organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o503-o504

2-Chloro-N-(2-chloro­benzo­yl)-N-(2-ethyl-4-oxo-3,4-di­hydro­quinazolin-3-yl)benzamide

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 14 March 2014; accepted 18 March 2014; online 29 March 2014)

In the title compound, C24H17Cl2N3O3, the quinazolinone ring system is close to planar (r.m.s. deviation = 0.0132 Å), with the imide unit almost perpendicular to it, subtending a dihedral angle of 89.1 (1)°. However, the imide unit itself is not planar, the dihedral angle between the two O=C—N components being 34.6 (1)°. The dihedral angle between the two chlorobenzene rings is 40.50 (7)°, while the angles between these rings and the imide moiety are 54.6 (1) and 58.2 (1)°, respectively. The dihedral angles between the 2-chloro­phenyl rings and the quinazolinone ring system are 48.77 (5) and 32.92 (7)° for rings A and B, respectively. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into a three-dimensional array.

Related literature

For the synthesis and biological evaluation of some imido-substituted 1,4-naphtho­quinone derivatives, see: Bakare et al. (2003[Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165-3170.]); Berhe et al. (2008[Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Discov. 5, 485-488.]); Brandy et al. (2013[Brandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). Molecules, 18, 1973-1984.]); Khraiwesh et al. (2012[Khraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). Arch. Pharm. Res. 35, 27-33.]). For similar X-ray structures, see: Akinboye et al. (2009a[Akinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009a). Acta Cryst. E65, o24.],b[Akinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009b). Acta Cryst. E65, o277.]); Brandy et al. (2012[Brandy, Y., Butcher, R. J. & Bakare, O. (2012). Acta Cryst. E68, o2775-o2776.]).

[Scheme 1]

Experimental

Crystal data
  • C24H17Cl2N3O3

  • Mr = 466.31

  • Orthorhombic, P b c a

  • a = 17.2597 (6) Å

  • b = 13.5463 (4) Å

  • c = 18.9683 (7) Å

  • V = 4434.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.52 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.935, Tmax = 1.000

  • 32371 measured reflections

  • 7466 independent reflections

  • 2351 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.079

  • S = 0.77

  • 7466 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7AA⋯Oi 0.95 2.43 3.143 (2) 132
C4B—H4BA⋯O1Aii 0.95 2.35 3.211 (2) 151
C6—H6A⋯O1Aiii 0.95 2.58 3.377 (2) 142
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Chemical context top

We have been involved in the synthesis and biological evaluation of some imido-substituted 1,4-naphtho­quinone derivatives (Bakare et al., 2003; Berhe et al., 2008; Brandy et al., 2013). These compounds have been shown to exhibit some anti-cancer (Bakare et al., 2003; Berhe et al., 2008) and anti-trypanosomal (Khraiwesh et al., (2012) activities. In an attempt to study the effect of replacing the naphtho­quinone scaffold with quinazolinone, on biological activities of this class of compounds, we have synthesized and structurally characterized some imido-substituted quinazolinone derivatives (Akinboye et al., 2009a, 2009b). We here report the crystal structure properties of 2-chloro-N-(2-chloro-benzoyl)-N-(2-ethyl-4-oxo-4H-quinazolin-3-yl)-benzamide. Weak C—H···O inter­actions link the molecules into a 3-D array.

Structural commentary top

In the title compound, C24H17Cl2N3O3, the quinazolinone ring is planar with the imide moiety (O1A C1A N C1B O1B) almost perpendicular with a dihedral angle of 89.1 (1)°. However, the imide moiety itself is not strictly planar. The dihedral angle between the two components (O1A C1A N and O1B C1B N) is 34.6 (1)°. The dihedral angle between the two 2-chloro­phenyl rings is 40.50 (7)° while the angles between these and the imide moiety are 54.6 (1)° and 58.2 (1)° for rings A and B respectively. The dihedral angles between the 2-chloro­phenyl rings and the quinazolinone ring are 48.77 (5)° and 32.92 (7)° for A and B respectively. Weak C—H···O inter­actions link the molecules into a 3-D array.

Supra­molecular features top

Weak C—H···O inter­actions link the molecules into a 3-D array.

Database survey top

For the synthesis and biological evaluation of some imido-substituted 1,4-naphtho­quinone derivatives, see; Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013); Khraiwesh et al. (2012). For similar x-ray structures see Akinboye et al. (2009a, 2009b); Brandy et al. (2012).

Synthesis and crystallization top

To a solution of 3-amino-2-ethyl-4(3H) quinazolinone (186 mg) in tetra­hydro­furan (15 mL) was added NaH (70.7 mg) and the mixture stirred at room temperature for 15 min. 2-Chloro-benzoyl chloride (0.273 mL) was added drop wise and the resulting mixture stirred at room temperature for 20 hr. The reaction mixture was poured into a mixture of ice (10 g) and water (10 mL) and then extracted with di­chloro­methane (25 mL). The organic layer was washed with water (3X20 mL), saturated sodium chloride solution (20 mL), dried over anhydrous MgSO4 and the solvent removed in vacuo to give a white solid. The crude white solid was dissolved in hot ethanol:water mixture (2:3, 5 mL) from which the title compound crystallized at room temperature after 6 days.

Refinement top

H atoms were placed in geometrically idealized positions with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Related literature top

For the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives, see: Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013); Khraiwesh et al. (2012). For similar X-ray structures, see: Akinboye et al. (2009a,b); Brandy et al. (2012).

Computing details top

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis RED (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound showing the atom numbering scheme. Atomic displacement parameters are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for the complex viewed along the b axis. C—H···O interactions shown by dashed lines.
2-Chloro-N-(2-chlorobenzoyl)-N-(2-ethyl-4-oxo-3,4-dihydroquinazolin-3-yl)benzamide top
Crystal data top
C24H17Cl2N3O3F(000) = 1920
Mr = 466.31Dx = 1.397 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4113 reflections
a = 17.2597 (6) Åθ = 4.6–32.5°
b = 13.5463 (4) ŵ = 0.33 mm1
c = 18.9683 (7) ÅT = 200 K
V = 4434.9 (3) Å3Needle, colourless
Z = 80.52 × 0.18 × 0.15 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
7466 independent reflections
Radiation source: fine-focus sealed tube2351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
Detector resolution: 10.5081 pixels mm-1θmax = 32.6°, θmin = 4.6°
ϕ and ω scansh = 2625
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
k = 1920
Tmin = 0.935, Tmax = 1.000l = 2528
32371 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.77 w = 1/[σ2(Fo2) + (0.0239P)2]
where P = (Fo2 + 2Fc2)/3
7466 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H17Cl2N3O3V = 4434.9 (3) Å3
Mr = 466.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.2597 (6) ŵ = 0.33 mm1
b = 13.5463 (4) ÅT = 200 K
c = 18.9683 (7) Å0.52 × 0.18 × 0.15 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
7466 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
2351 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 1.000Rint = 0.123
32371 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.77Δρmax = 0.21 e Å3
7466 reflectionsΔρmin = 0.24 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.17309 (3)0.55900 (4)0.16919 (3)0.04342 (14)
Cl1B0.46697 (3)0.43992 (4)0.37319 (3)0.05512 (17)
O0.18853 (8)0.70694 (9)0.40899 (7)0.0423 (4)
O1A0.12604 (7)0.51488 (9)0.32178 (7)0.0417 (4)
O1B0.33657 (7)0.55297 (10)0.46096 (7)0.0433 (3)
N0.23311 (8)0.52344 (9)0.39013 (7)0.0249 (4)
N10.18318 (8)0.54745 (10)0.44570 (7)0.0265 (3)
N20.10350 (9)0.49031 (11)0.53679 (8)0.0328 (4)
C10.15976 (11)0.64646 (14)0.44890 (10)0.0297 (5)
C20.10246 (10)0.66490 (14)0.50310 (10)0.0315 (5)
C30.07421 (12)0.76030 (15)0.51353 (11)0.0447 (6)
H3A0.09290.81330.48540.054*
C40.01927 (13)0.77749 (17)0.56451 (12)0.0550 (7)
H4A0.00000.84240.57190.066*
C50.00805 (12)0.69966 (18)0.60521 (12)0.0516 (6)
H5A0.04600.71180.64040.062*
C60.01906 (11)0.60552 (16)0.59530 (10)0.0415 (5)
H6A0.00040.55310.62340.050*
C70.07533 (10)0.58646 (14)0.54378 (10)0.0311 (5)
C80.15506 (10)0.47290 (12)0.48974 (10)0.0283 (5)
C90.18893 (12)0.37229 (12)0.47998 (10)0.0376 (5)
H9A0.24610.37750.48000.045*
H9B0.17290.34630.43340.045*
C100.16416 (13)0.29949 (14)0.53710 (10)0.0543 (6)
H10A0.18710.23470.52750.081*
H10B0.10760.29380.53740.081*
H10C0.18190.32320.58310.081*
C1A0.19483 (11)0.49986 (12)0.32637 (10)0.0269 (4)
C2A0.24009 (10)0.44610 (13)0.27213 (9)0.0248 (4)
C3A0.22865 (10)0.46128 (13)0.20026 (10)0.0295 (4)
C4A0.26354 (11)0.40133 (13)0.15073 (10)0.0359 (5)
H4AA0.25510.41230.10190.043*
C5A0.31076 (12)0.32527 (13)0.17292 (11)0.0401 (5)
H5AA0.33420.28310.13910.048*
C6A0.32422 (11)0.30990 (13)0.24376 (11)0.0372 (5)
H6AA0.35770.25830.25860.045*
C7A0.28880 (10)0.36974 (13)0.29274 (10)0.0304 (5)
H7AA0.29780.35860.34150.037*
C1B0.31255 (10)0.54950 (13)0.40145 (10)0.0292 (4)
C2B0.35792 (10)0.57646 (12)0.33781 (9)0.0258 (4)
C3B0.42944 (10)0.53492 (13)0.32191 (10)0.0334 (5)
C4B0.47126 (11)0.56635 (16)0.26462 (11)0.0447 (5)
H4BA0.51970.53650.25390.054*
C5B0.44293 (12)0.64119 (16)0.22275 (11)0.0481 (6)
H5BA0.47190.66280.18300.058*
C6B0.37257 (12)0.68506 (14)0.23818 (11)0.0412 (5)
H6BA0.35350.73750.20980.049*
C7B0.33058 (11)0.65183 (12)0.29506 (10)0.0329 (5)
H7BA0.28180.68110.30530.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0517 (3)0.0467 (3)0.0319 (3)0.0063 (3)0.0019 (3)0.0055 (2)
Cl1B0.0382 (3)0.0594 (4)0.0677 (4)0.0131 (3)0.0015 (3)0.0122 (3)
O0.0556 (9)0.0345 (8)0.0369 (9)0.0039 (7)0.0148 (8)0.0053 (6)
O1A0.0225 (7)0.0719 (10)0.0307 (9)0.0020 (7)0.0006 (7)0.0031 (7)
O1B0.0359 (8)0.0682 (9)0.0259 (8)0.0045 (7)0.0048 (7)0.0015 (7)
N0.0235 (8)0.0331 (9)0.0181 (9)0.0008 (7)0.0038 (8)0.0038 (6)
N10.0281 (8)0.0300 (9)0.0212 (9)0.0017 (8)0.0064 (8)0.0011 (7)
N20.0319 (9)0.0397 (11)0.0267 (10)0.0036 (8)0.0064 (9)0.0023 (7)
C10.0317 (11)0.0318 (12)0.0256 (12)0.0047 (10)0.0003 (10)0.0012 (9)
C20.0313 (11)0.0389 (12)0.0245 (12)0.0057 (10)0.0014 (10)0.0037 (9)
C30.0487 (13)0.0504 (15)0.0348 (14)0.0140 (12)0.0050 (12)0.0018 (10)
C40.0586 (16)0.0568 (16)0.0495 (17)0.0246 (13)0.0052 (14)0.0088 (12)
C50.0374 (13)0.0756 (18)0.0417 (15)0.0153 (13)0.0119 (12)0.0125 (13)
C60.0328 (12)0.0632 (15)0.0286 (13)0.0028 (11)0.0113 (11)0.0032 (10)
C70.0254 (10)0.0432 (13)0.0247 (12)0.0008 (10)0.0017 (10)0.0032 (9)
C80.0280 (11)0.0349 (12)0.0221 (11)0.0034 (9)0.0043 (10)0.0001 (8)
C90.0480 (13)0.0309 (12)0.0339 (13)0.0026 (10)0.0028 (11)0.0007 (9)
C100.0830 (17)0.0398 (13)0.0401 (14)0.0017 (13)0.0111 (14)0.0063 (10)
C1A0.0277 (10)0.0312 (10)0.0219 (11)0.0047 (9)0.0003 (10)0.0020 (8)
C2A0.0234 (9)0.0266 (10)0.0244 (11)0.0064 (9)0.0018 (9)0.0043 (8)
C3A0.0286 (10)0.0283 (11)0.0315 (12)0.0050 (9)0.0016 (10)0.0017 (8)
C4A0.0502 (13)0.0324 (12)0.0252 (12)0.0064 (11)0.0074 (11)0.0006 (9)
C5A0.0513 (13)0.0322 (12)0.0368 (14)0.0057 (11)0.0184 (12)0.0101 (9)
C6A0.0400 (12)0.0281 (11)0.0434 (14)0.0032 (10)0.0061 (12)0.0030 (10)
C7A0.0319 (11)0.0320 (12)0.0273 (12)0.0056 (10)0.0032 (10)0.0012 (9)
C1B0.0260 (10)0.0317 (11)0.0298 (12)0.0034 (9)0.0023 (10)0.0033 (9)
C2B0.0219 (9)0.0336 (11)0.0219 (11)0.0045 (9)0.0013 (9)0.0040 (8)
C3B0.0257 (10)0.0394 (12)0.0351 (13)0.0002 (9)0.0009 (10)0.0004 (9)
C4B0.0265 (11)0.0655 (15)0.0421 (14)0.0007 (12)0.0049 (11)0.0075 (12)
C5B0.0379 (13)0.0743 (17)0.0321 (14)0.0111 (13)0.0111 (12)0.0042 (12)
C6B0.0411 (12)0.0477 (13)0.0346 (14)0.0070 (11)0.0010 (12)0.0054 (10)
C7B0.0282 (10)0.0385 (12)0.0321 (12)0.0023 (10)0.0009 (10)0.0059 (9)
Geometric parameters (Å, º) top
Cl1A—C3A1.7376 (18)C9—H9B0.9900
Cl1B—C3B1.7385 (19)C10—H10A0.9800
O—C11.2211 (19)C10—H10B0.9800
O1A—C1A1.208 (2)C10—H10C0.9800
O1B—C1B1.2034 (19)C1A—C2A1.483 (2)
N—N11.3999 (17)C2A—C7A1.389 (2)
N—C1A1.415 (2)C2A—C3A1.393 (2)
N—C1B1.432 (2)C3A—C4A1.380 (2)
N1—C81.398 (2)C4A—C5A1.379 (2)
N1—C11.402 (2)C4A—H4AA0.9500
N2—C81.282 (2)C5A—C6A1.379 (3)
N2—C71.397 (2)C5A—H5AA0.9500
C1—C21.448 (2)C6A—C7A1.376 (2)
C2—C71.394 (2)C6A—H6AA0.9500
C2—C31.395 (2)C7A—H7AA0.9500
C3—C41.374 (3)C1B—C2B1.485 (2)
C3—H3A0.9500C2B—C7B1.387 (2)
C4—C51.389 (3)C2B—C3B1.390 (2)
C4—H4A0.9500C3B—C4B1.372 (2)
C5—C61.371 (3)C4B—C5B1.378 (3)
C5—H5A0.9500C4B—H4BA0.9500
C6—C71.402 (2)C5B—C6B1.383 (3)
C6—H6A0.9500C5B—H5BA0.9500
C8—C91.494 (2)C6B—C7B1.376 (2)
C9—C101.526 (2)C6B—H6BA0.9500
C9—H9A0.9900C7B—H7BA0.9500
N1—N—C1A114.12 (13)O1A—C1A—N118.87 (17)
N1—N—C1B114.78 (13)O1A—C1A—C2A123.41 (18)
C1A—N—C1B129.13 (15)N—C1A—C2A117.25 (15)
C8—N1—N119.73 (14)C7A—C2A—C3A118.12 (16)
C8—N1—C1124.42 (15)C7A—C2A—C1A119.29 (16)
N—N1—C1115.61 (13)C3A—C2A—C1A122.13 (17)
C8—N2—C7118.64 (16)C4A—C3A—C2A121.17 (17)
O—C1—N1119.86 (17)C4A—C3A—Cl1A117.27 (15)
O—C1—C2127.02 (17)C2A—C3A—Cl1A121.51 (14)
N1—C1—C2113.11 (16)C5A—C4A—C3A119.31 (18)
C7—C2—C3120.68 (18)C5A—C4A—H4AA120.3
C7—C2—C1119.39 (17)C3A—C4A—H4AA120.3
C3—C2—C1119.93 (18)C6A—C5A—C4A120.63 (18)
C4—C3—C2119.8 (2)C6A—C5A—H5AA119.7
C4—C3—H3A120.1C4A—C5A—H5AA119.7
C2—C3—H3A120.1C7A—C6A—C5A119.60 (18)
C3—C4—C5119.8 (2)C7A—C6A—H6AA120.2
C3—C4—H4A120.1C5A—C6A—H6AA120.2
C5—C4—H4A120.1C6A—C7A—C2A121.16 (18)
C6—C5—C4120.9 (2)C6A—C7A—H7AA119.4
C6—C5—H5A119.5C2A—C7A—H7AA119.4
C4—C5—H5A119.5O1B—C1B—N118.70 (17)
C5—C6—C7120.2 (2)O1B—C1B—C2B124.85 (16)
C5—C6—H6A119.9N—C1B—C2B116.34 (16)
C7—C6—H6A119.9C7B—C2B—C3B118.26 (17)
C2—C7—N2122.77 (17)C7B—C2B—C1B118.50 (16)
C2—C7—C6118.56 (18)C3B—C2B—C1B123.05 (17)
N2—C7—C6118.64 (18)C4B—C3B—C2B120.90 (18)
N2—C8—N1121.61 (16)C4B—C3B—Cl1B118.48 (15)
N2—C8—C9121.70 (17)C2B—C3B—Cl1B120.61 (15)
N1—C8—C9116.69 (16)C3B—C4B—C5B119.87 (19)
C8—C9—C10113.07 (16)C3B—C4B—H4BA120.1
C8—C9—H9A109.0C5B—C4B—H4BA120.1
C10—C9—H9A109.0C4B—C5B—C6B120.4 (2)
C8—C9—H9B109.0C4B—C5B—H5BA119.8
C10—C9—H9B109.0C6B—C5B—H5BA119.8
H9A—C9—H9B107.8C7B—C6B—C5B119.20 (19)
C9—C10—H10A109.5C7B—C6B—H6BA120.4
C9—C10—H10B109.5C5B—C6B—H6BA120.4
H10A—C10—H10B109.5C6B—C7B—C2B121.35 (18)
C9—C10—H10C109.5C6B—C7B—H7BA119.3
H10A—C10—H10C109.5C2B—C7B—H7BA119.3
H10B—C10—H10C109.5
C1A—N—N1—C888.76 (18)C1B—N—C1A—C2A34.5 (2)
C1B—N—N1—C8105.67 (17)O1A—C1A—C2A—C7A130.35 (19)
C1A—N—N1—C185.93 (17)N—C1A—C2A—C7A41.7 (2)
C1B—N—N1—C179.63 (18)O1A—C1A—C2A—C3A41.7 (3)
C8—N1—C1—O178.75 (16)N—C1A—C2A—C3A146.27 (16)
N—N1—C1—O6.8 (2)C7A—C2A—C3A—C4A1.1 (2)
C8—N1—C1—C20.1 (2)C1A—C2A—C3A—C4A171.08 (16)
N—N1—C1—C2174.35 (14)C7A—C2A—C3A—Cl1A176.41 (12)
O—C1—C2—C7179.50 (19)C1A—C2A—C3A—Cl1A11.4 (2)
N1—C1—C2—C71.8 (2)C2A—C3A—C4A—C5A0.2 (3)
O—C1—C2—C30.3 (3)Cl1A—C3A—C4A—C5A177.38 (14)
N1—C1—C2—C3179.05 (17)C3A—C4A—C5A—C6A1.1 (3)
C7—C2—C3—C40.2 (3)C4A—C5A—C6A—C7A1.4 (3)
C1—C2—C3—C4179.35 (18)C5A—C6A—C7A—C2A0.5 (3)
C2—C3—C4—C50.2 (3)C3A—C2A—C7A—C6A0.7 (2)
C3—C4—C5—C60.0 (3)C1A—C2A—C7A—C6A171.68 (16)
C4—C5—C6—C70.2 (3)N1—N—C1B—O1B27.8 (2)
C3—C2—C7—N2177.99 (17)C1A—N—C1B—O1B169.29 (16)
C1—C2—C7—N22.9 (3)N1—N—C1B—C2B148.52 (14)
C3—C2—C7—C60.0 (3)C1A—N—C1B—C2B14.4 (2)
C1—C2—C7—C6179.09 (16)O1B—C1B—C2B—C7B120.3 (2)
C8—N2—C7—C21.9 (3)N—C1B—C2B—C7B55.7 (2)
C8—N2—C7—C6179.90 (16)O1B—C1B—C2B—C3B54.6 (3)
C5—C6—C7—C20.3 (3)N—C1B—C2B—C3B129.34 (18)
C5—C6—C7—N2177.84 (18)C7B—C2B—C3B—C4B1.2 (3)
C7—N2—C8—N10.1 (2)C1B—C2B—C3B—C4B176.20 (17)
C7—N2—C8—C9178.94 (16)C7B—C2B—C3B—Cl1B179.81 (13)
N—N1—C8—N2173.11 (15)C1B—C2B—C3B—Cl1B5.2 (2)
C1—N1—C8—N21.1 (3)C2B—C3B—C4B—C5B1.1 (3)
N—N1—C8—C97.8 (2)Cl1B—C3B—C4B—C5B179.71 (15)
C1—N1—C8—C9178.03 (16)C3B—C4B—C5B—C6B0.1 (3)
N2—C8—C9—C107.8 (3)C4B—C5B—C6B—C7B1.2 (3)
N1—C8—C9—C10171.29 (16)C5B—C6B—C7B—C2B1.0 (3)
N1—N—C1A—O1A9.9 (2)C3B—C2B—C7B—C6B0.1 (3)
C1B—N—C1A—O1A153.11 (17)C1B—C2B—C7B—C6B175.35 (16)
N1—N—C1A—C2A162.47 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···Oi0.952.433.143 (2)132
C4B—H4BA···O1Aii0.952.353.211 (2)151
C6—H6A···O1Aiii0.952.583.377 (2)142
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y, z+1/2; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···Oi0.952.433.143 (2)131.5
C4B—H4BA···O1Aii0.952.353.211 (2)150.7
C6—H6A···O1Aiii0.952.583.377 (2)142.3
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

RJB wishes to acknowledge the National Science Foundation MRI program (CHE0619278) for funds to purchase the diffractometer and the Howard University Nanoscience Facility for access to liquid nitro­gen. This work was supported in part by grant No. 5-U54—CA914–31 (Howard University/Johns Hopkins Cancer Center Partnership), in part by grant G12MD007597 from the National Institute On Minority Health and Health Disparities of the National Institutes of Health, and in part by MRI grant No. CHE-1126533 from the NSF. We also acknowledge the Howard Hughes Medical Research Scholars program (CT).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkinboye, E. S., Butcher, R. J., Brandy, Y., Adesiyun, T. A. & Bakare, O. (2009a). Acta Cryst. E65, o24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkinboye, E. S., Butcher, R. J., Wright, D. A., Brandy, Y. & Bakare, O. (2009b). Acta Cryst. E65, o277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Discov. 5, 485–488.  CrossRef CAS Google Scholar
First citationBrandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). Molecules, 18, 1973–1984.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandy, Y., Butcher, R. J. & Bakare, O. (2012). Acta Cryst. E68, o2775–o2776.  CSD CrossRef IUCr Journals Google Scholar
First citationKhraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). Arch. Pharm. Res. 35, 27–33.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o503-o504
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds