organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,1′′,1′′′-(Oxydi­methane­tri­yl)tetra­kis­(4-fluoro­benzene)

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570005, Karnataka, India, bDepartment of Physics, Govt. Science College, Hassan 573 201, Karnataka, India, and cDepartment of Chemistry, Karnatak Science College, Karnatak University, Dharwad, Karnataka 580001, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 5 February 2014; accepted 18 March 2014; online 26 March 2014)

In the title compound, C26H18F4O2, the dihedral angles between pairs of benzene rings linked to the same C atom are 80.55 (8) and 79.11 (7)°. The crystal packing features C—H⋯π inter­actions and shows stacking when viewed along the c axis.

Related literature

For biological applications of the benzhydryl ether unit, see: Brahmachari (2010[Brahmachari, G. (2010). Handbook of Pharmaceutical Natural Products, 1st ed. Weinheim: Wiley-VCH.]); Weis et al. (2006[Weis, R., Schlapper, C., Brun, C. R., Kaiser, M. & Seebacher, W. (2006). Eur. J. Pharm. Sci. 28, 361-368.]); Van Der Zee & Hespe (1978[Van Der Zee, P. & Hespe, W. (1978). Neuropharmacology, 17, 483-490.]); Nilsson et al. (1969[Nilsson, J. L., Wagermark, J. & Dahlbom, R. (1969). J. Med. Chem. 12, 1103-1105.]); McGavack et al. (1948[McGavack, T. H., Schulman, P. M. & Boyd, L. J. (1948). J. Allergy, 19, 141-145.]); Loew & Kaiser (1945[Loew, E. R. & Kaiser, M. E. (1945). Exp. Biol. Med. 58, 235-237.]); Pyo et al. (2004[Pyo, M. K., Jin, J. L., Koo, Y. K. & Yun-Choi, S. (2004). Arch. Pharm. Res. 27, 381-385.]). For a related structure, see: Devarajegowda et al. (2011[Devarajegowda, H. C., Arunkashi, H. K., Vepuri, S. B., Chidananda, N. & Prasad, V. D. J. (2011). Acta Cryst. E67, o564.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18F4O2

  • Mr = 438.40

  • Triclinic, [P \overline 1]

  • a = 8.1754 (2) Å

  • b = 8.9536 (2) Å

  • c = 15.3193 (4) Å

  • α = 104.965 (2)°

  • β = 95.175 (2)°

  • γ = 107.354 (2)°

  • V = 1016.87 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.]) Tmin = 0.770, Tmax = 1.000

  • 24205 measured reflections

  • 6598 independent reflections

  • 4213 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.03

  • 6598 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C26–C31 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg4i 0.93 2.82 3.6834 (17) 154
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The benzhydryl ether moiety is abundant in a number of naturally occurring and biologically active compounds as well as molecules of potential clinical use and also exhibit various pharmacological potentials. In addition such molecules possess properties such as non-nucleoside reverse transcriptase inhibition (Brahmachari, 2010), anti-plasmodial and anti-trypanosomal action (Weis et al., 2006), monoamine uptake inhibition, anti-depressant and anti-Parkinsonian activity (Van Der Zee & Hespe, 1978; Nilsson et al., 1969), and anti-histaminic (McGavack et al., 1948) and anti-spasmodic (Loew & Kaiser, 1945) action. Naturally occurring symmetrical bis(benzhydryl)ethers are also known to show promising therapeutic potential including significant anti-platelet aggregation efficacy (Pyo et al., 2004). In this article we report the crystal structure of 1,1',1'',1'''-(oxydimethanetriyl)tetrakis (4-fluorobenzene)

The molecular unit of 1,1',1'',1'''-(oxydimethanetriyl)tetrakis (4-fluorobenzene) is shown in Fig. 1. The dihedral angles between each pair of benzene rings are 80.55 (8)° [(C6–C11) 1 and (C13–C18) 2] and 79.11 (7)° [(C20–C25) 3 and (C26–C31) 4] respectively. The crystal packing is stabilized by C7—H7···π Cg4[(C26–C31)] interactions and shows stacking when viewed along c axis. The bond distances and bond angles in the benzene ring system are in good agreement with those observed in related structures (Devarajegowda et al., 2011).

Related literature top

For biological applications of the benzhydryl ether unit, see: Brahmachari (2010); Weis et al. (2006); Van Der Zee & Hespe (1978); Nilsson et al. (1969); McGavack et al. (1948); Loew & Kaiser (1945); Pyo et al. (2004). For a related structure, see: Devarajegowda et al. (2011).

Experimental top

An oven-dried screw cap test tube was charged with a magnetic stir bar, benzhydrol (1 mmol), and p-toluenesulfonyl chloride (5 mol%). The tube was then evacuated and back-filled with nitrogen. The evacuation/ backfill sequence was repeated two additional times. The tube was placed in a preheated oil bath at 110°C, and the reaction mixture was stirred vigorously. The progress of the reaction was monitored by TLC, and on completion, the reaction mixture was cooled to room temperature. The reaction mixture was extracted with dried ethyl acetate (10 ml), and the extract was then concentrated under reduced pressure; the residue was purified via column chromatography using silica gel (60 to 120 mesh) and petrol ether-ethyl acetate mixture. white solid, 91% yield, m.p. 363 K.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of molecule of the title compound.
1,1',1'',1'''-(Oxydimethanetriyl)tetrakis(4-fluorobenzene) top
Crystal data top
C26H18F4O2Z = 2
Mr = 438.40F(000) = 452
Triclinic, P1Dx = 1.432 Mg m3
Hall symbol: -P 1Melting point: 363 K
a = 8.1754 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9536 (2) ÅCell parameters from 3305 reflections
c = 15.3193 (4) Åθ = 1.5–25.0°
α = 104.965 (2)°µ = 0.11 mm1
β = 95.175 (2)°T = 296 K
γ = 107.354 (2)°Plate, colourless
V = 1016.87 (4) Å30.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6598 independent reflections
Radiation source: fine-focus sealed tube4213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 31.3°, θmin = 1.4°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.770, Tmax = 1.000k = 1213
24205 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.1212P]
where P = (Fo2 + 2Fc2)/3
6598 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H18F4O2γ = 107.354 (2)°
Mr = 438.40V = 1016.87 (4) Å3
Triclinic, P1Z = 2
a = 8.1754 (2) ÅMo Kα radiation
b = 8.9536 (2) ŵ = 0.11 mm1
c = 15.3193 (4) ÅT = 296 K
α = 104.965 (2)°0.24 × 0.20 × 0.12 mm
β = 95.175 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6598 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
4213 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.030
24205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
6598 reflectionsΔρmin = 0.20 e Å3
280 parameters
Special details top

Experimental. IR (νmax, KBr) cm-1: 3,069, 3,057, 2,925, 1,603, 1,507, 1,422, 1,408, 1,298, 1,225, 1,178, 1,155, 1,101, 1,029, 859, 837, 818. 1H NMR (CDCl3, 400 MHz, δ): 7.19 to 7.16 (m, 8H, Ar H), 6.94 to 6.88 (m, 8H, Ar H), 5.22 (s, 2H, CH). 13 C NMR (CDCl3, 100 MHz, δ): 163.52, 161.07, 137.51, 137.48, 128.82, 128.74, 115.59, 115.38, 78.91. TOF-MS: 445.98 ([M+ Na]+). Anal. found: C, 73.89; H, 4.28. C26H18F4O requires C, 73.93; H, 4.30%

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.51662 (13)0.15696 (11)0.07690 (7)0.0851 (3)
F31.71199 (12)0.98406 (12)0.40107 (7)0.0887 (3)
F20.68830 (14)0.68143 (15)0.64449 (6)0.0910 (3)
F40.80529 (13)0.76746 (12)0.09958 (6)0.0729 (3)
O50.91588 (11)0.58730 (10)0.26211 (6)0.0450 (2)
C60.61205 (19)0.00592 (16)0.13522 (10)0.0564 (3)
C70.77809 (19)0.01998 (17)0.17440 (10)0.0575 (3)
H70.82570.06390.16270.069*
C80.87448 (17)0.17561 (16)0.23243 (9)0.0495 (3)
H80.98870.19620.25940.059*
C90.80425 (16)0.29983 (14)0.25068 (8)0.0437 (3)
C100.63362 (17)0.26622 (16)0.20986 (10)0.0566 (3)
H100.58350.34830.22240.068*
C110.53683 (18)0.11302 (17)0.15099 (11)0.0611 (4)
H110.42320.09160.12280.073*
C120.91059 (16)0.47045 (14)0.31180 (8)0.0437 (3)
H121.03000.47260.32860.052*
C130.84427 (16)0.52578 (15)0.39945 (8)0.0458 (3)
C140.75351 (19)0.41433 (18)0.44062 (10)0.0581 (3)
H140.72760.30270.41230.070*
C150.7006 (2)0.4656 (2)0.52311 (10)0.0665 (4)
H150.63970.39000.55050.080*
C160.7398 (2)0.6293 (2)0.56319 (10)0.0644 (4)
C170.8300 (2)0.7431 (2)0.52598 (11)0.0736 (5)
H170.85620.85430.55530.088*
C180.8823 (2)0.69075 (18)0.44369 (10)0.0637 (4)
H180.94420.76790.41750.076*
C191.04230 (15)0.59122 (14)0.20239 (8)0.0436 (3)
H191.04260.47900.17710.052*
C201.22295 (16)0.69598 (14)0.25586 (8)0.0446 (3)
C211.25308 (19)0.85361 (16)0.31264 (11)0.0630 (4)
H211.16130.89480.31750.076*
C221.4173 (2)0.95001 (18)0.36192 (11)0.0695 (4)
H221.43681.05490.40060.083*
C231.54990 (19)0.88794 (18)0.35260 (10)0.0607 (4)
C241.52757 (19)0.73525 (19)0.29736 (10)0.0610 (4)
H241.62100.69650.29180.073*
C251.36120 (17)0.63864 (16)0.24939 (9)0.0513 (3)
H251.34290.53300.21210.062*
C260.98039 (16)0.64536 (14)0.12351 (8)0.0435 (3)
C271.09134 (18)0.75717 (18)0.08976 (10)0.0576 (3)
H271.20770.80600.11830.069*
C281.0337 (2)0.79841 (18)0.01455 (11)0.0629 (4)
H281.10990.87350.00780.076*
C290.86398 (19)0.72695 (16)0.02568 (9)0.0521 (3)
C300.74903 (19)0.6152 (2)0.00409 (10)0.0636 (4)
H300.63310.56720.02520.076*
C310.80857 (18)0.57483 (19)0.07884 (10)0.0597 (4)
H310.73130.49820.09980.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0678 (6)0.0598 (5)0.0926 (7)0.0021 (4)0.0069 (5)0.0112 (5)
F30.0592 (6)0.0754 (6)0.1019 (8)0.0058 (5)0.0223 (5)0.0227 (5)
F20.0886 (7)0.1324 (9)0.0540 (5)0.0475 (7)0.0217 (5)0.0158 (6)
F40.0851 (6)0.0804 (6)0.0610 (5)0.0351 (5)0.0057 (5)0.0285 (5)
O50.0444 (5)0.0434 (4)0.0515 (5)0.0155 (4)0.0136 (4)0.0186 (4)
C60.0527 (8)0.0478 (7)0.0547 (8)0.0039 (6)0.0114 (6)0.0066 (6)
C70.0586 (8)0.0500 (7)0.0621 (8)0.0206 (6)0.0145 (7)0.0096 (6)
C80.0451 (7)0.0522 (7)0.0503 (7)0.0174 (6)0.0061 (5)0.0133 (6)
C90.0419 (6)0.0438 (6)0.0452 (6)0.0117 (5)0.0066 (5)0.0165 (5)
C100.0443 (7)0.0476 (7)0.0758 (9)0.0143 (6)0.0032 (6)0.0188 (6)
C110.0416 (7)0.0569 (8)0.0737 (9)0.0063 (6)0.0016 (6)0.0168 (7)
C120.0388 (6)0.0433 (6)0.0494 (7)0.0127 (5)0.0046 (5)0.0168 (5)
C130.0398 (6)0.0506 (6)0.0449 (6)0.0135 (5)0.0006 (5)0.0148 (5)
C140.0568 (8)0.0578 (8)0.0535 (8)0.0103 (6)0.0080 (6)0.0177 (6)
C150.0572 (9)0.0849 (11)0.0518 (8)0.0115 (8)0.0092 (7)0.0254 (8)
C160.0565 (8)0.0952 (12)0.0429 (7)0.0334 (8)0.0055 (6)0.0146 (8)
C170.0945 (13)0.0672 (9)0.0567 (9)0.0327 (9)0.0128 (9)0.0082 (8)
C180.0780 (10)0.0537 (8)0.0557 (8)0.0183 (7)0.0131 (7)0.0142 (6)
C190.0405 (6)0.0379 (5)0.0487 (6)0.0104 (5)0.0100 (5)0.0096 (5)
C200.0437 (6)0.0411 (6)0.0448 (6)0.0094 (5)0.0080 (5)0.0116 (5)
C210.0510 (8)0.0473 (7)0.0777 (10)0.0123 (6)0.0082 (7)0.0027 (7)
C220.0633 (9)0.0460 (7)0.0765 (10)0.0033 (7)0.0021 (8)0.0012 (7)
C230.0491 (8)0.0570 (8)0.0626 (9)0.0000 (6)0.0056 (6)0.0215 (7)
C240.0471 (7)0.0660 (9)0.0685 (9)0.0181 (7)0.0011 (6)0.0220 (7)
C250.0498 (7)0.0501 (7)0.0509 (7)0.0160 (6)0.0042 (6)0.0122 (6)
C260.0427 (6)0.0386 (5)0.0448 (6)0.0114 (5)0.0095 (5)0.0071 (5)
C270.0436 (7)0.0597 (8)0.0660 (9)0.0070 (6)0.0060 (6)0.0265 (7)
C280.0601 (9)0.0610 (8)0.0680 (9)0.0104 (7)0.0120 (7)0.0312 (7)
C290.0614 (8)0.0532 (7)0.0445 (7)0.0257 (6)0.0091 (6)0.0122 (6)
C300.0477 (8)0.0796 (10)0.0537 (8)0.0110 (7)0.0023 (6)0.0181 (7)
C310.0473 (7)0.0656 (8)0.0540 (8)0.0008 (6)0.0055 (6)0.0202 (7)
Geometric parameters (Å, º) top
F1—C61.3626 (15)C17—C181.379 (2)
F3—C231.3639 (16)C17—H170.9300
F2—C161.3628 (16)C18—H180.9300
F4—C291.3642 (16)C19—C261.5131 (18)
O5—C121.4375 (14)C19—C201.5135 (16)
O5—C191.4395 (14)C19—H190.9800
C6—C71.360 (2)C20—C251.3751 (19)
C6—C111.362 (2)C20—C211.3890 (18)
C7—C81.3898 (18)C21—C221.381 (2)
C7—H70.9300C21—H210.9300
C8—C91.3763 (18)C22—C231.361 (2)
C8—H80.9300C22—H220.9300
C9—C101.3865 (18)C23—C241.358 (2)
C9—C121.5128 (16)C24—C251.3885 (19)
C10—C111.3806 (19)C24—H240.9300
C10—H100.9300C25—H250.9300
C11—H110.9300C26—C271.3795 (18)
C12—C131.5134 (17)C26—C311.3837 (18)
C12—H120.9800C27—C281.382 (2)
C13—C181.3816 (19)C27—H270.9300
C13—C141.3827 (18)C28—C291.352 (2)
C14—C151.383 (2)C28—H280.9300
C14—H140.9300C29—C301.358 (2)
C15—C161.360 (2)C30—C311.378 (2)
C15—H150.9300C30—H300.9300
C16—C171.354 (2)C31—H310.9300
C12—O5—C19112.25 (9)O5—C19—C26107.41 (10)
C7—C6—C11122.94 (13)O5—C19—C20110.56 (9)
C7—C6—F1118.79 (13)C26—C19—C20114.95 (10)
C11—C6—F1118.27 (13)O5—C19—H19107.9
C6—C7—C8117.98 (13)C26—C19—H19107.9
C6—C7—H7121.0C20—C19—H19107.9
C8—C7—H7121.0C25—C20—C21118.30 (12)
C9—C8—C7121.28 (13)C25—C20—C19121.22 (11)
C9—C8—H8119.4C21—C20—C19120.48 (12)
C7—C8—H8119.4C22—C21—C20120.93 (14)
C8—C9—C10118.37 (12)C22—C21—H21119.5
C8—C9—C12121.32 (11)C20—C21—H21119.5
C10—C9—C12120.29 (11)C23—C22—C21118.46 (14)
C11—C10—C9121.11 (13)C23—C22—H22120.8
C11—C10—H10119.4C21—C22—H22120.8
C9—C10—H10119.4C24—C23—C22122.88 (13)
C6—C11—C10118.30 (13)C24—C23—F3118.94 (15)
C6—C11—H11120.9C22—C23—F3118.19 (14)
C10—C11—H11120.9C23—C24—C25118.05 (14)
O5—C12—C9109.77 (9)C23—C24—H24121.0
O5—C12—C13108.00 (9)C25—C24—H24121.0
C9—C12—C13114.58 (10)C20—C25—C24121.37 (13)
O5—C12—H12108.1C20—C25—H25119.3
C9—C12—H12108.1C24—C25—H25119.3
C13—C12—H12108.1C27—C26—C31117.42 (13)
C18—C13—C14117.97 (13)C27—C26—C19122.56 (11)
C18—C13—C12120.56 (12)C31—C26—C19119.91 (11)
C14—C13—C12121.36 (12)C26—C27—C28121.57 (13)
C13—C14—C15121.28 (14)C26—C27—H27119.2
C13—C14—H14119.4C28—C27—H27119.2
C15—C14—H14119.4C29—C28—C27118.40 (13)
C16—C15—C14118.31 (14)C29—C28—H28120.8
C16—C15—H15120.8C27—C28—H28120.8
C14—C15—H15120.8C28—C29—C30122.66 (13)
C17—C16—C15122.50 (14)C28—C29—F4118.94 (13)
C17—C16—F2118.62 (16)C30—C29—F4118.40 (13)
C15—C16—F2118.88 (15)C29—C30—C31118.27 (13)
C16—C17—C18118.76 (15)C29—C30—H30120.9
C16—C17—H17120.6C31—C30—H30120.9
C18—C17—H17120.6C30—C31—C26121.68 (13)
C17—C18—C13121.17 (15)C30—C31—H31119.2
C17—C18—H18119.4C26—C31—H31119.2
C13—C18—H18119.4
C11—C6—C7—C80.5 (2)C12—O5—C19—C26152.38 (9)
F1—C6—C7—C8178.88 (12)C12—O5—C19—C2081.48 (11)
C6—C7—C8—C90.6 (2)O5—C19—C20—C25129.54 (12)
C7—C8—C9—C100.2 (2)C26—C19—C20—C25108.67 (13)
C7—C8—C9—C12178.35 (12)O5—C19—C20—C2150.75 (16)
C8—C9—C10—C111.1 (2)C26—C19—C20—C2171.04 (15)
C12—C9—C10—C11177.40 (13)C25—C20—C21—C220.5 (2)
C7—C6—C11—C100.4 (2)C19—C20—C21—C22179.81 (14)
F1—C6—C11—C10179.81 (13)C20—C21—C22—C230.9 (3)
C9—C10—C11—C61.3 (2)C21—C22—C23—C240.3 (3)
C19—O5—C12—C980.08 (11)C21—C22—C23—F3179.66 (14)
C19—O5—C12—C13154.36 (9)C22—C23—C24—C250.7 (2)
C8—C9—C12—O5122.12 (12)F3—C23—C24—C25179.29 (13)
C10—C9—C12—O556.39 (15)C21—C20—C25—C240.6 (2)
C8—C9—C12—C13116.18 (13)C19—C20—C25—C24179.09 (12)
C10—C9—C12—C1365.31 (15)C23—C24—C25—C201.2 (2)
O5—C12—C13—C1832.95 (16)O5—C19—C26—C27137.23 (12)
C9—C12—C13—C18155.61 (13)C20—C19—C26—C2713.75 (17)
O5—C12—C13—C14151.03 (12)O5—C19—C26—C3146.67 (15)
C9—C12—C13—C1428.37 (16)C20—C19—C26—C31170.15 (12)
C18—C13—C14—C150.6 (2)C31—C26—C27—C280.4 (2)
C12—C13—C14—C15176.73 (13)C19—C26—C27—C28176.56 (13)
C13—C14—C15—C160.1 (2)C26—C27—C28—C290.4 (2)
C14—C15—C16—C170.8 (2)C27—C28—C29—C300.9 (2)
C14—C15—C16—F2179.99 (13)C27—C28—C29—F4179.57 (13)
C15—C16—C17—C180.8 (3)C28—C29—C30—C310.6 (2)
F2—C16—C17—C18179.99 (14)F4—C29—C30—C31179.86 (13)
C16—C17—C18—C130.1 (3)C29—C30—C31—C260.2 (2)
C14—C13—C18—C170.6 (2)C27—C26—C31—C300.7 (2)
C12—C13—C18—C17176.76 (14)C19—C26—C31—C30176.97 (13)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C26–C31 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg4i0.932.823.6834 (17)154
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C26–C31 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg4i0.932.823.6834 (17)154
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the CCD X-ray facilities, X-ray data collection and GCMS, IR, CHNS and NMR data.

References

First citationBrahmachari, G. (2010). Handbook of Pharmaceutical Natural Products, 1st ed. Weinheim: Wiley–VCH.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevarajegowda, H. C., Arunkashi, H. K., Vepuri, S. B., Chidananda, N. & Prasad, V. D. J. (2011). Acta Cryst. E67, o564.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoew, E. R. & Kaiser, M. E. (1945). Exp. Biol. Med. 58, 235–237.  CrossRef CAS Google Scholar
First citationMcGavack, T. H., Schulman, P. M. & Boyd, L. J. (1948). J. Allergy, 19, 141–145.  CrossRef PubMed Web of Science Google Scholar
First citationNilsson, J. L., Wagermark, J. & Dahlbom, R. (1969). J. Med. Chem. 12, 1103–1105.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPyo, M. K., Jin, J. L., Koo, Y. K. & Yun-Choi, S. (2004). Arch. Pharm. Res. 27, 381–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Der Zee, P. & Hespe, W. (1978). Neuropharmacology, 17, 483–490.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWeis, R., Schlapper, C., Brun, C. R., Kaiser, M. & Seebacher, W. (2006). Eur. J. Pharm. Sci. 28, 361–368.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds