*0.48
O2L0.1719 (14)0.2748 (9)0.5074 (2)0.085 (2)0.52
H2L10.04590.26190.50420.128*0.52
H2L20.17510.33710.52830.128*0.52
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (3)0.052 (3)0.0307 (18)0.009 (2)0.0069 (18)0.0009 (18)
C20.048 (3)0.051 (3)0.047 (3)0.001 (2)0.002 (2)0.001 (2)
C30.049 (3)0.044 (3)0.038 (2)0.002 (2)0.001 (2)0.002 (2)
C40.049 (3)0.041 (3)0.037 (2)0.006 (2)0.002 (2)0.0023 (19)
C50.053 (3)0.033 (2)0.032 (2)0.003 (2)0.0015 (19)0.0006 (19)
N60.046 (2)0.052 (2)0.0373 (19)0.0060 (19)0.0052 (17)0.0011 (17)
C70.056 (3)0.050 (3)0.037 (2)0.002 (2)0.005 (2)0.000 (2)
N80.059 (3)0.048 (2)0.0340 (18)0.004 (2)0.0029 (19)0.0006 (16)
C90.052 (3)0.039 (3)0.032 (2)0.004 (2)0.001 (2)0.0042 (19)
N100.041 (2)0.047 (2)0.0304 (17)0.0066 (18)0.0005 (15)0.0002 (16)
C110.046 (3)0.051 (3)0.038 (2)0.006 (2)0.003 (2)0.001 (2)
C120.044 (3)0.043 (3)0.037 (2)0.005 (2)0.003 (2)0.001 (2)
C130.048 (3)0.047 (3)0.031 (2)0.008 (2)0.0015 (19)0.001 (2)
N140.050 (2)0.037 (2)0.0333 (17)0.0038 (19)0.0005 (16)0.0040 (16)
C150.055 (3)0.038 (3)0.039 (2)0.000 (2)0.003 (2)0.005 (2)
C160.059 (3)0.042 (3)0.041 (2)0.001 (2)0.002 (2)0.002 (2)
C170.046 (3)0.042 (3)0.040 (2)0.002 (2)0.001 (2)0.001 (2)
C180.053 (3)0.055 (3)0.044 (2)0.001 (3)0.007 (2)0.006 (2)
C190.044 (3)0.047 (3)0.035 (2)0.005 (2)0.002 (2)0.003 (2)
C200.050 (3)0.061 (3)0.048 (3)0.004 (3)0.000 (2)0.002 (2)
O210.045 (2)0.081 (3)0.076 (2)0.002 (2)0.0006 (18)0.005 (2)
C220.054 (3)0.055 (3)0.052 (3)0.010 (3)0.009 (2)0.002 (2)
C230.051 (3)0.051 (3)0.040 (2)0.001 (2)0.001 (2)0.012 (2)
C240.060 (3)0.048 (3)0.037 (2)0.013 (3)0.002 (2)0.004 (2)
N250.084 (3)0.059 (3)0.054 (2)0.003 (2)0.014 (2)0.006 (2)
O1L0.113 (7)0.072 (6)0.045 (4)0.005 (5)0.013 (4)0.001 (4)
O2L0.130 (7)0.078 (6)0.049 (4)0.010 (5)0.020 (5)0.024 (4)
Geometric parameters (Å, º) top
N1—C91.351 (5)C15—H15A0.9900
N1—C21.381 (5)C15—H15B0.9900
N1—H10.8800C16—C171.524 (6)
C2—C31.356 (6)C16—H16A0.9900
C2—H20.9500C16—H16B0.9900
C3—C41.452 (6)C17—C181.519 (6)
C3—H30.9500C17—H171.0000
C4—C91.378 (5)C18—H18A0.9800
C4—C51.410 (6)C18—H18B0.9800
C5—N101.352 (5)C18—H18C0.9800
C5—N61.359 (5)C19—C201.523 (6)
N6—C71.323 (5)C19—C231.534 (6)
C7—N81.312 (5)C19—C221.538 (6)
C7—H70.9500C20—O211.458 (5)
N8—C91.369 (6)C20—H20A0.9900
N10—C121.467 (5)C20—H20B0.9900
N10—C111.476 (5)O21—C221.456 (6)
C11—H11A0.9800C22—H22A0.9900
C11—H11B0.9800C22—H22B0.9900
C11—H11C0.9800C23—C241.459 (7)
C12—C131.521 (6)C23—H23A0.9900
C12—C171.538 (6)C23—H23B0.9900
C12—H121.0000C24—N251.145 (6)
C13—N141.463 (5)O1L—H1L11.0100
C13—H13A0.9900O1L—H1L20.8390
C13—H13B0.9900O1L—H2L11.0319
N14—C191.445 (5)O2L—H1L10.3669
N14—C151.458 (5)O2L—H2L10.8478
C15—C161.520 (6)O2L—H2L20.8441
C9—N1—C2108.3 (3)H15A—C15—H15B108.3
C9—N1—H1125.8C15—C16—C17112.0 (4)
C2—N1—H1125.8C15—C16—H16A109.2
C3—C2—N1109.2 (4)C17—C16—H16A109.2
C3—C2—H2125.4C15—C16—H16B109.2
N1—C2—H2125.4C17—C16—H16B109.2
C2—C3—C4107.1 (4)H16A—C16—H16B107.9
C2—C3—H3126.4C18—C17—C16111.0 (4)
C4—C3—H3126.4C18—C17—C12112.2 (3)
C9—C4—C5115.8 (4)C16—C17—C12112.6 (4)
C9—C4—C3105.3 (4)C18—C17—H17106.9
C5—C4—C3138.7 (4)C16—C17—H17106.9
N10—C5—N6116.0 (4)C12—C17—H17106.9
N10—C5—C4125.3 (4)C17—C18—H18A109.5
N6—C5—C4118.6 (4)C17—C18—H18B109.5
C7—N6—C5118.1 (4)H18A—C18—H18B109.5
N8—C7—N6130.0 (4)C17—C18—H18C109.5
N8—C7—H7115.0H18A—C18—H18C109.5
N6—C7—H7115.0H18B—C18—H18C109.5
C7—N8—C9110.8 (4)N14—C19—C20113.7 (3)
N1—C9—N8123.3 (4)N14—C19—C23114.2 (4)
N1—C9—C4110.1 (4)C20—C19—C23113.3 (4)
N8—C9—C4126.5 (4)N14—C19—C22113.6 (4)
C5—N10—C12121.8 (3)C20—C19—C2285.2 (3)
C5—N10—C11118.8 (3)C23—C19—C22113.6 (3)
C12—N10—C11119.4 (3)O21—C20—C1991.4 (3)
N10—C11—H11A109.5O21—C20—H20A113.4
N10—C11—H11B109.5C19—C20—H20A113.4
H11A—C11—H11B109.5O21—C20—H20B113.4
N10—C11—H11C109.5C19—C20—H20B113.4
H11A—C11—H11C109.5H20A—C20—H20B110.7
H11B—C11—H11C109.5C22—O21—C2090.6 (3)
N10—C12—C13114.1 (3)O21—C22—C1990.9 (3)
N10—C12—C17114.3 (3)O21—C22—H22A113.5
C13—C12—C17110.9 (3)C19—C22—H22A113.5
N10—C12—H12105.5O21—C22—H22B113.5
C13—C12—H12105.5C19—C22—H22B113.5
C17—C12—H12105.5H22A—C22—H22B110.8
N14—C13—C12112.9 (4)C24—C23—C19112.2 (4)
N14—C13—H13A109.0C24—C23—H23A109.2
C12—C13—H13A109.0C19—C23—H23A109.2
N14—C13—H13B109.0C24—C23—H23B109.2
C12—C13—H13B109.0C19—C23—H23B109.2
H13A—C13—H13B107.8H23A—C23—H23B107.9
C19—N14—C15114.1 (3)N25—C24—C23178.8 (5)
C19—N14—C13113.0 (3)H1L1—O1L—H1L2111.5
C15—N14—C13109.8 (3)H1L1—O1L—H2L152.4
N14—C15—C16108.8 (3)H1L2—O1L—H2L1135.9
N14—C15—H15A109.9H1L1—O2L—H2L186.4
C16—C15—H15A109.9H1L1—O2L—H2L2153.9
N14—C15—H15B109.9H2L1—O2L—H2L2102.0
C16—C15—H15B109.9
C9—N1—C2—C30.2 (5)C12—C13—N14—C19169.0 (3)
N1—C2—C3—C40.2 (5)C12—C13—N14—C1562.3 (4)
C2—C3—C4—C90.5 (5)C19—N14—C15—C16167.6 (4)
C2—C3—C4—C5174.8 (5)C13—N14—C15—C1664.4 (4)
C9—C4—C5—N10174.1 (4)N14—C15—C16—C1758.3 (5)
C3—C4—C5—N100.2 (8)C15—C16—C17—C18175.4 (4)
C9—C4—C5—N63.7 (6)C15—C16—C17—C1248.6 (5)
C3—C4—C5—N6177.5 (5)N10—C12—C17—C1839.5 (5)
N10—C5—N6—C7175.4 (4)C13—C12—C17—C18170.1 (4)
C4—C5—N6—C72.6 (6)N10—C12—C17—C1686.7 (4)
C5—N6—C7—N80.7 (7)C13—C12—C17—C1644.0 (5)
N6—C7—N8—C90.1 (7)C15—N14—C19—C20166.0 (4)
C2—N1—C9—N8179.3 (4)C13—N14—C19—C2067.7 (5)
C2—N1—C9—C40.5 (5)C15—N14—C19—C2361.8 (5)
C7—N8—C9—N1178.2 (4)C13—N14—C19—C2364.6 (5)
C7—N8—C9—C41.5 (6)C15—N14—C19—C2270.7 (5)
C5—C4—C9—N1176.4 (4)C13—N14—C19—C22162.9 (3)
C3—C4—C9—N10.7 (5)N14—C19—C20—O21123.8 (4)
C5—C4—C9—N83.3 (6)C23—C19—C20—O21103.5 (4)
C3—C4—C9—N8179.1 (4)C22—C19—C20—O2110.2 (3)
N6—C5—N10—C121.8 (6)C19—C20—O21—C2210.7 (3)
C4—C5—N10—C12179.6 (4)C20—O21—C22—C1910.6 (3)
N6—C5—N10—C11178.5 (4)N14—C19—C22—O21124.0 (4)
C4—C5—N10—C110.6 (6)C20—C19—C22—O2110.2 (3)
C5—N10—C12—C13125.6 (4)C23—C19—C22—O21103.2 (4)
C11—N10—C12—C1354.6 (5)N14—C19—C23—C24176.8 (4)
C5—N10—C12—C17105.3 (4)C20—C19—C23—C2444.4 (5)
C11—N10—C12—C1774.5 (5)C22—C19—C23—C2450.7 (5)
N10—C12—C13—N1479.8 (4)C19—C23—C24—N2512 (26)
C17—C12—C13—N1451.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1L0.881.902.783 (8)178
N1—H1···O2L0.882.062.816 (7)144
O1L—H1L2···N8i0.842.272.868 (8)129
O2L—H2L2···N8i0.842.202.733 (7)121
O2L—H2L2···N25ii0.842.433.026 (10)129
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1L0.881.902.783 (8)178
N1—H1···O2L0.882.062.816 (7)144
O1L—H1L2···N8i0.842.272.868 (8)129
O2L—H2L2···N8i0.842.202.733 (7)121
O2L—H2L2···N25ii0.842.433.026 (10)129
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors thank Michael Forster for fruitful discussions and suggestions and acknowledge support by the Deutsche Forschungsgemeinschaft and the Open Access Publishing Fund of Tuebingen University.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlanagan, M. E., Blumenkopf, T. A., Brissette, W. H., Brown, M. F., Casavant, J. M., Shang-Poa, C., Doty, J. L., Elliott, E. A., Fisher, M. B., Hines, M., Kent, C., Kudlacz, E. M., Lillie, B. M., Magnuson, K. S., McCurdy, S. P., Munchhof, M. J., Perry, B. D., Sawyer, P. S., Strelevitz, T. J., Subramanyam, C., Sun, J., Whipple, D. A. & Changelian, P. S. (2010). J. Med. Chem. 53, 8468–8484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGehringer, M., Pfaffenrot, E., Bauer, S. & Laufer, S. A. (2014). ChemMedChem, 9, 277–281.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuai, K. & Liu, B. (2003). Nat. Rev. Immunol. 3, 900–911.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2010). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWuitschik, G., Carreira, E. M., Wagner, B., Fischer, H., Parrilla, I., Schuler, F., Rogers-Evans, M. & Mueller, K. J. (2010). J. Med. Chem. 53, 3227–3246.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o382-o383
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds