organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o436-o437

Methyl 2-((2Z,5Z)-4-oxo-3-phenyl-2-{2-[(1E)-1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene]hydrazin-1-yl­­idene}-1,3-thia­zolidin-5-yl­­idene)acetate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 6 March 2014; accepted 7 March 2014; online 15 March 2014)

In the title compound, C22H19N3O3S, the six-membered ring of the 1,2,3,4-tetra­hydro­naphthalene ring system adopts an envelope conformation with the central CH2 C atom as the flap. The mol­ecular conformation is stabilized by an S⋯O contact, forming a pseudo-five-membered ring. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds into chains propagating along [102].

Related literature

For the synthesis of thia­zolidinediones, see: Patel et al. (2010[Patel, D., Kumari, P. & Patel, N. (2010). Arch. Appl. Sci. Res. 2, 68-75.]); Aneja et al. (2011[Aneja, D. K., Lohan, P., Arora, S., Sharma, C., Aneja, K. R. & Prakash, O. (2011). Org. Med. Chem. Lett. 1, 1-11.]). For pharmacological properties of thia­zolidinedione-containing compounds, see: Gillies & Dunn (2000[Gillies, P. S. & Dunn, C. J. (2000). Drugs, 60, 333-343.]); Lenhard & Funk (2001[Lenhard, M. J. & Funk, W. B. (2001). Diabetes Care, 24, 168-169.]); Edelman (2003[Edelman, S. V. (2003). Rev. Cardiovasc. Med. 4, S29-S37.]); Desmet et al. (2005[Desmet, C., Warze'e, B., Gosset, P., Me'lotte, D., Rongvaux, A., Gillet, L., Fie'vez, L., Seumois, G., Vanderplasschen, A., Staels, B., Lekeux, P. & Bureau, F. (2005). Biochem. Pharmacol. 69, 255-265.]). For ring conformation, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of the title compound, see: Mague et al. (2014[Mague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o366-o367.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19N3O3S

  • Mr = 405.47

  • Triclinic, [P \overline 1]

  • a = 9.7078 (6) Å

  • b = 9.7134 (6) Å

  • c = 11.1061 (7) Å

  • α = 67.9810 (9)°

  • β = 88.8400 (9)°

  • γ = 85.9840 (9)°

  • V = 968.47 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 150 K

  • 0.28 × 0.16 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.83, Tmax = 0.98

  • 17735 measured reflections

  • 4994 independent reflections

  • 4325 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.05

  • 4994 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.59 3.3704 (18) 140
C11—H11B⋯N2 0.99 2.38 2.7466 (18) 101
C20—H20⋯O3ii 0.95 2.56 3.4591 (16) 159
C22—H22C⋯O1ii 0.98 2.52 3.4397 (18) 157
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolidinediones (TZDs) are a pharmacological group of structurally related compounds characterized by a thiazolidinedione ring to which divergent molecular moieties are attached. Many methods have been reoprted for the synthesis of thiazolidinedione-containing compounds and their analogues (Patel et al., 2010; Aneja et al., 2011). The most beneficial effects of TZDs such as rosiglitazone and pioglitazone is the treatment of type II diabetes by lowering blood glucose levels via increasing insulin sensitivity with no hepatic side effects (Gillies & Dunn, 2000; Lenhard & Funk, 2001). They were shown also to reduce cardiovascular risk factors associated with this condition (Edelman, 2003). Recently, an anti-inflammatory potential for TZDs has also been suggested (Desmet et al., 2005). In this context we synthesized the title compound as part of our on-going study in synthesis and biological reactivities of thiazolidinedione scaffold compounds.

In the title compound, (Fig. 1), a puckering analysis (Cremer & Pople, 1975) of the six-membered ring C10/C11/C12/C13/C14/C19 indicates it to adopt the "envelope" conformation with puckering parameters QT = 0.4855 (17) Å, θ = 126.50 (19)° and ϕ = 296.6 (2)°. The 1,3-thiazolidine ring (S1/N1/C1—C3) make dihedral angles of 12.22 (7) and 85.72 (6) °, respectively, with the benzene ring (C14–C19) of the 1,2,3,4-tetrahydronaphthalene ring system and the phenyl ring (C4–C9). The C3–N2–N3–C10, C2–C20–C21–O3 and C20–C21–O3–C22 torsion angles are 179.44 (11), 176.24 (12) and -177.15 (11) °, respectively.

The molecular conformation of the title compound is stabilized by a S1···O2 contact forming a pseudo five-membered ring. In the crystal packing, C—H···O hydrogen bonds connect the molecules generating chains running along [1 0 2] (Table 1, Fig. 2).

Related literature top

For the synthesis of thiazolidinediones, see: Patel et al. (2010); Aneja et al. (2011). For pharmacological properties of thiazolidinedione-containing compounds, see: Gillies & Dunn (2000); Lenhard & Funk (2001); Edelman (2003); Desmet et al. (2005). For ring conformation, see: Cremer & Pople (1975). For the synthesis of the title compound, see: Mague et al. (2014).

Experimental top

The title compound was synthesized based on our previous reported method (Mague et al., 2014). Orange crystals (m.p.501–503 K) suitable for X-ray analysis were grown from an ethanolic solution at room temperature after two days.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95–0.99 Å, with Uiso(H) = 1.2 or 1.5 Uiso(C).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing and hydrogen-bonding interactions of the title compound viewed down the a axis. H atoms not involved in H bonding are omitted for clarity.
Methyl 2-((2Z,5Z)-4-oxo-3-phenyl-2-{2-[(1E)-1,2,3,4-tetrahydronaphthalen-1-ylidene]hydrazin-1-ylidene}-1,3-thiazolidin-5-ylidene)acetate top
Crystal data top
C22H19N3O3SZ = 2
Mr = 405.47F(000) = 424
Triclinic, P1Dx = 1.390 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7078 (6) ÅCell parameters from 9980 reflections
b = 9.7134 (6) Åθ = 2.3–29.2°
c = 11.1061 (7) ŵ = 0.20 mm1
α = 67.9810 (9)°T = 150 K
β = 88.8400 (9)°Thick plate, orange
γ = 85.9840 (9)°0.28 × 0.16 × 0.09 mm
V = 968.47 (10) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4994 independent reflections
Radiation source: fine-focus sealed tube4325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.3660 pixels mm-1θmax = 29.2°, θmin = 2.0°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1313
Tmin = 0.83, Tmax = 0.98l = 1415
17735 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.3384P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4994 reflectionsΔρmax = 0.39 e Å3
263 parametersΔρmin = 0.30 e Å3
Crystal data top
C22H19N3O3Sγ = 85.9840 (9)°
Mr = 405.47V = 968.47 (10) Å3
Triclinic, P1Z = 2
a = 9.7078 (6) ÅMo Kα radiation
b = 9.7134 (6) ŵ = 0.20 mm1
c = 11.1061 (7) ÅT = 150 K
α = 67.9810 (9)°0.28 × 0.16 × 0.09 mm
β = 88.8400 (9)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4994 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
4325 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.98Rint = 0.036
17735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.39 e Å3
4994 reflectionsΔρmin = 0.30 e Å3
263 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52540 (3)0.95022 (3)0.67094 (3)0.0188 (1)
O10.76785 (10)0.63932 (11)0.62875 (11)0.0310 (3)
O20.66788 (9)1.19374 (10)0.53017 (10)0.0249 (3)
O30.88571 (9)1.18392 (10)0.45791 (10)0.0255 (3)
N10.56204 (10)0.66168 (12)0.72779 (11)0.0189 (3)
N20.34944 (11)0.73712 (12)0.79413 (11)0.0200 (3)
N30.27229 (11)0.87024 (12)0.78071 (11)0.0209 (3)
C10.67901 (13)0.71539 (14)0.65725 (13)0.0208 (3)
C20.67731 (12)0.88043 (14)0.62092 (13)0.0192 (3)
C30.46688 (12)0.76959 (14)0.74001 (12)0.0178 (3)
C40.52709 (12)0.50951 (14)0.76333 (13)0.0185 (3)
C50.46558 (14)0.47045 (15)0.67052 (13)0.0237 (3)
C60.42866 (15)0.32512 (16)0.70419 (15)0.0286 (4)
C70.45075 (15)0.22246 (15)0.82939 (15)0.0274 (4)
C80.51370 (15)0.26328 (15)0.92091 (14)0.0267 (4)
C90.55316 (14)0.40784 (15)0.88794 (13)0.0234 (4)
C100.15034 (12)0.85321 (14)0.83051 (12)0.0188 (3)
C110.09413 (14)0.70582 (15)0.90877 (14)0.0251 (4)
C120.06198 (15)0.71071 (17)0.89171 (16)0.0333 (5)
C130.13270 (15)0.83434 (19)0.92826 (16)0.0363 (5)
C140.07537 (14)0.98191 (17)0.85397 (14)0.0271 (4)
C150.15709 (16)1.1146 (2)0.82824 (16)0.0369 (5)
C160.10746 (18)1.25107 (19)0.75859 (17)0.0400 (5)
C170.02647 (18)1.25928 (18)0.71144 (17)0.0379 (5)
C180.10916 (15)1.12992 (16)0.73521 (15)0.0289 (4)
C190.06062 (13)0.99048 (15)0.80716 (13)0.0216 (3)
C200.78083 (13)0.96017 (14)0.55569 (13)0.0219 (4)
C210.77041 (13)1.12321 (14)0.51469 (13)0.0210 (3)
C220.88037 (15)1.34487 (15)0.40941 (15)0.0282 (4)
H50.448800.541800.585200.0280*
H60.388100.296100.641000.0340*
H70.422800.124000.852700.0330*
H80.529900.192201.006400.0320*
H90.597200.436100.949900.0280*
H11A0.116200.679201.001700.0300*
H11B0.139000.627900.881100.0300*
H12A0.084000.728300.800300.0400*
H12B0.096700.613900.947400.0400*
H13A0.232900.841200.910300.0440*
H13B0.120300.809701.022500.0440*
H150.249101.110200.859600.0440*
H160.164801.339500.742800.0480*
H170.061101.353200.663100.0450*
H180.200501.135800.702100.0350*
H200.861200.911300.535800.0260*
H22A0.848701.379100.478400.0420*
H22B0.816101.385800.335600.0420*
H22C0.972601.378600.381400.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0177 (2)0.0149 (2)0.0232 (2)0.0008 (1)0.0016 (1)0.0071 (1)
O10.0221 (5)0.0214 (5)0.0509 (7)0.0001 (4)0.0105 (4)0.0159 (5)
O20.0224 (4)0.0198 (5)0.0310 (5)0.0003 (4)0.0032 (4)0.0081 (4)
O30.0204 (4)0.0180 (5)0.0359 (6)0.0037 (4)0.0039 (4)0.0075 (4)
N10.0172 (5)0.0147 (5)0.0251 (5)0.0007 (4)0.0011 (4)0.0082 (4)
N20.0197 (5)0.0161 (5)0.0242 (6)0.0011 (4)0.0011 (4)0.0080 (4)
N30.0198 (5)0.0170 (5)0.0258 (6)0.0012 (4)0.0021 (4)0.0086 (4)
C10.0174 (5)0.0184 (6)0.0269 (7)0.0008 (5)0.0006 (5)0.0090 (5)
C20.0173 (5)0.0175 (6)0.0232 (6)0.0013 (4)0.0009 (4)0.0085 (5)
C30.0190 (5)0.0153 (5)0.0189 (6)0.0019 (4)0.0021 (4)0.0067 (5)
C40.0158 (5)0.0145 (6)0.0255 (6)0.0007 (4)0.0032 (4)0.0082 (5)
C50.0269 (6)0.0208 (6)0.0230 (6)0.0017 (5)0.0002 (5)0.0079 (5)
C60.0331 (7)0.0254 (7)0.0317 (8)0.0063 (6)0.0014 (6)0.0150 (6)
C70.0312 (7)0.0177 (6)0.0351 (8)0.0037 (5)0.0070 (6)0.0118 (6)
C80.0310 (7)0.0187 (6)0.0268 (7)0.0020 (5)0.0032 (5)0.0051 (5)
C90.0238 (6)0.0210 (6)0.0255 (7)0.0015 (5)0.0009 (5)0.0093 (5)
C100.0196 (6)0.0175 (6)0.0202 (6)0.0001 (5)0.0006 (4)0.0084 (5)
C110.0232 (6)0.0197 (6)0.0282 (7)0.0013 (5)0.0050 (5)0.0046 (5)
C120.0234 (7)0.0295 (8)0.0400 (9)0.0071 (6)0.0032 (6)0.0042 (6)
C130.0218 (7)0.0440 (9)0.0346 (8)0.0017 (6)0.0088 (6)0.0061 (7)
C140.0227 (6)0.0355 (8)0.0237 (7)0.0064 (6)0.0008 (5)0.0132 (6)
C150.0289 (7)0.0483 (10)0.0359 (8)0.0159 (7)0.0031 (6)0.0216 (8)
C160.0446 (9)0.0360 (9)0.0442 (10)0.0217 (7)0.0139 (7)0.0239 (8)
C170.0476 (9)0.0214 (7)0.0460 (10)0.0071 (7)0.0107 (7)0.0153 (7)
C180.0293 (7)0.0211 (7)0.0382 (8)0.0016 (5)0.0029 (6)0.0137 (6)
C190.0213 (6)0.0216 (6)0.0243 (6)0.0035 (5)0.0020 (5)0.0120 (5)
C200.0185 (6)0.0193 (6)0.0276 (7)0.0005 (5)0.0003 (5)0.0088 (5)
C210.0202 (6)0.0193 (6)0.0226 (6)0.0026 (5)0.0001 (5)0.0066 (5)
C220.0257 (6)0.0179 (6)0.0379 (8)0.0050 (5)0.0038 (6)0.0066 (6)
Geometric parameters (Å, º) top
S1—C21.7470 (13)C14—C191.4054 (19)
S1—C31.7614 (14)C15—C161.376 (3)
O1—C11.2104 (17)C16—C171.388 (2)
O2—C211.2147 (16)C17—C181.383 (2)
O3—C211.3354 (16)C18—C191.399 (2)
O3—C221.4475 (19)C20—C211.471 (2)
N1—C11.3841 (17)C5—H50.9500
N1—C31.3916 (18)C6—H60.9500
N1—C41.4433 (19)C7—H70.9500
N2—N31.4069 (17)C8—H80.9500
N2—C31.2810 (16)C9—H90.9500
N3—C101.2912 (16)C11—H11A0.9900
C1—C21.498 (2)C11—H11B0.9900
C2—C201.3392 (18)C12—H12A0.9900
C4—C51.383 (2)C12—H12B0.9900
C4—C91.3817 (19)C13—H13A0.9900
C5—C61.390 (2)C13—H13B0.9900
C6—C71.384 (2)C15—H150.9500
C7—C81.388 (2)C16—H160.9500
C8—C91.392 (2)C17—H170.9500
C10—C111.503 (2)C18—H180.9500
C10—C191.480 (2)C20—H200.9500
C11—C121.526 (2)C22—H22A0.9800
C12—C131.522 (3)C22—H22B0.9800
C13—C141.501 (2)C22—H22C0.9800
C14—C151.401 (3)
C2—S1—C390.54 (6)O3—C21—C20112.24 (11)
C21—O3—C22115.22 (11)C4—C5—H5121.00
C1—N1—C3115.28 (12)C6—C5—H5121.00
C1—N1—C4122.38 (11)C5—C6—H6120.00
C3—N1—C4121.19 (10)C7—C6—H6120.00
N3—N2—C3108.54 (11)C6—C7—H7120.00
N2—N3—C10114.88 (12)C8—C7—H7120.00
O1—C1—N1124.49 (13)C7—C8—H8120.00
O1—C1—C2125.72 (12)C9—C8—H8120.00
N1—C1—C2109.78 (11)C4—C9—H9121.00
S1—C2—C1111.61 (9)C8—C9—H9121.00
S1—C2—C20126.19 (12)C10—C11—H11A109.00
C1—C2—C20122.19 (12)C10—C11—H11B109.00
S1—C3—N1112.60 (9)C12—C11—H11A109.00
S1—C3—N2125.31 (11)C12—C11—H11B109.00
N1—C3—N2122.08 (13)H11A—C11—H11B108.00
N1—C4—C5118.25 (12)C11—C12—H12A110.00
N1—C4—C9119.99 (12)C11—C12—H12B110.00
C5—C4—C9121.75 (13)C13—C12—H12A110.00
C4—C5—C6118.88 (13)C13—C12—H12B110.00
C5—C6—C7120.30 (14)H12A—C12—H12B108.00
C6—C7—C8120.01 (14)C12—C13—H13A109.00
C7—C8—C9120.27 (13)C12—C13—H13B109.00
C4—C9—C8118.76 (13)C14—C13—H13A109.00
N3—C10—C11124.91 (13)C14—C13—H13B109.00
N3—C10—C19116.60 (12)H13A—C13—H13B108.00
C11—C10—C19118.49 (11)C14—C15—H15119.00
C10—C11—C12111.39 (12)C16—C15—H15119.00
C11—C12—C13110.22 (13)C15—C16—H16120.00
C12—C13—C14111.71 (13)C17—C16—H16120.00
C13—C14—C15120.61 (13)C16—C17—H17120.00
C13—C14—C19120.99 (14)C18—C17—H17120.00
C15—C14—C19118.40 (15)C17—C18—H18119.00
C14—C15—C16121.64 (15)C19—C18—H18119.00
C15—C16—C17119.89 (17)C2—C20—H20120.00
C16—C17—C18119.62 (17)C21—C20—H20120.00
C17—C18—C19121.12 (14)O3—C22—H22A109.00
C10—C19—C14120.36 (13)O3—C22—H22B109.00
C10—C19—C18120.29 (12)O3—C22—H22C109.00
C14—C19—C18119.32 (14)H22A—C22—H22B109.00
C2—C20—C21120.19 (12)H22A—C22—H22C109.00
O2—C21—O3124.27 (13)H22B—C22—H22C110.00
O2—C21—C20123.49 (12)
C3—S1—C2—C11.03 (10)C9—C4—C5—C60.3 (2)
C3—S1—C2—C20179.69 (13)N1—C4—C9—C8177.63 (12)
C2—S1—C3—N11.64 (10)C5—C4—C9—C81.3 (2)
C2—S1—C3—N2177.12 (12)C4—C5—C6—C71.3 (2)
C22—O3—C21—O22.31 (19)C5—C6—C7—C81.9 (2)
C22—O3—C21—C20177.15 (11)C6—C7—C8—C90.9 (2)
C3—N1—C1—O1174.48 (13)C7—C8—C9—C40.7 (2)
C3—N1—C1—C24.83 (15)N3—C10—C11—C12149.23 (14)
C4—N1—C1—O16.7 (2)C19—C10—C11—C1230.49 (17)
C4—N1—C1—C2172.65 (11)N3—C10—C19—C14177.77 (13)
C1—N1—C3—S14.18 (14)N3—C10—C19—C180.49 (19)
C1—N1—C3—N2174.63 (12)C11—C10—C19—C141.97 (19)
C4—N1—C3—S1172.16 (9)C11—C10—C19—C18179.77 (13)
C4—N1—C3—N26.65 (19)C10—C11—C12—C1356.61 (16)
C1—N1—C4—C579.47 (16)C11—C12—C13—C1454.64 (17)
C1—N1—C4—C9101.58 (15)C12—C13—C14—C15152.42 (15)
C3—N1—C4—C587.64 (16)C12—C13—C14—C1926.8 (2)
C3—N1—C4—C991.31 (15)C13—C14—C15—C16178.97 (16)
C3—N2—N3—C10179.44 (11)C19—C14—C15—C160.2 (2)
N3—N2—C3—S14.12 (16)C13—C14—C19—C100.0 (2)
N3—N2—C3—N1174.53 (11)C13—C14—C19—C18178.25 (14)
N2—N3—C10—C115.64 (19)C15—C14—C19—C10179.24 (13)
N2—N3—C10—C19174.09 (11)C15—C14—C19—C181.0 (2)
O1—C1—C2—S1175.85 (12)C14—C15—C16—C170.3 (3)
O1—C1—C2—C202.9 (2)C15—C16—C17—C180.2 (3)
N1—C1—C2—S13.45 (14)C16—C17—C18—C190.6 (3)
N1—C1—C2—C20177.83 (12)C17—C18—C19—C10179.44 (14)
S1—C2—C20—C212.6 (2)C17—C18—C19—C141.2 (2)
C1—C2—C20—C21175.97 (12)C2—C20—C21—O24.3 (2)
N1—C4—C5—C6178.63 (12)C2—C20—C21—O3176.24 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.593.3704 (18)140
C11—H11B···N20.992.382.7466 (18)101
C20—H20···O3ii0.952.563.4591 (16)159
C22—H22C···O1ii0.982.523.4397 (18)157
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H19N3O3S
Mr405.47
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.7078 (6), 9.7134 (6), 11.1061 (7)
α, β, γ (°)67.9810 (9), 88.8400 (9), 85.9840 (9)
V3)968.47 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.28 × 0.16 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.83, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
17735, 4994, 4325
Rint0.036
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.05
No. of reflections4994
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.593.3704 (18)140
C11—H11B···N20.992.382.7466 (18)101
C20—H20···O3ii0.952.563.4591 (16)159
C22—H22C···O1ii0.982.523.4397 (18)157
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1.
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.

References

First citationAneja, D. K., Lohan, P., Arora, S., Sharma, C., Aneja, K. R. & Prakash, O. (2011). Org. Med. Chem. Lett. 1, 1–11.  CrossRef PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesmet, C., Warze'e, B., Gosset, P., Me'lotte, D., Rongvaux, A., Gillet, L., Fie'vez, L., Seumois, G., Vanderplasschen, A., Staels, B., Lekeux, P. & Bureau, F. (2005). Biochem. Pharmacol. 69, 255–265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdelman, S. V. (2003). Rev. Cardiovasc. Med. 4, S29–S37.  PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGillies, P. S. & Dunn, C. J. (2000). Drugs, 60, 333–343.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLenhard, M. J. & Funk, W. B. (2001). Diabetes Care, 24, 168–169.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o366–o367.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, D., Kumari, P. & Patel, N. (2010). Arch. Appl. Sci. Res. 2, 68–75.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o436-o437
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds