organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o501-o502

{2-[(1H-Indol-3-yl­methyl­­idene)amino]-4,5,6,7-tetra­hydro­benzo[b]thio­phen-3-yl}(phen­yl)methanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 19 March 2014; accepted 21 March 2014; online 29 March 2014)

The title compound, C24H20N2OS, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, in each of which the cyclo­hexene rings adopt half-chair conformations. The mean plane of the indole ring is twisted from those of the phenyl and thio­phene rings by 69.0 (7) and 8.3 (5)°, respectively, in mol­ecule A and by 65.4 (9) and 6.7 (5)°, respectively, in mol­ecule B. The dihedral angles between the mean planes of the phenyl and thio­phene rings are 63.0 (4) and 58.8 (9)° in mol­ecules A and B, respectively. In the crystal, N—H⋯O hydrogen bonds lead to the formation of an infinite chain along [101]. In addition, ππ stacking inter­actions are observed involving the thio­phene and pyrrole rings of the two mol­ecules, with a shortest inter­centroid distance of 3.468 (2) Å.

Related literature

For applications of 2-amino­thio­phene derivatives, see: Sabnis et al. (1999[Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333-345.]); Puterová et al. (2010[Puterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, i, 209-246.]); Cannito et al. (1990[Cannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635-639.]); Nikolakopoulos et al. (2006[Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358-2365.]); Lütjens et al. (2005[Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem. 46, 1870-1877.]). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun. 7, 83-90.]); Karia & Parsania (1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119-122.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For a related structure, see: Kubicki et al. (2012[Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2OS

  • Mr = 384.48

  • Monoclinic, P 21

  • a = 8.66858 (16) Å

  • b = 21.8200 (4) Å

  • c = 10.41956 (18) Å

  • β = 108.1709 (19)°

  • V = 1872.55 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.66 mm−1

  • T = 173 K

  • 0.22 × 0.18 × 0.06 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.865, Tmax = 1.000

  • 11535 measured reflections

  • 6843 independent reflections

  • 6396 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.01

  • 6843 reflections

  • 505 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack parameter determined using 2790 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.171 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O1Ai 0.86 2.01 2.866 (4) 175
N2B—H2B⋯O1Bii 0.86 2.00 2.835 (3) 163
Symmetry codes: (i) x+1, y, z+1; (ii) x-1, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

2-Aminothiophene derivatives have been used in a number of applications in pesticides, dyes and pharmaceuticals. A review on the synthesis and properties of these compounds was reported by Sabnis et al. ( 1999)and more recently by Puterová et al. (2010). Substituted 2-aminothiophenes are active as allosteric enhancers at the human A1 adenosine receptor (Cannito et al.,1990; Nikolakopoulos et al., 2006; Lütjens et al., 2005). Schiff base compounds are an important class of compounds both synthetically and biologically. These compounds show biological activities including antibacterial, antifungal, anticancer and herbicidal activities (Desai et al., 2001; Karia & Parsania, 1999; Samadhiya & Halve, 2001; Singh & Dash, 1988). Furthermore, Schiff bases are utilized as starting materials in the synthesis of compounds of industrial (Aydogan et al., 2001) and biological interest such as /b-lactams (Taggi et al., 2002). The crystal structures and molecular structures of two 2-aminothiphenes have been previously reported by our group (Kubicki et al., 2012). In continuation of our work on schiff base derivatives of 2-aminothiophenes, we report here the crystal structure of the title compound, C24H20N2OS.

The title compound crystallizes with two independent molecules in the asymmetric unit (A and B) (Fig. 1). In each of the molecules, the cyclohexene rings adopt half-chair conformations (puckering parameters Q, θ, and ϕ = 0.508 (4)Å, 53.1 (5)° and 149.2 (5)° (A); Q, θ, and ϕ = 0.492 (4)Å, 128.3 (5)° and 327.5 (6)° (B), respectively; Cremer & Pople, 1975). The mean plane of the indole ring is twisted from that of the phenyl and thiophene ringsby 69.0 (7)° (A); 65.4 (9)° (B) and 8.3 (5)° (A); 6.7 (5)° (B), respectively. The dihedral angles between the mean plane of the phenyl rings and thiophene rings is 63.0 (4)° (A) and 58.8 (9)° (B), respectively. Bond lengths are in normal ranges (Allen et al., 1987). N—H···O intermolecular hydrogen bonds influence the crystal packing forming an infinite 1D chain along [1 0 1] (Fig. 2). In addition, weak Cg–Cg ππ stacking interactions are observed involving the thiophene rings and pyrrole rings of the two molecules with the shortest intercentroid distance of 3.468 (2)Å.

Related literature top

For applications of 2-aminothiophene derivatives, see: Sabnis et al. (1999); Puterová et al. (2010); Cannito et al. (1990); Nikolakopoulos et al. (2006); Lütjens et al. (2005). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001); Karia & Parsania (1999); Samadhiya & Halve (2001); Singh & Dash (1988); Aydogan et al. (2001); Taggi et al. (2002). For a related structure, see: Kubicki et al. (2012). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of (2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)phenyl methanone (200 mg, 0.79 mmol) in 10 ml of methanol an equimolar amount of 1H-Indole-3-carbaldehyde (115 mg, 0.79 mmol) was added with constant stirring. The mixture was refluxed for 6 hours. An orange colored precipitate was obtained. The reaction completion was confirmed by thin layer chromatography. The precipitate was filtered and dried at room temperature overnight. The solid was recrystallized using methanol and the crystals were used as such for X-ray diffraction studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH); 0.97Å (CH2) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing the labeling scheme of the two molecules (A and B) within the asymmetric unit with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed along the b axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds forming an infinite 1D-chain along [1 0 1]. H atoms not involved in hydrogen bonding have been removed for clarity.
{2-[(1H-Indol-3-ylmethylidene)amino]-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl}(phenyl)methanone top
Crystal data top
C24H20N2OSF(000) = 808
Mr = 384.48Dx = 1.364 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.66858 (16) ÅCell parameters from 6047 reflections
b = 21.8200 (4) Åθ = 4.1–71.4°
c = 10.41956 (18) ŵ = 1.66 mm1
β = 108.1709 (19)°T = 173 K
V = 1872.55 (6) Å3Block, orange
Z = 40.22 × 0.18 × 0.06 mm
Data collection top
Agilent Eos Gemini
diffractometer
6843 independent reflections
Radiation source: Enhance (Cu) X-ray Source6396 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.039
ω scansθmax = 71.4°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1010
Tmin = 0.865, Tmax = 1.000k = 2624
11535 measured reflectionsl = 1012
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0599P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.42 e Å3
6843 reflectionsΔρmin = 0.26 e Å3
505 parametersAbsolute structure: Flack parameter determined using 2790 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.171 (10)
Primary atom site location: structure-invariant direct methods
Crystal data top
C24H20N2OSV = 1872.55 (6) Å3
Mr = 384.48Z = 4
Monoclinic, P21Cu Kα radiation
a = 8.66858 (16) ŵ = 1.66 mm1
b = 21.8200 (4) ÅT = 173 K
c = 10.41956 (18) Å0.22 × 0.18 × 0.06 mm
β = 108.1709 (19)°
Data collection top
Agilent Eos Gemini
diffractometer
6843 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
6396 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 1.000Rint = 0.039
11535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.42 e Å3
S = 1.01Δρmin = 0.26 e Å3
6843 reflectionsAbsolute structure: Flack parameter determined using 2790 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
505 parametersAbsolute structure parameter: 0.171 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.47092 (9)0.61450 (3)1.00227 (7)0.02402 (17)
O1A0.3541 (3)0.75120 (12)0.6132 (2)0.0308 (5)
N1A0.6290 (3)0.72540 (12)1.0124 (3)0.0214 (5)
N2A1.0929 (3)0.76763 (15)1.3669 (3)0.0294 (6)
H2A1.17320.76511.44020.035*
C1A0.3945 (4)0.75388 (16)0.7365 (3)0.0220 (6)
C2A0.3944 (4)0.69809 (14)0.8176 (3)0.0209 (6)
C3A0.2860 (4)0.64697 (14)0.7671 (3)0.0232 (6)
C4A0.1599 (4)0.64209 (16)0.6297 (3)0.0304 (7)
H4AA0.20620.65580.56110.037*
H4AB0.06860.66850.62630.037*
C5A0.1007 (4)0.57594 (17)0.6006 (4)0.0326 (8)
H5AA0.00470.57520.52180.039*
H5AB0.18410.55180.58030.039*
C6A0.0609 (5)0.54746 (18)0.7194 (4)0.0360 (8)
H6AA0.01380.50720.69440.043*
H6AB0.01830.57270.74320.043*
C7A0.2142 (4)0.54194 (16)0.8409 (4)0.0302 (7)
H7AA0.18470.53410.92190.036*
H7AB0.27940.50790.82770.036*
C8A0.3107 (4)0.60052 (15)0.8572 (3)0.0249 (6)
C9A0.5045 (4)0.68713 (14)0.9440 (3)0.0207 (6)
C10A0.4374 (4)0.81499 (15)0.8025 (3)0.0225 (6)
C11A0.5143 (4)0.85813 (17)0.7429 (4)0.0319 (7)
H11A0.54380.84750.66730.038*
C12A0.5459 (5)0.91625 (18)0.7967 (4)0.0409 (9)
H12A0.60150.94410.75990.049*
C13A0.4957 (5)0.93340 (17)0.9049 (4)0.0442 (10)
H13A0.51370.97320.93840.053*
C14A0.4184 (5)0.89116 (19)0.9637 (4)0.0393 (9)
H14A0.38460.90261.03660.047*
C15A0.3916 (4)0.83197 (16)0.9137 (3)0.0291 (7)
H15A0.34270.80350.95490.035*
C16A0.7273 (4)0.70843 (15)1.1267 (3)0.0213 (6)
H16A0.70910.67101.16210.026*
C17A0.8636 (4)0.74433 (15)1.2023 (3)0.0227 (6)
C18A0.9206 (4)0.80258 (15)1.1706 (3)0.0226 (6)
C19A0.8656 (4)0.84400 (16)1.0639 (3)0.0289 (7)
H19A0.77020.83660.99400.035*
C20A0.9562 (5)0.89634 (18)1.0644 (4)0.0373 (8)
H20A0.92120.92410.99350.045*
C21A1.0994 (5)0.90821 (18)1.1692 (4)0.0378 (8)
H21A1.15770.94381.16700.045*
C22A1.1558 (4)0.86806 (19)1.2761 (4)0.0344 (8)
H22A1.25100.87591.34590.041*
C23A1.0650 (4)0.81545 (17)1.2756 (3)0.0268 (7)
C24A0.9739 (4)0.72543 (17)1.3226 (3)0.0258 (7)
H24A0.96730.68901.36680.031*
S1B0.58516 (9)0.82206 (3)0.31301 (7)0.02433 (17)
O1B0.7245 (3)0.70323 (12)0.7261 (2)0.0310 (5)
N1B0.4361 (3)0.71109 (13)0.3214 (3)0.0221 (5)
N2B0.0273 (3)0.66696 (14)0.0369 (3)0.0255 (6)
H2B0.10760.66980.11020.031*
C1B0.6804 (4)0.69303 (15)0.6038 (3)0.0224 (6)
C2B0.6739 (4)0.74464 (15)0.5103 (3)0.0222 (6)
C3B0.7811 (4)0.79705 (15)0.5483 (3)0.0244 (6)
C4B0.9186 (4)0.80540 (16)0.6792 (4)0.0328 (8)
H4BA1.00850.77900.67880.039*
H4BB0.88210.79340.75450.039*
C5B0.9759 (5)0.87144 (17)0.6973 (4)0.0330 (8)
H5BA1.07710.87380.77090.040*
H5BB0.89620.89610.72160.040*
C6B1.0013 (5)0.89755 (18)0.5699 (4)0.0365 (8)
H6BA1.07910.87240.54410.044*
H6BB1.04540.93860.58800.044*
C7B0.8411 (5)0.89950 (17)0.4535 (4)0.0315 (8)
H7BA0.77650.93410.46510.038*
H7BB0.86320.90450.36830.038*
C8B0.7491 (4)0.84082 (16)0.4515 (3)0.0254 (7)
C9B0.5592 (4)0.75132 (15)0.3840 (3)0.0211 (6)
C10B0.6424 (4)0.62857 (15)0.5582 (3)0.0250 (6)
C11B0.5927 (4)0.58857 (17)0.6427 (4)0.0314 (7)
H11B0.57400.60350.72010.038*
C12B0.5714 (5)0.52710 (19)0.6113 (4)0.0433 (9)
H12B0.53730.50080.66730.052*
C13B0.6003 (6)0.50458 (18)0.4975 (4)0.0448 (10)
H13B0.58710.46300.47750.054*
C14B0.6494 (5)0.54392 (18)0.4123 (4)0.0394 (9)
H14B0.66950.52860.33580.047*
C15B0.6681 (4)0.60575 (17)0.4415 (3)0.0291 (7)
H15B0.69790.63220.38330.035*
C16B0.3368 (4)0.72624 (15)0.2058 (3)0.0219 (6)
H16B0.35360.76360.16920.026*
C17B0.2019 (4)0.68968 (15)0.1295 (3)0.0225 (6)
C18B0.1459 (4)0.63051 (14)0.1581 (3)0.0221 (6)
C19B0.2011 (4)0.58836 (17)0.2628 (3)0.0282 (7)
H19B0.29620.59540.33330.034*
C20B0.1103 (5)0.53570 (17)0.2591 (4)0.0346 (8)
H20B0.14580.50700.32810.042*
C21B0.0332 (5)0.52460 (18)0.1541 (4)0.0361 (8)
H21B0.09160.48900.15530.043*
C22B0.0899 (4)0.56541 (17)0.0489 (4)0.0295 (7)
H22B0.18510.55800.02120.035*
C23B0.0021 (4)0.61853 (16)0.0524 (3)0.0237 (6)
C24B0.0910 (4)0.70917 (16)0.0096 (3)0.0248 (6)
H24B0.09710.74610.03300.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0249 (4)0.0210 (4)0.0232 (3)0.0012 (3)0.0033 (3)0.0041 (3)
O1A0.0297 (12)0.0381 (14)0.0193 (11)0.0017 (10)0.0002 (9)0.0041 (10)
N1A0.0206 (13)0.0236 (13)0.0180 (12)0.0000 (10)0.0032 (10)0.0002 (10)
N2A0.0220 (13)0.0421 (17)0.0186 (12)0.0033 (12)0.0016 (10)0.0068 (11)
C1A0.0155 (13)0.0277 (16)0.0197 (14)0.0028 (11)0.0009 (11)0.0023 (12)
C2A0.0176 (14)0.0209 (15)0.0225 (14)0.0003 (11)0.0037 (11)0.0015 (11)
C3A0.0213 (15)0.0211 (16)0.0259 (15)0.0023 (12)0.0053 (12)0.0040 (11)
C4A0.0289 (17)0.0267 (17)0.0282 (16)0.0002 (13)0.0020 (13)0.0019 (13)
C5A0.0288 (17)0.0314 (19)0.0304 (17)0.0001 (14)0.0009 (13)0.0074 (14)
C6A0.0280 (17)0.0291 (18)0.047 (2)0.0054 (14)0.0068 (15)0.0081 (15)
C7A0.0305 (17)0.0210 (16)0.0379 (18)0.0019 (13)0.0091 (14)0.0004 (13)
C8A0.0213 (14)0.0217 (16)0.0290 (15)0.0018 (12)0.0040 (12)0.0024 (12)
C9A0.0224 (15)0.0210 (15)0.0191 (14)0.0022 (11)0.0070 (12)0.0003 (11)
C10A0.0214 (13)0.0208 (15)0.0208 (13)0.0034 (11)0.0000 (11)0.0060 (11)
C11A0.0312 (18)0.0325 (19)0.0280 (16)0.0019 (14)0.0034 (14)0.0096 (14)
C12A0.040 (2)0.0287 (19)0.046 (2)0.0044 (15)0.0013 (17)0.0151 (16)
C13A0.049 (2)0.0215 (18)0.046 (2)0.0053 (15)0.0089 (18)0.0000 (15)
C14A0.044 (2)0.036 (2)0.0315 (18)0.0114 (16)0.0022 (16)0.0061 (15)
C15A0.0310 (17)0.0261 (17)0.0271 (15)0.0058 (13)0.0044 (13)0.0052 (13)
C16A0.0220 (15)0.0228 (15)0.0189 (13)0.0017 (12)0.0062 (11)0.0007 (11)
C17A0.0206 (15)0.0260 (16)0.0201 (14)0.0036 (12)0.0045 (12)0.0007 (11)
C18A0.0207 (14)0.0249 (16)0.0218 (14)0.0034 (12)0.0060 (12)0.0033 (12)
C19A0.0279 (16)0.0279 (18)0.0277 (16)0.0026 (14)0.0040 (13)0.0002 (13)
C20A0.040 (2)0.0300 (19)0.043 (2)0.0006 (15)0.0150 (17)0.0023 (15)
C21A0.0339 (19)0.0302 (19)0.053 (2)0.0053 (15)0.0188 (17)0.0076 (16)
C22A0.0235 (17)0.041 (2)0.0380 (19)0.0042 (14)0.0086 (14)0.0160 (16)
C23A0.0223 (15)0.0343 (18)0.0229 (15)0.0036 (13)0.0059 (12)0.0088 (13)
C24A0.0225 (14)0.0328 (18)0.0207 (15)0.0023 (13)0.0045 (12)0.0005 (12)
S1B0.0254 (3)0.0217 (4)0.0228 (3)0.0004 (3)0.0030 (3)0.0029 (3)
O1B0.0328 (13)0.0339 (13)0.0211 (11)0.0015 (10)0.0012 (9)0.0000 (10)
N1B0.0209 (14)0.0230 (13)0.0214 (12)0.0019 (11)0.0054 (10)0.0016 (10)
N2B0.0211 (13)0.0312 (15)0.0196 (12)0.0012 (11)0.0005 (10)0.0007 (11)
C1B0.0182 (14)0.0271 (17)0.0189 (15)0.0042 (11)0.0015 (11)0.0010 (12)
C2B0.0202 (14)0.0233 (16)0.0212 (14)0.0035 (12)0.0039 (11)0.0013 (12)
C3B0.0224 (15)0.0212 (15)0.0263 (15)0.0027 (12)0.0028 (12)0.0026 (12)
C4B0.0294 (17)0.0255 (18)0.0329 (17)0.0036 (13)0.0057 (14)0.0063 (13)
C5B0.0284 (18)0.0277 (18)0.0350 (18)0.0012 (13)0.0015 (14)0.0104 (14)
C6B0.0287 (18)0.0307 (19)0.049 (2)0.0063 (14)0.0111 (16)0.0138 (16)
C7B0.0325 (19)0.0227 (17)0.0376 (19)0.0051 (14)0.0085 (15)0.0031 (13)
C8B0.0238 (15)0.0218 (16)0.0279 (16)0.0006 (12)0.0045 (13)0.0050 (12)
C9B0.0218 (14)0.0205 (14)0.0216 (14)0.0030 (12)0.0078 (12)0.0029 (11)
C10B0.0194 (14)0.0252 (17)0.0274 (15)0.0037 (11)0.0029 (12)0.0032 (12)
C11B0.0297 (17)0.0314 (18)0.0314 (17)0.0037 (14)0.0068 (13)0.0058 (13)
C12B0.041 (2)0.033 (2)0.049 (2)0.0053 (16)0.0049 (17)0.0124 (17)
C13B0.050 (2)0.0216 (17)0.049 (2)0.0006 (15)0.0041 (18)0.0004 (15)
C14B0.042 (2)0.0323 (19)0.0360 (19)0.0076 (16)0.0002 (16)0.0066 (15)
C15B0.0277 (16)0.0301 (18)0.0262 (15)0.0032 (13)0.0037 (12)0.0006 (13)
C16B0.0219 (15)0.0235 (15)0.0207 (14)0.0029 (12)0.0071 (12)0.0032 (11)
C17B0.0218 (15)0.0262 (16)0.0191 (14)0.0052 (12)0.0060 (11)0.0010 (11)
C18B0.0195 (14)0.0231 (16)0.0231 (14)0.0029 (12)0.0057 (12)0.0049 (12)
C19B0.0286 (17)0.0259 (17)0.0268 (16)0.0043 (13)0.0039 (13)0.0018 (13)
C20B0.043 (2)0.0249 (18)0.0335 (18)0.0040 (15)0.0083 (15)0.0054 (14)
C21B0.039 (2)0.0236 (17)0.047 (2)0.0053 (15)0.0145 (16)0.0045 (15)
C22B0.0255 (16)0.0292 (17)0.0306 (16)0.0038 (13)0.0044 (13)0.0082 (13)
C23B0.0231 (15)0.0243 (16)0.0226 (14)0.0045 (13)0.0054 (12)0.0041 (12)
C24B0.0243 (15)0.0279 (16)0.0204 (14)0.0017 (13)0.0045 (12)0.0024 (12)
Geometric parameters (Å, º) top
S1A—C8A1.732 (3)S1B—C8B1.729 (3)
S1A—C9A1.754 (3)S1B—C9B1.756 (3)
O1A—C1A1.223 (4)O1B—C1B1.232 (4)
N1A—C9A1.375 (4)N1B—C9B1.379 (4)
N1A—C16A1.284 (4)N1B—C16B1.286 (4)
N2A—H2A0.8600N2B—H2B0.8600
N2A—C23A1.381 (5)N2B—C23B1.378 (4)
N2A—C24A1.352 (5)N2B—C24B1.351 (4)
C1A—C2A1.482 (4)C1B—C2B1.479 (4)
C1A—C10A1.493 (5)C1B—C10B1.488 (5)
C2A—C3A1.447 (4)C2B—C3B1.448 (5)
C2A—C9A1.386 (4)C2B—C9B1.388 (4)
C3A—C4A1.510 (4)C3B—C4B1.517 (4)
C3A—C8A1.352 (5)C3B—C8B1.353 (5)
C4A—H4AA0.9700C4B—H4BA0.9700
C4A—H4AB0.9700C4B—H4BB0.9700
C4A—C5A1.530 (5)C4B—C5B1.517 (5)
C5A—H5AA0.9700C5B—H5BA0.9700
C5A—H5AB0.9700C5B—H5BB0.9700
C5A—C6A1.519 (6)C5B—C6B1.522 (6)
C6A—H6AA0.9700C6B—H6BA0.9700
C6A—H6AB0.9700C6B—H6BB0.9700
C6A—C7A1.528 (5)C6B—C7B1.533 (5)
C7A—H7AA0.9700C7B—H7BA0.9700
C7A—H7AB0.9700C7B—H7BB0.9700
C7A—C8A1.508 (5)C7B—C8B1.506 (5)
C10A—C11A1.405 (5)C10B—C11B1.399 (5)
C10A—C15A1.387 (5)C10B—C15B1.394 (5)
C11A—H11A0.9300C11B—H11B0.9300
C11A—C12A1.379 (6)C11B—C12B1.379 (6)
C12A—H12A0.9300C12B—H12B0.9300
C12A—C13A1.380 (7)C12B—C13B1.377 (7)
C13A—H13A0.9300C13B—H13B0.9300
C13A—C14A1.389 (7)C13B—C14B1.393 (6)
C14A—H14A0.9300C14B—H14B0.9300
C14A—C15A1.385 (5)C14B—C15B1.382 (5)
C15A—H15A0.9300C15B—H15B0.9300
C16A—H16A0.9300C16B—H16B0.9300
C16A—C17A1.432 (4)C16B—C17B1.434 (5)
C17A—C18A1.439 (5)C17B—C18B1.443 (5)
C17A—C24A1.381 (4)C17B—C24B1.384 (4)
C18A—C19A1.396 (5)C18B—C19B1.393 (5)
C18A—C23A1.410 (4)C18B—C23B1.407 (4)
C19A—H19A0.9300C19B—H19B0.9300
C19A—C20A1.385 (5)C19B—C20B1.386 (5)
C20A—H20A0.9300C20B—H20B0.9300
C20A—C21A1.399 (6)C20B—C21B1.398 (6)
C21A—H21A0.9300C21B—H21B0.9300
C21A—C22A1.381 (6)C21B—C22B1.378 (5)
C22A—H22A0.9300C22B—H22B0.9300
C22A—C23A1.391 (5)C22B—C23B1.401 (5)
C24A—H24A0.9300C24B—H24B0.9300
C8A—S1A—C9A91.80 (15)C8B—S1B—C9B92.09 (16)
C16A—N1A—C9A119.5 (3)C16B—N1B—C9B118.2 (3)
C23A—N2A—H2A125.4C23B—N2B—H2B125.6
C24A—N2A—H2A125.4C24B—N2B—H2B125.6
C24A—N2A—C23A109.2 (3)C24B—N2B—C23B108.7 (3)
O1A—C1A—C2A120.6 (3)O1B—C1B—C2B118.7 (3)
O1A—C1A—C10A118.4 (3)O1B—C1B—C10B117.9 (3)
C2A—C1A—C10A121.0 (3)C2B—C1B—C10B123.4 (3)
C3A—C2A—C1A122.8 (3)C3B—C2B—C1B122.1 (3)
C9A—C2A—C1A124.1 (3)C9B—C2B—C1B125.0 (3)
C9A—C2A—C3A112.9 (3)C9B—C2B—C3B112.7 (3)
C2A—C3A—C4A126.5 (3)C2B—C3B—C4B126.7 (3)
C8A—C3A—C2A112.4 (3)C8B—C3B—C2B112.9 (3)
C8A—C3A—C4A121.1 (3)C8B—C3B—C4B120.4 (3)
C3A—C4A—H4AA109.5C3B—C4B—H4BA109.4
C3A—C4A—H4AB109.5C3B—C4B—H4BB109.4
C3A—C4A—C5A110.7 (3)C3B—C4B—C5B111.2 (3)
H4AA—C4A—H4AB108.1H4BA—C4B—H4BB108.0
C5A—C4A—H4AA109.5C5B—C4B—H4BA109.4
C5A—C4A—H4AB109.5C5B—C4B—H4BB109.4
C4A—C5A—H5AA109.3C4B—C5B—H5BA109.2
C4A—C5A—H5AB109.3C4B—C5B—H5BB109.2
H5AA—C5A—H5AB107.9C4B—C5B—C6B112.2 (3)
C6A—C5A—C4A111.8 (3)H5BA—C5B—H5BB107.9
C6A—C5A—H5AA109.3C6B—C5B—H5BA109.2
C6A—C5A—H5AB109.3C6B—C5B—H5BB109.2
C5A—C6A—H6AA109.6C5B—C6B—H6BA109.4
C5A—C6A—H6AB109.6C5B—C6B—H6BB109.4
C5A—C6A—C7A110.3 (3)C5B—C6B—C7B111.0 (3)
H6AA—C6A—H6AB108.1H6BA—C6B—H6BB108.0
C7A—C6A—H6AA109.6C7B—C6B—H6BA109.4
C7A—C6A—H6AB109.6C7B—C6B—H6BB109.4
C6A—C7A—H7AA109.8C6B—C7B—H7BA109.8
C6A—C7A—H7AB109.8C6B—C7B—H7BB109.8
H7AA—C7A—H7AB108.2H7BA—C7B—H7BB108.2
C8A—C7A—C6A109.6 (3)C8B—C7B—C6B109.4 (3)
C8A—C7A—H7AA109.8C8B—C7B—H7BA109.8
C8A—C7A—H7AB109.8C8B—C7B—H7BB109.8
C3A—C8A—S1A112.6 (2)C3B—C8B—S1B112.3 (3)
C3A—C8A—C7A126.5 (3)C3B—C8B—C7B127.3 (3)
C7A—C8A—S1A120.9 (2)C7B—C8B—S1B120.4 (3)
N1A—C9A—S1A123.9 (2)N1B—C9B—S1B122.8 (2)
N1A—C9A—C2A125.8 (3)N1B—C9B—C2B127.0 (3)
C2A—C9A—S1A110.2 (2)C2B—C9B—S1B110.1 (2)
C11A—C10A—C1A118.6 (3)C11B—C10B—C1B118.0 (3)
C15A—C10A—C1A121.9 (3)C15B—C10B—C1B122.4 (3)
C15A—C10A—C11A119.3 (3)C15B—C10B—C11B119.3 (3)
C10A—C11A—H11A120.1C10B—C11B—H11B119.9
C12A—C11A—C10A119.8 (4)C12B—C11B—C10B120.2 (4)
C12A—C11A—H11A120.1C12B—C11B—H11B119.9
C11A—C12A—H12A119.7C11B—C12B—H12B119.9
C11A—C12A—C13A120.6 (4)C13B—C12B—C11B120.3 (4)
C13A—C12A—H12A119.7C13B—C12B—H12B119.9
C12A—C13A—H13A120.1C12B—C13B—H13B119.9
C12A—C13A—C14A119.9 (4)C12B—C13B—C14B120.2 (4)
C14A—C13A—H13A120.1C14B—C13B—H13B119.9
C13A—C14A—H14A120.0C13B—C14B—H14B120.0
C15A—C14A—C13A120.0 (4)C15B—C14B—C13B120.0 (4)
C15A—C14A—H14A120.0C15B—C14B—H14B120.0
C10A—C15A—H15A119.8C10B—C15B—H15B120.0
C14A—C15A—C10A120.4 (3)C14B—C15B—C10B120.1 (4)
C14A—C15A—H15A119.8C14B—C15B—H15B120.0
N1A—C16A—H16A118.4N1B—C16B—H16B117.7
N1A—C16A—C17A123.2 (3)N1B—C16B—C17B124.6 (3)
C17A—C16A—H16A118.4C17B—C16B—H16B117.7
C16A—C17A—C18A129.8 (3)C16B—C17B—C18B130.7 (3)
C24A—C17A—C16A123.7 (3)C24B—C17B—C16B123.1 (3)
C24A—C17A—C18A106.4 (3)C24B—C17B—C18B106.1 (3)
C19A—C18A—C17A134.3 (3)C19B—C18B—C17B134.2 (3)
C19A—C18A—C23A119.3 (3)C19B—C18B—C23B119.7 (3)
C23A—C18A—C17A106.4 (3)C23B—C18B—C17B106.1 (3)
C18A—C19A—H19A120.7C18B—C19B—H19B120.9
C20A—C19A—C18A118.6 (3)C20B—C19B—C18B118.1 (3)
C20A—C19A—H19A120.7C20B—C19B—H19B120.9
C19A—C20A—H20A119.4C19B—C20B—H20B119.2
C19A—C20A—C21A121.3 (4)C19B—C20B—C21B121.6 (4)
C21A—C20A—H20A119.4C21B—C20B—H20B119.2
C20A—C21A—H21A119.4C20B—C21B—H21B119.3
C22A—C21A—C20A121.1 (4)C22B—C21B—C20B121.3 (4)
C22A—C21A—H21A119.4C22B—C21B—H21B119.3
C21A—C22A—H22A121.2C21B—C22B—H22B121.5
C21A—C22A—C23A117.6 (3)C21B—C22B—C23B117.1 (3)
C23A—C22A—H22A121.2C23B—C22B—H22B121.5
N2A—C23A—C18A107.8 (3)N2B—C23B—C18B108.6 (3)
N2A—C23A—C22A130.0 (3)N2B—C23B—C22B129.3 (3)
C22A—C23A—C18A122.1 (3)C22B—C23B—C18B122.1 (3)
N2A—C24A—C17A110.2 (3)N2B—C24B—C17B110.5 (3)
N2A—C24A—H24A124.9N2B—C24B—H24B124.8
C17A—C24A—H24A124.9C17B—C24B—H24B124.8
O1A—C1A—C2A—C3A28.7 (5)O1B—C1B—C2B—C3B29.5 (5)
O1A—C1A—C2A—C9A146.2 (3)O1B—C1B—C2B—C9B144.7 (3)
O1A—C1A—C10A—C11A34.1 (4)O1B—C1B—C10B—C11B26.2 (4)
O1A—C1A—C10A—C15A140.5 (3)O1B—C1B—C10B—C15B148.1 (3)
N1A—C16A—C17A—C18A1.1 (5)N1B—C16B—C17B—C18B0.6 (6)
N1A—C16A—C17A—C24A177.3 (3)N1B—C16B—C17B—C24B175.6 (3)
C1A—C2A—C3A—C4A0.2 (5)C1B—C2B—C3B—C4B4.6 (5)
C1A—C2A—C3A—C8A178.3 (3)C1B—C2B—C3B—C8B176.2 (3)
C1A—C2A—C9A—S1A176.7 (2)C1B—C2B—C9B—S1B174.9 (3)
C1A—C2A—C9A—N1A0.3 (5)C1B—C2B—C9B—N1B2.4 (5)
C1A—C10A—C11A—C12A175.9 (3)C1B—C10B—C11B—C12B173.7 (3)
C1A—C10A—C15A—C14A173.2 (3)C1B—C10B—C15B—C14B172.2 (3)
C2A—C1A—C10A—C11A148.3 (3)C2B—C1B—C10B—C11B156.3 (3)
C2A—C1A—C10A—C15A37.1 (4)C2B—C1B—C10B—C15B29.4 (5)
C2A—C3A—C4A—C5A165.5 (3)C2B—C3B—C4B—C5B166.0 (3)
C2A—C3A—C8A—S1A3.0 (4)C2B—C3B—C8B—S1B1.8 (4)
C2A—C3A—C8A—C7A176.6 (3)C2B—C3B—C8B—C7B176.5 (3)
C3A—C2A—C9A—S1A1.4 (3)C3B—C2B—C9B—S1B0.2 (3)
C3A—C2A—C9A—N1A175.0 (3)C3B—C2B—C9B—N1B177.1 (3)
C3A—C4A—C5A—C6A46.8 (4)C3B—C4B—C5B—C6B47.0 (4)
C4A—C3A—C8A—S1A175.6 (3)C4B—C3B—C8B—S1B178.9 (3)
C4A—C3A—C8A—C7A4.8 (5)C4B—C3B—C8B—C7B2.8 (6)
C4A—C5A—C6A—C7A64.8 (4)C4B—C5B—C6B—C7B63.3 (4)
C5A—C6A—C7A—C8A44.4 (4)C5B—C6B—C7B—C8B42.8 (4)
C6A—C7A—C8A—S1A168.1 (2)C6B—C7B—C8B—S1B166.6 (3)
C6A—C7A—C8A—C3A11.4 (5)C6B—C7B—C8B—C3B11.6 (5)
C8A—S1A—C9A—N1A176.7 (3)C8B—S1B—C9B—N1B178.1 (3)
C8A—S1A—C9A—C2A0.2 (3)C8B—S1B—C9B—C2B0.7 (3)
C8A—C3A—C4A—C5A12.9 (5)C8B—C3B—C4B—C5B14.8 (5)
C9A—S1A—C8A—C3A1.8 (3)C9B—S1B—C8B—C3B1.5 (3)
C9A—S1A—C8A—C7A177.8 (3)C9B—S1B—C8B—C7B177.0 (3)
C9A—N1A—C16A—C17A177.6 (3)C9B—N1B—C16B—C17B179.1 (3)
C9A—C2A—C3A—C4A175.6 (3)C9B—C2B—C3B—C4B179.4 (3)
C9A—C2A—C3A—C8A2.9 (4)C9B—C2B—C3B—C8B1.4 (4)
C10A—C1A—C2A—C3A148.8 (3)C10B—C1B—C2B—C3B148.0 (3)
C10A—C1A—C2A—C9A36.3 (4)C10B—C1B—C2B—C9B37.8 (5)
C10A—C11A—C12A—C13A3.1 (5)C10B—C11B—C12B—C13B0.6 (6)
C11A—C10A—C15A—C14A1.3 (5)C11B—C10B—C15B—C14B2.0 (5)
C11A—C12A—C13A—C14A2.6 (6)C11B—C12B—C13B—C14B0.8 (6)
C12A—C13A—C14A—C15A0.1 (6)C12B—C13B—C14B—C15B0.4 (6)
C13A—C14A—C15A—C10A1.9 (5)C13B—C14B—C15B—C10B1.8 (5)
C15A—C10A—C11A—C12A1.1 (5)C15B—C10B—C11B—C12B0.8 (5)
C16A—N1A—C9A—S1A0.8 (4)C16B—N1B—C9B—S1B0.2 (4)
C16A—N1A—C9A—C2A176.8 (3)C16B—N1B—C9B—C2B177.2 (3)
C16A—C17A—C18A—C19A2.3 (6)C16B—C17B—C18B—C19B1.9 (6)
C16A—C17A—C18A—C23A176.5 (3)C16B—C17B—C18B—C23B176.2 (3)
C16A—C17A—C24A—N2A177.2 (3)C16B—C17B—C24B—N2B177.0 (3)
C17A—C18A—C19A—C20A178.0 (4)C17B—C18B—C19B—C20B177.6 (4)
C17A—C18A—C23A—N2A0.6 (3)C17B—C18B—C23B—N2B0.9 (3)
C17A—C18A—C23A—C22A178.5 (3)C17B—C18B—C23B—C22B177.8 (3)
C18A—C17A—C24A—N2A0.3 (4)C18B—C17B—C24B—N2B0.0 (4)
C18A—C19A—C20A—C21A0.4 (6)C18B—C19B—C20B—C21B0.2 (6)
C19A—C18A—C23A—N2A179.5 (3)C19B—C18B—C23B—N2B179.3 (3)
C19A—C18A—C23A—C22A0.5 (5)C19B—C18B—C23B—C22B0.7 (5)
C19A—C20A—C21A—C22A0.1 (6)C19B—C20B—C21B—C22B0.6 (6)
C20A—C21A—C22A—C23A0.0 (6)C20B—C21B—C22B—C23B0.3 (6)
C21A—C22A—C23A—N2A179.0 (3)C21B—C22B—C23B—N2B178.7 (3)
C21A—C22A—C23A—C18A0.2 (5)C21B—C22B—C23B—C18B0.3 (5)
C23A—N2A—C24A—C17A0.6 (4)C23B—N2B—C24B—C17B0.6 (4)
C23A—C18A—C19A—C20A0.6 (5)C23B—C18B—C19B—C20B0.4 (5)
C24A—N2A—C23A—C18A0.7 (4)C24B—N2B—C23B—C18B0.9 (4)
C24A—N2A—C23A—C22A178.2 (3)C24B—N2B—C23B—C22B177.6 (3)
C24A—C17A—C18A—C19A178.9 (4)C24B—C17B—C18B—C19B178.6 (4)
C24A—C17A—C18A—C23A0.2 (3)C24B—C17B—C18B—C23B0.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1Ai0.862.012.866 (4)175
N2B—H2B···O1Bii0.862.002.835 (3)163
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1Ai0.862.012.866 (4)174.7
N2B—H2B···O1Bii0.862.002.835 (3)162.6
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z1.
 

Acknowledgements

MK is grateful to the CPEPA–UGC for the award of a JRF and thanks th University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationCannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun. 7, 83–90.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058–1066.  CSD CrossRef CAS Google Scholar
First citationLütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem. 46, 1870–1877.  Google Scholar
First citationNikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuterová, Z., Krutošiková, A. & Végh, D. (2010). Arkivoc, i, 209–246.  Google Scholar
First citationSabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.  CrossRef CAS Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o501-o502
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds