organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o497-o498

12-{[4-(4-Bromo­phen­yl)piperazin-1-yl]meth­yl}-9α-hy­dr­oxy-4,8-di­methyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivité, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, BP 1014, Avenue Ibn Battouta, Rabat, Morocco
*Correspondence e-mail: loubidim@gmail.com

(Received 17 March 2014; accepted 24 March 2014; online 29 March 2014)

The title compound, C25H33BrN2O4, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methylen-3,14-dioxa-tri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The mol­ecule is built up from two fused five- and ten-membered rings with an additional ep­oxy ring system and a bromo­phenyl­piperazine group as a substituent. The ten-membered ring adopts an approximate chair–chair–chair conformation, while the piperazine ring displays a chair conformation and the five-membered ring shows an envelope conformation with the C atom closest to the hy­droxy group forming the flap. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation. The crystal packing features C—H⋯O hydrogen bonds, which link the mol­ecules into zigzag chains running along the b-axis direction.

Related literature

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al. (1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene, see: Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83-91.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For the synthetic procedure, see: Moumou et al. (2010[Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • C25H33BrN2O4

  • Mr = 505.44

  • Monoclinic, P 21

  • a = 9.6790 (4) Å

  • b = 7.0710 (3) Å

  • c = 17.3117 (7) Å

  • β = 94.872 (2)°

  • V = 1180.54 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 296 K

  • 0.5 × 0.03 × 0.03 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.634, Tmax = 0.746

  • 14527 measured reflections

  • 5899 independent reflections

  • 5216 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.03

  • 5899 reflections

  • 292 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 2614 Friedel pairs

  • Absolute structure parameter: 0.007 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.82 2.18 2.995 (4) 171
C1—H1⋯O1i 0.98 2.52 3.389 (3) 148
C15—H15C⋯O1i 0.96 2.47 3.410 (3) 167
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The natural sesquiterpene lactone 9α-hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al., 1996). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Hwang et al., 2006; Neelakantan et al., 2009; Moumou et al., 2010), in order to prepare products with a high added value that can be used in the pharmacological industry. In this context, we have treated 9α-hydroxyparthenolide with an equivalent amount of 1- (4-bromophenyl)piperazine gives the title compound. The molecule contains a fused ring system and the bromophenyl-pyperazine group as a substituent to the lactone ring. The molecular structure (Fig. 1) shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters QT = 0.2525 (19) Å and ϕ2 = 259.3 (4)°. The ten-membered ring displays an approximate chair-chair-chair conformation, while the pyperazine ring has a perfect chair conformation with QT = 0.586 (2) Å, θ = 177.96 (18) and ϕ2 = 165 (4)°. In the crystal, C—H···O hydrogen bonding links the molecules to zigzag chains running along the b-axis (Table 1, Fig. 2). In addition, an intramolecular O4—H4···N1 hydrogen bond is also observed. Owing to the presence of a Br atom, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(S), C2(R) C3(R), C8(R), C10(S) and C11(R).

Related literature top

For background to the medicinal uses of the plant Anvillea radiata, see: Abdel Sattar et al. (1996); El Hassany et al. (2004); Qureshi et al. (1990). For the reactivity of this sesquiterpene, see: Neukirch et al. (2003); Hwang et al. (2006); Neelakantan et al. (2009). For the synthetic procedure, see: Moumou et al. (2010). For conformational analysis, see: Cremer & Pople (1975)

Experimental top

The mixture of 9?-hydoxypartenolide (9α-hydroxy-4,8-dimethyl- 12-methylene- 3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one) (1 g, 3.8 mmol) and one equivalent of 1-(4-bromophenyl-piperazine) in EtOH (20 ml) was stirred for twelve hours at room temperature. Then, the reaction was stopped by adding water (10 ml) and the solution was extracted with chloroform (3 x 20 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 1.5 g (3 mmol) of the title compound (yield: 79%). Recrystallization was performed from in ethyl acetate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) and O–H = 0.82 Å with Uiso(H) = 1.2Ueq (methylene, methine) or Uiso(H) = 1.5Ueq(Cmethyl, O). The torsion angles about the C-Cmethyl and C-O bonds were refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Packing view showing the C–H···O and O–H···N hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
12-{[4-(4-Bromophenyl)piperazin-1-yl]methyl}-9α-hydroxy-4,8-dimethyl-3,14-dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C25H33BrN2O4F(000) = 528
Mr = 505.44Dx = 1.422 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5899 reflections
a = 9.6790 (4) Åθ = 2.4–28.7°
b = 7.0710 (3) ŵ = 1.78 mm1
c = 17.3117 (7) ÅT = 296 K
β = 94.872 (2)°Box, colourless
V = 1180.54 (8) Å30.5 × 0.03 × 0.03 mm
Z = 2
Data collection top
Bruker X8 APEX
diffractometer
5899 independent reflections
Radiation source: fine-focus sealed tube5216 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.634, Tmax = 0.746k = 99
14527 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0313P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5899 reflectionsΔρmax = 0.44 e Å3
292 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack & Bernardinelli (2000), 2614 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (5)
Crystal data top
C25H33BrN2O4V = 1180.54 (8) Å3
Mr = 505.44Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.6790 (4) ŵ = 1.78 mm1
b = 7.0710 (3) ÅT = 296 K
c = 17.3117 (7) Å0.5 × 0.03 × 0.03 mm
β = 94.872 (2)°
Data collection top
Bruker X8 APEX
diffractometer
5899 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5216 reflections with I > 2σ(I)
Tmin = 0.634, Tmax = 0.746Rint = 0.024
14527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.44 e Å3
S = 1.03Δρmin = 0.44 e Å3
5899 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 2614 Friedel pairs
292 parametersAbsolute structure parameter: 0.007 (5)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81297 (2)0.79383 (4)0.080172 (12)0.06016 (9)
O10.06025 (14)0.47571 (19)0.48432 (7)0.0400 (3)
O30.29861 (12)0.1832 (2)0.50486 (6)0.0367 (3)
O40.34442 (13)0.25359 (19)0.21350 (8)0.0418 (3)
H40.40350.17790.23060.063*
N10.53704 (14)0.0338 (2)0.29071 (8)0.0302 (3)
N20.63915 (15)0.2755 (2)0.17458 (8)0.0351 (3)
C10.20134 (15)0.2018 (3)0.43565 (8)0.0280 (3)
H10.12270.11520.43760.034*
O20.51010 (17)0.0713 (3)0.53716 (9)0.0637 (5)
C110.40639 (17)0.0352 (2)0.40481 (10)0.0301 (3)
H110.37780.09780.40240.036*
C100.28736 (16)0.1544 (2)0.36682 (9)0.0257 (3)
H100.32700.27280.34920.031*
C20.15415 (18)0.4034 (2)0.43110 (10)0.0302 (3)
H20.22770.49250.42050.036*
C90.20719 (17)0.0612 (2)0.29633 (10)0.0275 (3)
H9A0.24620.06300.28850.033*
H9B0.11150.04390.30750.033*
C200.66722 (19)0.3843 (3)0.11021 (10)0.0333 (4)
C150.1053 (2)0.3330 (3)0.38362 (13)0.0416 (4)
H15A0.18990.39200.39610.062*
H15B0.11170.30220.32940.062*
H15C0.09030.21960.41360.062*
C80.21012 (17)0.1764 (2)0.22029 (9)0.0311 (3)
H80.18890.08990.17660.037*
C70.09765 (18)0.3259 (3)0.21770 (10)0.0315 (3)
C140.0380 (2)0.2547 (3)0.18031 (13)0.0460 (5)
H14A0.10990.34410.18860.069*
H14B0.03120.23930.12570.069*
H14C0.05950.13530.20270.069*
C30.01452 (19)0.4672 (2)0.40199 (10)0.0319 (4)
C160.5343 (2)0.2401 (3)0.29620 (11)0.0392 (4)
H16A0.61850.28340.32530.047*
H16B0.45630.27830.32420.047*
C170.5224 (2)0.3318 (3)0.21754 (11)0.0421 (5)
H17A0.43610.29400.18910.051*
H17B0.52150.46830.22330.051*
C50.0058 (2)0.6297 (2)0.27166 (12)0.0395 (4)
H5A0.02180.75100.24780.047*
H5B0.08390.58330.25070.047*
C60.1169 (2)0.4925 (2)0.25258 (10)0.0343 (4)
H60.20810.52780.26660.041*
C130.54475 (19)0.0520 (3)0.36882 (11)0.0364 (4)
H13A0.61660.01070.40200.044*
H13B0.56960.18440.36530.044*
C210.5923 (2)0.5468 (3)0.08862 (11)0.0379 (4)
H210.51330.57620.11330.046*
C220.6333 (2)0.6657 (3)0.03105 (11)0.0420 (4)
H220.58260.77450.01790.050*
C180.6578 (2)0.0185 (3)0.24953 (12)0.0387 (4)
H18A0.66270.15510.24510.046*
H18B0.74190.02490.27860.046*
C40.0055 (2)0.6550 (2)0.36027 (12)0.0398 (4)
H4A0.07880.71940.37170.048*
H4B0.08350.73330.37900.048*
C120.4169 (2)0.0961 (3)0.48858 (11)0.0389 (4)
C240.8214 (2)0.4589 (4)0.01092 (13)0.0514 (5)
H240.89760.42800.01580.062*
C230.7487 (2)0.6225 (3)0.00648 (11)0.0414 (4)
C190.6466 (2)0.0693 (3)0.16953 (11)0.0383 (4)
H19A0.72650.03360.14270.046*
H19B0.56420.02200.13990.046*
C250.7808 (2)0.3408 (3)0.06823 (12)0.0471 (5)
H250.82990.22970.07930.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06273 (15)0.07268 (15)0.04532 (12)0.01813 (12)0.00605 (9)0.02022 (11)
O10.0448 (8)0.0446 (7)0.0312 (7)0.0100 (6)0.0071 (6)0.0077 (5)
O30.0389 (6)0.0481 (7)0.0232 (5)0.0105 (6)0.0036 (4)0.0038 (5)
O40.0341 (7)0.0539 (8)0.0390 (7)0.0043 (6)0.0129 (6)0.0079 (6)
N10.0268 (7)0.0342 (7)0.0301 (7)0.0026 (6)0.0059 (6)0.0041 (6)
N20.0405 (8)0.0358 (7)0.0306 (7)0.0071 (7)0.0129 (6)0.0049 (6)
C10.0287 (7)0.0316 (7)0.0241 (7)0.0003 (7)0.0043 (5)0.0015 (7)
O20.0577 (10)0.0973 (13)0.0334 (8)0.0328 (10)0.0125 (7)0.0183 (9)
C110.0295 (9)0.0359 (8)0.0245 (8)0.0029 (7)0.0003 (6)0.0029 (6)
C100.0262 (8)0.0286 (7)0.0227 (7)0.0038 (6)0.0043 (6)0.0011 (5)
C20.0328 (9)0.0299 (7)0.0283 (8)0.0024 (7)0.0045 (7)0.0058 (6)
C90.0280 (8)0.0271 (7)0.0274 (8)0.0050 (6)0.0014 (6)0.0022 (6)
C200.0325 (9)0.0395 (9)0.0281 (9)0.0016 (7)0.0033 (7)0.0017 (7)
C150.0328 (10)0.0442 (10)0.0484 (12)0.0042 (8)0.0058 (8)0.0078 (9)
C80.0338 (8)0.0362 (9)0.0232 (7)0.0060 (7)0.0028 (6)0.0036 (7)
C70.0332 (9)0.0361 (8)0.0252 (8)0.0059 (7)0.0015 (7)0.0057 (6)
C140.0394 (10)0.0482 (11)0.0478 (11)0.0022 (8)0.0109 (8)0.0045 (9)
C30.0338 (9)0.0315 (8)0.0310 (9)0.0022 (7)0.0065 (7)0.0005 (7)
C160.0476 (11)0.0376 (9)0.0346 (9)0.0001 (7)0.0158 (8)0.0007 (7)
C170.0503 (11)0.0362 (10)0.0428 (10)0.0128 (8)0.0219 (9)0.0053 (8)
C50.0468 (11)0.0280 (8)0.0428 (11)0.0010 (7)0.0005 (8)0.0059 (7)
C60.0372 (9)0.0337 (8)0.0321 (9)0.0074 (7)0.0035 (7)0.0058 (7)
C130.0274 (9)0.0472 (10)0.0343 (9)0.0015 (7)0.0016 (7)0.0097 (8)
C210.0371 (10)0.0421 (9)0.0353 (9)0.0033 (8)0.0073 (8)0.0044 (8)
C220.0491 (12)0.0412 (9)0.0353 (10)0.0011 (9)0.0019 (8)0.0077 (8)
C180.0330 (9)0.0410 (10)0.0435 (11)0.0087 (8)0.0119 (8)0.0073 (8)
C40.0444 (11)0.0303 (9)0.0447 (11)0.0045 (7)0.0047 (8)0.0019 (7)
C120.0408 (11)0.0483 (10)0.0273 (9)0.0103 (8)0.0003 (7)0.0050 (8)
C240.0478 (12)0.0690 (14)0.0397 (11)0.0096 (11)0.0177 (9)0.0107 (10)
C230.0443 (11)0.0519 (12)0.0275 (9)0.0110 (9)0.0005 (8)0.0069 (8)
C190.0432 (11)0.0365 (9)0.0374 (10)0.0094 (8)0.0161 (8)0.0013 (7)
C250.0480 (11)0.0559 (13)0.0396 (10)0.0154 (9)0.0160 (9)0.0120 (9)
Geometric parameters (Å, º) top
Br1—C231.9020 (19)C8—H80.9800
O1—C21.442 (2)C7—C61.329 (3)
O1—C31.457 (2)C7—C141.500 (3)
O3—C121.351 (2)C14—H14A0.9600
O3—C11.465 (2)C14—H14B0.9600
O4—C81.424 (2)C14—H14C0.9600
O4—H40.8200C3—C41.510 (3)
N1—C161.462 (3)C16—C171.504 (3)
N1—C181.467 (2)C16—H16A0.9700
N1—C131.478 (2)C16—H16B0.9700
N2—C201.400 (2)C17—H17A0.9700
N2—C171.460 (2)C17—H17B0.9700
N2—C191.462 (3)C5—C61.505 (3)
C1—C21.497 (3)C5—C41.545 (3)
C1—C101.5473 (19)C5—H5A0.9700
C1—H10.9800C5—H5B0.9700
O2—C121.193 (3)C6—H60.9300
C11—C121.508 (2)C13—H13A0.9700
C11—C131.529 (2)C13—H13B0.9700
C11—C101.530 (2)C21—C221.387 (3)
C11—H110.9800C21—H210.9300
C10—C91.538 (2)C22—C231.374 (3)
C10—H100.9800C22—H220.9300
C2—C31.473 (3)C18—C191.513 (3)
C2—H20.9800C18—H18A0.9700
C9—C81.550 (2)C18—H18B0.9700
C9—H9A0.9700C4—H4A0.9700
C9—H9B0.9700C4—H4B0.9700
C20—C211.393 (3)C24—C231.373 (3)
C20—C251.402 (2)C24—C251.379 (3)
C15—C31.511 (3)C24—H240.9300
C15—H15A0.9600C19—H19A0.9700
C15—H15B0.9600C19—H19B0.9700
C15—H15C0.9600C25—H250.9300
C8—C71.516 (3)
C2—O1—C361.05 (11)O1—C3—C15113.30 (14)
C12—O3—C1111.57 (12)C2—C3—C15123.01 (16)
C8—O4—H4109.5C4—C3—C15116.06 (17)
C16—N1—C18107.64 (14)N1—C16—C17111.83 (16)
C16—N1—C13110.47 (15)N1—C16—H16A109.2
C18—N1—C13111.14 (14)C17—C16—H16A109.2
C20—N2—C17117.81 (15)N1—C16—H16B109.2
C20—N2—C19119.11 (14)C17—C16—H16B109.2
C17—N2—C19110.26 (14)H16A—C16—H16B107.9
O3—C1—C2107.50 (14)N2—C17—C16109.89 (15)
O3—C1—C10105.06 (12)N2—C17—H17A109.7
C2—C1—C10110.33 (13)C16—C17—H17A109.7
O3—C1—H1111.2N2—C17—H17B109.7
C2—C1—H1111.2C16—C17—H17B109.7
C10—C1—H1111.2H17A—C17—H17B108.2
C12—C11—C13112.33 (15)C6—C5—C4110.75 (16)
C12—C11—C10104.05 (13)C6—C5—H5A109.5
C13—C11—C10115.82 (14)C4—C5—H5A109.5
C12—C11—H11108.1C6—C5—H5B109.5
C13—C11—H11108.1C4—C5—H5B109.5
C10—C11—H11108.1H5A—C5—H5B108.1
C11—C10—C9114.56 (13)C7—C6—C5126.55 (18)
C11—C10—C1102.89 (13)C7—C6—H6116.7
C9—C10—C1115.83 (13)C5—C6—H6116.7
C11—C10—H10107.7N1—C13—C11111.29 (14)
C9—C10—H10107.7N1—C13—H13A109.4
C1—C10—H10107.7C11—C13—H13A109.4
O1—C2—C359.99 (11)N1—C13—H13B109.4
O1—C2—C1120.69 (14)C11—C13—H13B109.4
C3—C2—C1125.25 (15)H13A—C13—H13B108.0
O1—C2—H2113.5C22—C21—C20121.23 (17)
C3—C2—H2113.5C22—C21—H21119.4
C1—C2—H2113.5C20—C21—H21119.4
C10—C9—C8113.85 (13)C23—C22—C21119.91 (19)
C10—C9—H9A108.8C23—C22—H22120.0
C8—C9—H9A108.8C21—C22—H22120.0
C10—C9—H9B108.8N1—C18—C19110.06 (15)
C8—C9—H9B108.8N1—C18—H18A109.6
H9A—C9—H9B107.7C19—C18—H18A109.6
C21—C20—N2122.36 (15)N1—C18—H18B109.6
C21—C20—C25117.07 (17)C19—C18—H18B109.6
N2—C20—C25120.38 (16)H18A—C18—H18B108.2
C3—C15—H15A109.5C3—C4—C5111.61 (15)
C3—C15—H15B109.5C3—C4—H4A109.3
H15A—C15—H15B109.5C5—C4—H4A109.3
C3—C15—H15C109.5C3—C4—H4B109.3
H15A—C15—H15C109.5C5—C4—H4B109.3
H15B—C15—H15C109.5H4A—C4—H4B108.0
O4—C8—C7112.85 (15)O2—C12—O3121.57 (17)
O4—C8—C9110.74 (14)O2—C12—C11128.41 (17)
C7—C8—C9109.07 (12)O3—C12—C11109.99 (16)
O4—C8—H8108.0C23—C24—C25119.72 (18)
C7—C8—H8108.0C23—C24—H24120.1
C9—C8—H8108.0C25—C24—H24120.1
C6—C7—C14125.23 (18)C24—C23—C22120.37 (18)
C6—C7—C8122.16 (17)C24—C23—Br1119.54 (15)
C14—C7—C8112.24 (16)C22—C23—Br1120.05 (16)
C7—C14—H14A109.5N2—C19—C18110.77 (16)
C7—C14—H14B109.5N2—C19—H19A109.5
H14A—C14—H14B109.5C18—C19—H19A109.5
C7—C14—H14C109.5N2—C19—H19B109.5
H14A—C14—H14C109.5C18—C19—H19B109.5
H14B—C14—H14C109.5H19A—C19—H19B108.1
O1—C3—C258.95 (11)C24—C25—C20121.58 (19)
O1—C3—C4115.59 (15)C24—C25—H25119.2
C2—C3—C4116.57 (15)C20—C25—H25119.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.822.182.995 (4)171
C1—H1···O1i0.982.523.389 (3)148
C15—H15C···O1i0.962.473.410 (3)167
Symmetry code: (i) x, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.822.182.995 (4)171
C1—H1···O1i0.982.523.389 (3)148
C15—H15C···O1i0.962.473.410 (3)167
Symmetry code: (i) x, y+1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o497-o498
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds