organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(1S,6R,7S,9R)-8,8-Di­bromo-5,5,9-tri­methyl­tri­cyclo­[4.4.0.17,9]decan-1-yl]ethanone

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences, Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Battouta, Rabat, Morocco
*Correspondence e-mail: berraho@uca.ma

(Received 6 March 2014; accepted 10 March 2014; online 15 March 2014)

The title compound, C16H24Br2O, was synthesized by three steps from β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from essential oil of the Atlas cedar cedrus atlantica. The asymmetric unit contains two independent mol­ecules with almost identical conformations. Each mol­ecule is built up from two fused six-membered rings, one having a chair conformation and the other a boat conformation, and an additional three-membered ring arising from the reaction of himachalene with di­bromo­carbene. In the crystal, there are no significant intermolecular interactions present. The absolute structure of the title compound was confirmed by resonance scattering.

Related literature

For background to the reactivity and biological properties of β-himachalene, see: El Haib et al. (2011[El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101-108.]); El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]); Daoubi et al. (2004[Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927-932.]). For a related structure, see: Benharref et al. (2013[Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933-o934.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24Br2O

  • Mr = 392.17

  • Orthorhombic, P 21 21 21

  • a = 13.5013 (19) Å

  • b = 14.042 (2) Å

  • c = 17.213 (3) Å

  • V = 3263.3 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.96 mm−1

  • T = 298 K

  • 0.5 × 0.03 × 0.03 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) Tmin = 0.557, Tmax = 0.747

  • 22468 measured reflections

  • 6542 independent reflections

  • 5262 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.060

  • S = 1.02

  • 6540 reflections

  • 351 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.])

  • Absolute structure parameter: −0.005 (8)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The bicyclic sesquiterpene β-himachalene is the main constituent of the essential oil of the Atlas cedar (Cedrus atlantica) (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El Jamili et al., 2002; Benharref et al., 2013). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). In this paper we present the crystal structure of the title compound, (1S, 6R,7S, 9R)-1-acetyl-8,8-dibromo-5,5,9- trimethyltricyclo[4.4.0,17,9]decane. The asymmetric unit of the title compound contains two independent molecules of similar geometry (Fig. 1). Each molecule contains two fused six-membered rings, which are fused to a three-membered ring as shown in Fig.1. In both molecules, one of the six-membered ring has a chair conformation as indicated by the total puckering amplitude QT = 0.543 (4) Å and spherical polar angle θ2 = 177.7 (4)° with ϕ2 = 1(11)°, whereas the other six-membered ring displays a boat conformation with QT = 0.725 (3) Å, θ2 = 92.2 (2)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter as C1(S), C6(R), C7(S) and C9(R).

Related literature top

For background to the reactivity and biological properties of β-himachalene, see: El Haib et al. (2011); El Jamili et al. (2002); Daoubi et al. (2004). For a related structure, see: Benharref et al. (2013). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

To obtain the title compound, BF3–Et2O (1 ml) was added dropwise to a solution of (1S,2R,7R,8S,10R)-9,9-dibromo- 1α, 2α- epoxy -2, 6, 6, 10-tetramethyltricyclo [5.5.0.08,10] dodecane (1 g, 2.5 mmol) in 60 ml of dichloromethane at 195 K under nitrogen. The reaction mixture was stirred for two hours at a constant temperature of 195 K and the left at ambient temperature for 24 h. Water (60 ml) was added in order to separate the two phases, and the organic phase was dried and concentrated. The residue obtained was chromatographed on silica-gel eluting with hexane-ethyle acetate (98/2), which allowed the isolation of pure(1S, 6R,7S, 9R)-12-acetyl- 8,8-dibromo-5,5,9-trimethyltricyclo[4.4.0,17,9]decane in a yield of 70% (686 mg, 1.75 mmol). The title compound was recrystallized from its cyclohexane solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq (methyl).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. : Perspective view of one of the two molecules in the asymmetric unit of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
1-[(1S,6R,7S,9R)-8,8-Dibromo-5,5,9-trimethyltricyclo[4.4.0.17,9]decan-1-yl]ethanone top
Crystal data top
C16H24Br2ODx = 1.596 Mg m3
Mr = 392.17Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6542 reflections
a = 13.5013 (19) Åθ = 2.4–26.4°
b = 14.042 (2) ŵ = 4.96 mm1
c = 17.213 (3) ÅT = 298 K
V = 3263.3 (8) Å3Block, colourless
Z = 80.5 × 0.03 × 0.03 mm
F(000) = 1584
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
6542 independent reflections
Radiation source: fine-focus sealed tube5262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1516
Tmin = 0.557, Tmax = 0.747k = 1217
22468 measured reflectionsl = 1721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0104P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6540 reflectionsΔρmax = 0.27 e Å3
351 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (8)
Crystal data top
C16H24Br2OV = 3263.3 (8) Å3
Mr = 392.17Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 13.5013 (19) ŵ = 4.96 mm1
b = 14.042 (2) ÅT = 298 K
c = 17.213 (3) Å0.5 × 0.03 × 0.03 mm
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
6542 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5262 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 0.747Rint = 0.040
22468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.060Δρmax = 0.27 e Å3
S = 1.02Δρmin = 0.39 e Å3
6540 reflectionsAbsolute structure: Flack & Bernardinelli (2000)
351 parametersAbsolute structure parameter: 0.005 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7516 (2)1.0732 (2)0.03701 (18)0.0342 (8)
C20.6483 (3)1.1166 (3)0.0456 (2)0.0518 (10)
H2A0.65081.16580.08510.062*
H2B0.60321.06760.06360.062*
C30.6068 (3)1.1596 (3)0.0284 (2)0.0628 (12)
H3A0.64651.21420.04310.075*
H3B0.53981.18150.01890.075*
C40.6060 (3)1.0889 (3)0.0941 (2)0.0544 (10)
H4A0.56001.03790.08190.065*
H4B0.58271.12020.14090.065*
C50.7090 (2)1.0460 (3)0.10960 (19)0.0394 (9)
C60.7513 (2)1.0035 (2)0.03386 (15)0.0250 (7)
H60.82040.98640.04420.030*
C70.6976 (2)0.9125 (2)0.01156 (17)0.0298 (8)
H70.62640.91240.02280.036*
C80.7455 (2)0.8170 (2)0.01354 (18)0.0329 (8)
C90.7266 (2)0.8636 (2)0.06406 (17)0.0320 (8)
C100.8094 (2)0.9159 (2)0.1044 (2)0.0393 (9)
H10A0.82160.88770.15490.047*
H10B0.86960.91140.07390.047*
C110.7797 (3)1.0195 (3)0.11368 (18)0.0435 (9)
H11A0.72351.02250.14880.052*
H11B0.83401.05320.13820.052*
C120.8323 (3)1.1502 (3)0.0304 (2)0.0452 (9)
C130.9368 (3)1.1193 (3)0.0122 (2)0.0568 (11)
H13A0.98241.15490.04370.085*
H13B0.94391.05260.02310.085*
H13C0.95061.13090.04170.085*
C140.7777 (3)1.1229 (3)0.1434 (2)0.0547 (11)
H14A0.74921.14790.19020.082*
H14B0.78551.17340.10620.082*
H14C0.84121.09550.15470.082*
C150.6990 (3)0.9672 (3)0.1702 (2)0.0553 (11)
H15A0.65510.91880.15120.083*
H15B0.67280.99350.21750.083*
H15C0.76290.93980.18020.083*
C160.6480 (3)0.8239 (3)0.1165 (2)0.0517 (10)
H16A0.67380.76970.14380.077*
H16B0.62820.87170.15320.077*
H16C0.59180.80490.08610.077*
Br10.87872 (2)0.80148 (3)0.05270 (2)0.04524 (10)
Br20.66521 (3)0.71109 (3)0.04601 (3)0.05635 (12)
O10.8142 (2)1.23284 (19)0.04537 (18)0.0746 (9)
C170.8403 (2)0.5321 (2)0.30776 (18)0.0353 (8)
C180.9200 (3)0.4590 (3)0.3290 (2)0.0536 (11)
H18A0.96380.48720.36740.064*
H18B0.88810.40460.35310.064*
C190.9822 (3)0.4239 (3)0.2615 (2)0.0645 (12)
H19A1.02140.47620.24120.077*
H19B1.02740.37500.27960.077*
C200.9176 (3)0.3837 (3)0.1974 (2)0.0532 (10)
H20A0.88360.32760.21660.064*
H20B0.95930.36430.15430.064*
C210.8409 (2)0.4558 (2)0.16839 (19)0.0358 (8)
C220.7784 (2)0.4940 (2)0.23762 (17)0.0297 (7)
H220.73970.54790.21780.036*
C230.7047 (2)0.4204 (2)0.26590 (18)0.0319 (8)
H230.72820.35440.26480.038*
C240.5956 (2)0.4328 (2)0.25512 (19)0.0365 (8)
C250.6391 (2)0.4460 (2)0.33457 (19)0.0331 (8)
C260.6622 (2)0.5442 (3)0.3653 (2)0.0411 (9)
H26A0.62580.55540.41300.049*
H26B0.64260.59200.32760.049*
C270.7733 (2)0.5508 (3)0.38072 (18)0.0437 (9)
H27A0.79060.50520.42080.052*
H27B0.78800.61390.40070.052*
C280.8851 (3)0.6296 (3)0.2910 (2)0.0501 (10)
C290.8180 (3)0.7092 (3)0.2652 (2)0.0614 (11)
H29A0.85070.76910.27290.092*
H29B0.75800.70770.29510.092*
H29C0.80240.70140.21120.092*
C300.8932 (3)0.5378 (3)0.1257 (2)0.0517 (10)
H30A0.93710.56990.16090.078*
H30B0.84460.58200.10670.078*
H30C0.93050.51280.08280.078*
C310.7714 (3)0.4076 (3)0.1084 (2)0.0541 (11)
H31A0.80920.38800.06400.081*
H31B0.72130.45210.09250.081*
H31C0.74060.35300.13170.081*
C320.6193 (3)0.3715 (3)0.3973 (2)0.0520 (10)
H32A0.55590.38330.42060.078*
H32B0.66990.37510.43640.078*
H32C0.61960.30910.37440.078*
Br30.54217 (3)0.53917 (3)0.19802 (2)0.04941 (11)
Br40.51892 (3)0.32022 (3)0.23283 (2)0.06195 (13)
O20.9721 (2)0.6461 (2)0.30335 (19)0.0872 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0425 (19)0.0318 (19)0.0284 (19)0.0034 (16)0.0046 (16)0.0053 (15)
C20.060 (2)0.041 (2)0.054 (2)0.0080 (18)0.018 (2)0.009 (2)
C30.048 (2)0.052 (3)0.089 (3)0.025 (2)0.011 (2)0.007 (2)
C40.051 (2)0.049 (3)0.063 (3)0.0153 (19)0.011 (2)0.014 (2)
C50.044 (2)0.040 (2)0.0341 (19)0.0017 (17)0.0072 (16)0.0049 (18)
C60.0288 (15)0.0211 (16)0.0249 (17)0.0002 (13)0.0003 (13)0.0007 (13)
C70.0280 (17)0.030 (2)0.0310 (18)0.0021 (14)0.0019 (14)0.0011 (14)
C80.0285 (16)0.0267 (19)0.0435 (19)0.0038 (15)0.0005 (15)0.0008 (15)
C90.0354 (18)0.0330 (19)0.0277 (18)0.0013 (15)0.0005 (15)0.0085 (15)
C100.047 (2)0.041 (2)0.0297 (19)0.0038 (16)0.0077 (16)0.0060 (16)
C110.056 (2)0.043 (2)0.0315 (19)0.0121 (18)0.0011 (17)0.0059 (17)
C120.069 (3)0.034 (2)0.033 (2)0.0144 (19)0.0010 (19)0.0014 (17)
C130.054 (2)0.052 (3)0.064 (3)0.024 (2)0.006 (2)0.001 (2)
C140.067 (3)0.055 (3)0.042 (2)0.004 (2)0.003 (2)0.0179 (19)
C150.077 (3)0.060 (3)0.0290 (19)0.002 (2)0.0176 (19)0.001 (2)
C160.054 (2)0.047 (2)0.054 (2)0.0055 (19)0.0146 (19)0.0152 (19)
Br10.04248 (19)0.0378 (2)0.0554 (2)0.00669 (16)0.01088 (17)0.00135 (19)
Br20.0576 (2)0.0342 (2)0.0772 (3)0.01247 (18)0.0117 (2)0.0086 (2)
O10.108 (2)0.0304 (17)0.086 (2)0.0148 (15)0.0083 (19)0.0137 (15)
C170.0281 (16)0.042 (2)0.0356 (18)0.0008 (16)0.0081 (15)0.0005 (17)
C180.045 (2)0.069 (3)0.047 (2)0.005 (2)0.0138 (18)0.007 (2)
C190.041 (2)0.077 (3)0.075 (3)0.023 (2)0.003 (2)0.012 (2)
C200.052 (2)0.046 (2)0.061 (2)0.0181 (19)0.015 (2)0.002 (2)
C210.0389 (18)0.031 (2)0.0372 (18)0.0057 (16)0.0062 (16)0.0015 (16)
C220.0327 (17)0.0252 (18)0.0312 (17)0.0045 (14)0.0006 (14)0.0011 (14)
C230.0324 (17)0.0258 (19)0.0374 (19)0.0012 (14)0.0019 (15)0.0062 (15)
C240.0353 (18)0.0303 (19)0.044 (2)0.0014 (15)0.0059 (16)0.0011 (16)
C250.0297 (17)0.034 (2)0.0351 (18)0.0026 (15)0.0022 (14)0.0030 (16)
C260.045 (2)0.045 (2)0.0334 (19)0.0048 (18)0.0052 (16)0.0004 (17)
C270.052 (2)0.045 (2)0.034 (2)0.0074 (18)0.0054 (17)0.0005 (17)
C280.049 (2)0.054 (3)0.047 (2)0.018 (2)0.0040 (19)0.0065 (19)
C290.086 (3)0.036 (2)0.062 (2)0.009 (2)0.003 (2)0.004 (2)
C300.051 (2)0.053 (3)0.051 (2)0.000 (2)0.0137 (19)0.012 (2)
C310.061 (2)0.062 (3)0.039 (2)0.001 (2)0.006 (2)0.015 (2)
C320.055 (2)0.054 (2)0.047 (2)0.006 (2)0.009 (2)0.018 (2)
Br30.03866 (19)0.0577 (3)0.0519 (2)0.00694 (18)0.00959 (18)0.01018 (19)
Br40.0534 (2)0.0531 (3)0.0794 (3)0.0209 (2)0.0020 (2)0.0105 (2)
O20.0579 (18)0.085 (2)0.119 (3)0.0333 (18)0.020 (2)0.004 (2)
Geometric parameters (Å, º) top
C1—C21.529 (5)C17—C281.524 (5)
C1—C121.540 (5)C17—C181.532 (5)
C1—C61.564 (4)C17—C221.563 (4)
C1—C111.567 (4)C17—C271.570 (5)
C2—C31.516 (5)C18—C191.516 (5)
C2—H2A0.9700C18—H18A0.9700
C2—H2B0.9700C18—H18B0.9700
C3—C41.506 (5)C19—C201.515 (5)
C3—H3A0.9700C19—H19A0.9700
C3—H3B0.9700C19—H19B0.9700
C4—C51.539 (5)C20—C211.531 (4)
C4—H4A0.9700C20—H20A0.9700
C4—H4B0.9700C20—H20B0.9700
C5—C151.527 (5)C21—C301.538 (4)
C5—C141.537 (5)C21—C311.550 (5)
C5—C61.543 (4)C21—C221.556 (4)
C6—C71.519 (4)C22—C231.515 (4)
C6—H60.9800C22—H220.9800
C7—C81.489 (4)C23—C241.496 (4)
C7—C91.523 (4)C23—C251.520 (4)
C7—H70.9800C23—H230.9800
C8—C91.510 (4)C24—C251.500 (4)
C8—Br21.924 (3)C24—Br41.928 (3)
C8—Br11.933 (3)C24—Br31.928 (3)
C9—C161.501 (4)C25—C261.509 (5)
C9—C101.506 (4)C25—C321.528 (4)
C10—C111.517 (5)C26—C271.526 (5)
C10—H10A0.9700C26—H26A0.9700
C10—H10B0.9700C26—H26B0.9700
C11—H11A0.9700C27—H27A0.9700
C11—H11B0.9700C27—H27B0.9700
C12—O11.213 (4)C28—O21.215 (4)
C12—C131.509 (5)C28—C291.506 (5)
C13—H13A0.9600C29—H29A0.9600
C13—H13B0.9600C29—H29B0.9600
C13—H13C0.9600C29—H29C0.9600
C14—H14A0.9600C30—H30A0.9600
C14—H14B0.9600C30—H30B0.9600
C14—H14C0.9600C30—H30C0.9600
C15—H15A0.9600C31—H31A0.9600
C15—H15B0.9600C31—H31B0.9600
C15—H15C0.9600C31—H31C0.9600
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
C2—C1—C12111.9 (3)C28—C17—C18111.5 (3)
C2—C1—C6108.8 (3)C28—C17—C22112.0 (3)
C12—C1—C6112.5 (3)C18—C17—C22109.3 (3)
C2—C1—C11109.4 (3)C28—C17—C27103.3 (3)
C12—C1—C11103.3 (3)C18—C17—C27109.0 (3)
C6—C1—C11110.9 (3)C22—C17—C27111.6 (2)
C3—C2—C1114.5 (3)C19—C18—C17115.1 (3)
C3—C2—H2A108.6C19—C18—H18A108.5
C1—C2—H2A108.6C17—C18—H18A108.5
C3—C2—H2B108.6C19—C18—H18B108.5
C1—C2—H2B108.6C17—C18—H18B108.5
H2A—C2—H2B107.6H18A—C18—H18B107.5
C4—C3—C2111.8 (3)C20—C19—C18111.1 (3)
C4—C3—H3A109.3C20—C19—H19A109.4
C2—C3—H3A109.3C18—C19—H19A109.4
C4—C3—H3B109.3C20—C19—H19B109.4
C2—C3—H3B109.3C18—C19—H19B109.4
H3A—C3—H3B107.9H19A—C19—H19B108.0
C3—C4—C5112.4 (3)C19—C20—C21112.4 (3)
C3—C4—H4A109.1C19—C20—H20A109.1
C5—C4—H4A109.1C21—C20—H20A109.1
C3—C4—H4B109.1C19—C20—H20B109.1
C5—C4—H4B109.1C21—C20—H20B109.1
H4A—C4—H4B107.8H20A—C20—H20B107.9
C15—C5—C14107.7 (3)C20—C21—C30109.9 (3)
C15—C5—C4108.8 (3)C20—C21—C31109.8 (3)
C14—C5—C4109.6 (3)C30—C21—C31106.6 (3)
C15—C5—C6109.3 (3)C20—C21—C22110.2 (3)
C14—C5—C6111.6 (3)C30—C21—C22110.9 (3)
C4—C5—C6109.8 (3)C31—C21—C22109.4 (3)
C7—C6—C5111.2 (3)C23—C22—C21111.5 (3)
C7—C6—C1109.3 (2)C23—C22—C17109.7 (2)
C5—C6—C1114.7 (3)C21—C22—C17114.8 (2)
C7—C6—H6107.1C23—C22—H22106.8
C5—C6—H6107.1C21—C22—H22106.8
C1—C6—H6107.1C17—C22—H22106.8
C8—C7—C6123.0 (2)C24—C23—C22121.8 (3)
C8—C7—C960.1 (2)C24—C23—C2559.7 (2)
C6—C7—C9118.2 (3)C22—C23—C25118.1 (3)
C8—C7—H7114.8C24—C23—H23115.3
C6—C7—H7114.8C22—C23—H23115.3
C9—C7—H7114.8C25—C23—H23115.3
C7—C8—C961.0 (2)C23—C24—C2561.0 (2)
C7—C8—Br2117.2 (2)C23—C24—Br4117.3 (2)
C9—C8—Br2119.8 (2)C25—C24—Br4119.5 (2)
C7—C8—Br1120.9 (2)C23—C24—Br3121.5 (2)
C9—C8—Br1121.0 (2)C25—C24—Br3121.0 (2)
Br2—C8—Br1109.63 (15)Br4—C24—Br3109.45 (15)
C16—C9—C10115.4 (3)C24—C25—C26120.9 (3)
C16—C9—C8119.4 (3)C24—C25—C2359.4 (2)
C10—C9—C8119.5 (3)C26—C25—C23111.6 (3)
C16—C9—C7120.0 (3)C24—C25—C32119.4 (3)
C10—C9—C7111.4 (3)C26—C25—C32114.5 (3)
C8—C9—C758.8 (2)C23—C25—C32119.3 (3)
C9—C10—C11108.6 (3)C25—C26—C27108.7 (3)
C9—C10—H10A110.0C25—C26—H26A110.0
C11—C10—H10A110.0C27—C26—H26A110.0
C9—C10—H10B110.0C25—C26—H26B110.0
C11—C10—H10B110.0C27—C26—H26B110.0
H10A—C10—H10B108.3H26A—C26—H26B108.3
C10—C11—C1115.9 (3)C26—C27—C17114.6 (3)
C10—C11—H11A108.3C26—C27—H27A108.6
C1—C11—H11A108.3C17—C27—H27A108.6
C10—C11—H11B108.3C26—C27—H27B108.6
C1—C11—H11B108.3C17—C27—H27B108.6
H11A—C11—H11B107.4H27A—C27—H27B107.6
O1—C12—C13120.5 (4)O2—C28—C29119.4 (4)
O1—C12—C1120.9 (4)O2—C28—C17121.5 (4)
C13—C12—C1118.4 (3)C29—C28—C17118.9 (3)
C12—C13—H13A109.5C28—C29—H29A109.5
C12—C13—H13B109.5C28—C29—H29B109.5
H13A—C13—H13B109.5H29A—C29—H29B109.5
C12—C13—H13C109.5C28—C29—H29C109.5
H13A—C13—H13C109.5H29A—C29—H29C109.5
H13B—C13—H13C109.5H29B—C29—H29C109.5
C5—C14—H14A109.5C21—C30—H30A109.5
C5—C14—H14B109.5C21—C30—H30B109.5
H14A—C14—H14B109.5H30A—C30—H30B109.5
C5—C14—H14C109.5C21—C30—H30C109.5
H14A—C14—H14C109.5H30A—C30—H30C109.5
H14B—C14—H14C109.5H30B—C30—H30C109.5
C5—C15—H15A109.5C21—C31—H31A109.5
C5—C15—H15B109.5C21—C31—H31B109.5
H15A—C15—H15B109.5H31A—C31—H31B109.5
C5—C15—H15C109.5C21—C31—H31C109.5
H15A—C15—H15C109.5H31A—C31—H31C109.5
H15B—C15—H15C109.5H31B—C31—H31C109.5
C9—C16—H16A109.5C25—C32—H32A109.5
C9—C16—H16B109.5C25—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C9—C16—H16C109.5C25—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5

Experimental details

Crystal data
Chemical formulaC16H24Br2O
Mr392.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)13.5013 (19), 14.042 (2), 17.213 (3)
V3)3263.3 (8)
Z8
Radiation typeMo Kα
µ (mm1)4.96
Crystal size (mm)0.5 × 0.03 × 0.03
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.557, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
22468, 6542, 5262
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.060, 1.02
No. of reflections6540
No. of parameters351
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.39
Absolute structureFlack & Bernardinelli (2000)
Absolute structure parameter0.005 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.  Web of Science CrossRef CAS Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds