organic compounds
2-Ethyl-3-[(R)-2-phenylbutanamido]quinazolin-4(3H)-one monohydrate
aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk
In the title compound, C20H21N3O2·H2O (EQR·H2O), the quinazoline ring system forms dihedral angles of 53.1 (1) and 85.6 (1)° with the phenyl ring and the amide link, respectively. In the crystal, O—H⋯O hydrogen bonds link two EQR and two water molecules into a centrosymmetric R44(18) ring motif. N—H⋯O hydrogen bonds further link these hydrogen-bonded fragments into columns extending in [010].
CCDC reference: 992297
Related literature
For convenient routes towards modifying 3H-quinazolin-4-one derivatives, see: Smith et al. (1995, 1996a,b, 2004). For the crystal structures of related compounds, see: Yang et al. (2009); Srinivasan et al. (2011).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (CambridgeSoft, 2001).
Supporting information
CCDC reference: 992297
10.1107/S1600536814005996/cv5446sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814005996/cv5446Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814005996/cv5446Isup3.cml
To a stirred mixture of 3-amino-2-ethyl-3H-quinazolin-4-one (1.89 g, 10.0 mmol) and Et3N (3 ml) in anhydrous toluene (20 ml), was added a solution of 2-phenylbutanoyl chloride (0.91 g, 5.0 mmol) in anhydrous toluene (5 ml). The mixture was heated under reflux for 30 min, allowed to cool, washed with saturated aqueous NaHCO3 (2 x 10 ml) and H2O (2 x 15 ml), dried (MgSO4), and evaporated under reduced pressure. The residue obtained was purified by
on silica gel (Et2O–hexane, 1:4) followed by recrystallization from ethyl acetate to give 2-ethyl-3-(2-phenylbutanoylamino)-3H-quinazolin-4-one (1.36 g, 4.05 mmol; 81% based on acid chloride) as colourless crystals, m.p. 101–103 °C. The title compound (I) appears from its NMR spectra as a mixture of two in unequal proportions (Ia:Ib = ca. 4:6), due to around the N–N axis (Smith et al., 2004), but the X-ray crystallography showed a single type of crystal containing just one diastereoisomer but with both enantiomers in equal proportions (the structure displayed shows the structure as 2-ethyl-3-((R)-2-phenylbutanoylamino)-3H-quinazolin-4-one hydrate). The 1H NMR spectrum also showed diastereotopism for the CH2 protons of the ethyl groups, but was temperature dependent and showed a single set of signals at 150 °C (Smith et al., 2004). EI–MS: m/z (%) = 335 (M+, 5), 216 (40), 189 (17), 173 (12), 119 (65), 91 (100). HRMS (EI): Calculated for C20H21N3O2 [M]: 335.1634; found, 335.1634. NMR assignments have been made on the basis of expected chemical shifts and coupling patterns and have not been rigorously confirmed.1H NMR (500 MHz, DMSO-d6, δ, p.p.m.) 8.15 (d, J = 8 Hz, 0.6 H, H-5 of Ib), 8.06 (d, J = 8 Hz, 0.4 H, H-5 of Ia), 7.87–7.82 (m, 1 H, H-7 of Ia and Ib), 7.68 (d, J = 8 Hz, 0.4 H, H-8 of Ia), 7.65 (d, J = 8 Hz, 0.6 H, H-8 of Ib), 7.57–5.48 (m, 1 H, H-6 of Ia and Ib), 7.45–7.35 (m, 4 H, H-2 and H-3 of Ph of Ia and Ib), 7.32–7.27 (m, 1 H, H-4 of Ph of Ia and Ib), 3.75–3.67 (m, 1 H, CH of Ia and Ib), 2.76 (dq, J = 15, 7.5 Hz, 0.4 H, ArCHaHb of Ia), 2.63 (dq, J = 15, 7.5 Hz, 0.4 H, ArCHaHb of Ia), 2.30 (dq, J = 15, 7.5 Hz, 0.6 Hz, ArCHaHb of Ib), 2.20 (dq, J = 15, 7.5 Hz, 0.6 H, ArCHaHb of Ib), 2.18–2.04 (m, 1 H, CHCHaHb of Ia and Ib), 1.86–1.71 (m, 1 H, CHCHaHb of Ia and Ib), 1.25 (app. t, J = 7.5 Hz, 1.2 H, CH3CH2Ar of Ia), 0.99 (app. t, J = 7.5 Hz, 1.8 H, CH3CH2Ar of Ib), 0.96–0.90 (m, 3 H, CH3CH2CH of Ia and Ib). 13C NMR (125 MHz, DMSO-d6, δ, p.p.m.) 173.0 (s, C=O of Ia), 172.9 (s, C=O of Ib), 159.7 (s, C-4 of Ib), 159.6 (s, C-4 of Ia), 159.5 (s, C-2 of Ib), 159.3 (s, C-2 of Ia), 147.1 (s, C-8a of Ib), 147.0 (s, C-8a of Ia), 139.9 (s, C-1 of Ph of Ib), 139.6 (s, C-1 of Ph of Ia), 135.4 (d, C-7 of Ib), 135.3 (d, C-7 of Ia), 128.9 (d, C-3/C-5 of Ph of Ib), 128.7 (d, C-3/C-5 of Ph of Ia), 128.5 (d, C-2/C-6 of Ph od Ia), 128.1 (d, C-2/C-6 of Ph of Ib), 127.6 (d, three overlapping signals, C-6 of Ia and Ib and C-8 of Ib), 127.4 (d, C-8 of Ia), 127.2 (d, C-5 of Ib), 127.1 (d, C-5 of Ia), 126.9 (d, C-4 of Ph), 126.8 (d, C-4 of Ph), 121.1 (s, two overlapping signals, C-4a of Ia and Ib), 51.9 (d, CH of Ia), 51.8 (d, CH of Ib), 27.0 (t, CH2CH of Ia), 26.9 (t, CH2CH of Ib), 26.6 (t, CH2Ar of Ib), 25.9 (t, CH2Ar of Ia), 12.6 (q, CH3CH2CH of Ia), 12.5 (q, CH3CH2CH of Ib), 11.0 (q, CH3CH2Ar of Ia), 10.8 (q, CH3CH2Ar of Ib).
The hydrogen atoms of the water molecule were located in the difference Fourier map and refined isotropically. The C- and N-bound hydrogen atoms were positioned geometrically, and refined using a riding model, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (CambridgeSoft, 2001).Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. A portion of the crystal packing viewed along the a axis and showing the hydrogen bonds as dotted green lines. C-bound H atoms were omitted for clarity. |
C20H21N3O2·H2O | F(000) = 752 |
Mr = 353.41 | Dx = 1.221 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 14.5354 (2) Å | Cell parameters from 3341 reflections |
b = 7.3529 (1) Å | θ = 3.6–67.7° |
c = 18.1945 (3) Å | µ = 0.68 mm−1 |
β = 98.591 (1)° | T = 296 K |
V = 1922.76 (5) Å3 | Plate, colourless |
Z = 4 | 0.41 × 0.21 × 0.08 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3341 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube | Rint = 0.017 |
ω scans | θmax = 73.5°, θmin = 3.6° |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | h = −16→17 |
Tmin = 0.723, Tmax = 1.000 | k = −9→8 |
13383 measured reflections | l = −22→21 |
3796 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.3851P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.116 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.29 e Å−3 |
3796 reflections | Δρmin = −0.36 e Å−3 |
246 parameters | Extinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0033 (3) |
C20H21N3O2·H2O | V = 1922.76 (5) Å3 |
Mr = 353.41 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 14.5354 (2) Å | µ = 0.68 mm−1 |
b = 7.3529 (1) Å | T = 296 K |
c = 18.1945 (3) Å | 0.41 × 0.21 × 0.08 mm |
β = 98.591 (1)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3796 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | 3341 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 1.000 | Rint = 0.017 |
13383 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.29 e Å−3 |
3796 reflections | Δρmin = −0.36 e Å−3 |
246 parameters |
Experimental. Absorption correction: CrysAlisPro (Agilent, 2014): Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.71716 (9) | 0.66803 (17) | 0.06334 (7) | 0.0466 (3) | |
C2 | 0.81747 (9) | 0.69215 (18) | 0.07879 (8) | 0.0525 (3) | |
C3 | 0.85958 (9) | 0.72040 (19) | 0.15199 (9) | 0.0557 (3) | |
C4 | 0.72196 (9) | 0.69526 (17) | 0.19860 (7) | 0.0470 (3) | |
C5 | 0.87036 (12) | 0.6905 (3) | 0.02072 (11) | 0.0732 (5) | |
H5 | 0.8418 | 0.6688 | −0.0277 | 0.088* | |
C6 | 0.96387 (14) | 0.7207 (3) | 0.03496 (15) | 0.0952 (7) | |
H6 | 0.9992 | 0.7205 | −0.0037 | 0.114* | |
C7 | 1.00601 (13) | 0.7517 (3) | 0.10751 (16) | 0.0979 (7) | |
H7 | 1.0697 | 0.7731 | 0.1168 | 0.117* | |
C8 | 0.95599 (11) | 0.7514 (3) | 0.16581 (13) | 0.0796 (5) | |
H8 | 0.9857 | 0.7715 | 0.2140 | 0.096* | |
C9 | 0.52278 (8) | 0.79347 (16) | 0.10850 (7) | 0.0410 (3) | |
C10 | 0.41982 (8) | 0.74708 (17) | 0.10069 (7) | 0.0418 (3) | |
H10 | 0.4092 | 0.6357 | 0.0711 | 0.050* | |
C11 | 0.39529 (8) | 0.70884 (18) | 0.17738 (7) | 0.0456 (3) | |
C12 | 0.34870 (10) | 0.5513 (2) | 0.19121 (8) | 0.0593 (4) | |
H12 | 0.3334 | 0.4666 | 0.1534 | 0.071* | |
C13 | 0.32464 (13) | 0.5187 (3) | 0.26100 (10) | 0.0781 (5) | |
H13 | 0.2928 | 0.4128 | 0.2695 | 0.094* | |
C14 | 0.34730 (15) | 0.6408 (3) | 0.31718 (10) | 0.0835 (5) | |
H14 | 0.3308 | 0.6185 | 0.3638 | 0.100* | |
C15 | 0.39456 (14) | 0.7967 (3) | 0.30473 (9) | 0.0769 (5) | |
H15 | 0.4110 | 0.8791 | 0.3432 | 0.092* | |
C16 | 0.41781 (11) | 0.8314 (2) | 0.23522 (8) | 0.0600 (4) | |
H16 | 0.4490 | 0.9383 | 0.2271 | 0.072* | |
C17 | 0.66472 (11) | 0.6937 (2) | 0.26021 (8) | 0.0611 (4) | |
H17A | 0.6266 | 0.5848 | 0.2559 | 0.073* | |
H17B | 0.6232 | 0.7977 | 0.2545 | 0.073* | |
C18 | 0.72124 (14) | 0.6992 (3) | 0.33713 (9) | 0.0749 (5) | |
H18A | 0.7599 | 0.5929 | 0.3445 | 0.112* | |
H18B | 0.6800 | 0.7021 | 0.3737 | 0.112* | |
H18C | 0.7597 | 0.8060 | 0.3419 | 0.112* | |
C19 | 0.35937 (9) | 0.8981 (2) | 0.06048 (7) | 0.0512 (3) | |
H19A | 0.3635 | 1.0057 | 0.0916 | 0.061* | |
H19B | 0.3826 | 0.9292 | 0.0148 | 0.061* | |
C20 | 0.25831 (10) | 0.8397 (2) | 0.04242 (9) | 0.0628 (4) | |
H20A | 0.2540 | 0.7337 | 0.0113 | 0.094* | |
H20B | 0.2224 | 0.9364 | 0.0169 | 0.094* | |
H20C | 0.2346 | 0.8119 | 0.0876 | 0.094* | |
N1 | 0.81045 (8) | 0.72053 (16) | 0.21145 (7) | 0.0557 (3) | |
N2 | 0.67465 (7) | 0.66873 (14) | 0.12675 (6) | 0.0429 (2) | |
N3 | 0.57841 (7) | 0.64529 (14) | 0.11660 (6) | 0.0446 (3) | |
H3 | 0.5547 | 0.5380 | 0.1155 | 0.054* | |
O1 | 0.67227 (7) | 0.64818 (15) | 0.00151 (5) | 0.0613 (3) | |
O2 | 0.55448 (6) | 0.94696 (12) | 0.11169 (6) | 0.0557 (3) | |
O3 | 0.50861 (9) | 0.30699 (16) | 0.07666 (10) | 0.0873 (5) | |
H3A | 0.5189 (19) | 0.193 (4) | 0.0963 (14) | 0.124 (9)* | |
H3B | 0.450 (2) | 0.306 (4) | 0.0514 (15) | 0.123 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0444 (6) | 0.0406 (6) | 0.0543 (7) | 0.0049 (5) | 0.0061 (5) | 0.0001 (5) |
C2 | 0.0436 (7) | 0.0456 (7) | 0.0687 (8) | 0.0041 (5) | 0.0100 (6) | 0.0023 (6) |
C3 | 0.0412 (7) | 0.0474 (7) | 0.0766 (9) | 0.0026 (5) | 0.0032 (6) | 0.0011 (6) |
C4 | 0.0482 (7) | 0.0384 (6) | 0.0518 (7) | 0.0015 (5) | −0.0008 (5) | 0.0040 (5) |
C5 | 0.0592 (9) | 0.0781 (11) | 0.0871 (12) | 0.0042 (8) | 0.0264 (8) | −0.0011 (9) |
C6 | 0.0634 (11) | 0.1038 (16) | 0.1273 (19) | −0.0029 (10) | 0.0433 (12) | −0.0105 (14) |
C7 | 0.0429 (9) | 0.1033 (15) | 0.151 (2) | −0.0051 (9) | 0.0268 (11) | −0.0150 (15) |
C8 | 0.0432 (8) | 0.0802 (12) | 0.1115 (15) | −0.0009 (8) | −0.0010 (8) | −0.0100 (10) |
C9 | 0.0421 (6) | 0.0375 (6) | 0.0439 (6) | 0.0001 (5) | 0.0077 (5) | 0.0028 (5) |
C10 | 0.0387 (6) | 0.0418 (6) | 0.0451 (6) | −0.0001 (5) | 0.0069 (5) | 0.0000 (5) |
C11 | 0.0392 (6) | 0.0504 (7) | 0.0473 (6) | −0.0002 (5) | 0.0070 (5) | 0.0036 (5) |
C12 | 0.0591 (8) | 0.0608 (9) | 0.0582 (8) | −0.0127 (7) | 0.0088 (6) | 0.0058 (7) |
C13 | 0.0840 (12) | 0.0812 (12) | 0.0721 (10) | −0.0192 (9) | 0.0212 (9) | 0.0191 (9) |
C14 | 0.1001 (14) | 0.0986 (14) | 0.0564 (9) | −0.0080 (11) | 0.0265 (9) | 0.0127 (9) |
C15 | 0.0934 (13) | 0.0861 (12) | 0.0536 (9) | −0.0062 (10) | 0.0185 (8) | −0.0089 (8) |
C16 | 0.0655 (9) | 0.0603 (9) | 0.0561 (8) | −0.0090 (7) | 0.0157 (7) | −0.0048 (6) |
C17 | 0.0644 (9) | 0.0651 (9) | 0.0533 (8) | 0.0004 (7) | 0.0074 (6) | 0.0071 (7) |
C18 | 0.0978 (13) | 0.0720 (11) | 0.0522 (8) | −0.0035 (9) | 0.0023 (8) | 0.0017 (7) |
C19 | 0.0465 (7) | 0.0560 (8) | 0.0516 (7) | 0.0083 (6) | 0.0096 (5) | 0.0071 (6) |
C20 | 0.0473 (7) | 0.0793 (10) | 0.0590 (8) | 0.0111 (7) | −0.0012 (6) | −0.0030 (7) |
N1 | 0.0464 (6) | 0.0538 (7) | 0.0627 (7) | 0.0000 (5) | −0.0057 (5) | 0.0015 (5) |
N2 | 0.0356 (5) | 0.0398 (5) | 0.0521 (6) | 0.0007 (4) | 0.0025 (4) | 0.0010 (4) |
N3 | 0.0350 (5) | 0.0363 (5) | 0.0618 (6) | −0.0024 (4) | 0.0046 (4) | 0.0000 (4) |
O1 | 0.0554 (6) | 0.0734 (7) | 0.0533 (6) | 0.0040 (5) | 0.0022 (4) | −0.0047 (5) |
O2 | 0.0473 (5) | 0.0367 (5) | 0.0830 (7) | −0.0019 (4) | 0.0092 (4) | 0.0053 (4) |
O3 | 0.0695 (8) | 0.0397 (6) | 0.1395 (13) | −0.0015 (5) | −0.0278 (8) | −0.0025 (6) |
C1—O1 | 1.2220 (16) | C12—C13 | 1.387 (2) |
C1—N2 | 1.3879 (17) | C12—H12 | 0.9300 |
C1—C2 | 1.4539 (18) | C13—C14 | 1.364 (3) |
C2—C3 | 1.396 (2) | C13—H13 | 0.9300 |
C2—C5 | 1.397 (2) | C14—C15 | 1.372 (3) |
C3—N1 | 1.382 (2) | C14—H14 | 0.9300 |
C3—C8 | 1.405 (2) | C15—C16 | 1.381 (2) |
C4—N1 | 1.2860 (17) | C15—H15 | 0.9300 |
C4—N2 | 1.3969 (16) | C16—H16 | 0.9300 |
C4—C17 | 1.493 (2) | C17—C18 | 1.514 (2) |
C5—C6 | 1.363 (3) | C17—H17A | 0.9700 |
C5—H5 | 0.9300 | C17—H17B | 0.9700 |
C6—C7 | 1.389 (3) | C18—H18A | 0.9600 |
C6—H6 | 0.9300 | C18—H18B | 0.9600 |
C7—C8 | 1.373 (3) | C18—H18C | 0.9600 |
C7—H7 | 0.9300 | C19—C20 | 1.519 (2) |
C8—H8 | 0.9300 | C19—H19A | 0.9700 |
C9—O2 | 1.2172 (15) | C19—H19B | 0.9700 |
C9—N3 | 1.3516 (16) | C20—H20A | 0.9600 |
C9—C10 | 1.5208 (16) | C20—H20B | 0.9600 |
C10—C11 | 1.5171 (17) | C20—H20C | 0.9600 |
C10—C19 | 1.5324 (17) | N2—N3 | 1.3941 (14) |
C10—H10 | 0.9800 | N3—H3 | 0.8600 |
C11—C12 | 1.3836 (19) | O3—H3A | 0.92 (3) |
C11—C16 | 1.387 (2) | O3—H3B | 0.91 (3) |
O1—C1—N2 | 121.53 (12) | C13—C14—C15 | 119.81 (16) |
O1—C1—C2 | 125.08 (13) | C13—C14—H14 | 120.1 |
N2—C1—C2 | 113.39 (12) | C15—C14—H14 | 120.1 |
C3—C2—C5 | 120.71 (14) | C14—C15—C16 | 120.18 (17) |
C3—C2—C1 | 119.13 (13) | C14—C15—H15 | 119.9 |
C5—C2—C1 | 120.14 (14) | C16—C15—H15 | 119.9 |
N1—C3—C2 | 122.86 (12) | C15—C16—C11 | 120.84 (15) |
N1—C3—C8 | 118.55 (15) | C15—C16—H16 | 119.6 |
C2—C3—C8 | 118.58 (16) | C11—C16—H16 | 119.6 |
N1—C4—N2 | 121.97 (13) | C4—C17—C18 | 114.06 (14) |
N1—C4—C17 | 121.28 (12) | C4—C17—H17A | 108.7 |
N2—C4—C17 | 116.75 (11) | C18—C17—H17A | 108.7 |
C6—C5—C2 | 120.05 (19) | C4—C17—H17B | 108.7 |
C6—C5—H5 | 120.0 | C18—C17—H17B | 108.7 |
C2—C5—H5 | 120.0 | H17A—C17—H17B | 107.6 |
C5—C6—C7 | 119.54 (19) | C17—C18—H18A | 109.5 |
C5—C6—H6 | 120.2 | C17—C18—H18B | 109.5 |
C7—C6—H6 | 120.2 | H18A—C18—H18B | 109.5 |
C8—C7—C6 | 121.67 (17) | C17—C18—H18C | 109.5 |
C8—C7—H7 | 119.2 | H18A—C18—H18C | 109.5 |
C6—C7—H7 | 119.2 | H18B—C18—H18C | 109.5 |
C7—C8—C3 | 119.43 (19) | C20—C19—C10 | 111.44 (12) |
C7—C8—H8 | 120.3 | C20—C19—H19A | 109.3 |
C3—C8—H8 | 120.3 | C10—C19—H19A | 109.3 |
O2—C9—N3 | 121.75 (11) | C20—C19—H19B | 109.3 |
O2—C9—C10 | 124.94 (11) | C10—C19—H19B | 109.3 |
N3—C9—C10 | 113.18 (10) | H19A—C19—H19B | 108.0 |
C11—C10—C9 | 108.59 (10) | C19—C20—H20A | 109.5 |
C11—C10—C19 | 112.12 (10) | C19—C20—H20B | 109.5 |
C9—C10—C19 | 111.61 (10) | H20A—C20—H20B | 109.5 |
C11—C10—H10 | 108.1 | C19—C20—H20C | 109.5 |
C9—C10—H10 | 108.1 | H20A—C20—H20C | 109.5 |
C19—C10—H10 | 108.1 | H20B—C20—H20C | 109.5 |
C12—C11—C16 | 118.18 (13) | C4—N1—C3 | 118.51 (12) |
C12—C11—C10 | 120.74 (12) | C1—N2—N3 | 116.87 (10) |
C16—C11—C10 | 121.08 (12) | C1—N2—C4 | 124.09 (11) |
C11—C12—C13 | 120.56 (15) | N3—N2—C4 | 119.02 (10) |
C11—C12—H12 | 119.7 | C9—N3—N2 | 119.14 (10) |
C13—C12—H12 | 119.7 | C9—N3—H3 | 120.4 |
C14—C13—C12 | 120.43 (16) | N2—N3—H3 | 120.4 |
C14—C13—H13 | 119.8 | H3A—O3—H3B | 106 (2) |
C12—C13—H13 | 119.8 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O3 | 0.86 | 1.92 | 2.7431 (15) | 159 |
O3—H3A···O2i | 0.92 (3) | 1.89 (3) | 2.7806 (15) | 164 (2) |
O3—H3B···O1ii | 0.91 (3) | 1.92 (3) | 2.8154 (17) | 169 (2) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O3 | 0.86 | 1.92 | 2.7431 (15) | 159.4 |
O3—H3A···O2i | 0.92 (3) | 1.89 (3) | 2.7806 (15) | 164 (2) |
O3—H3B···O1ii | 0.91 (3) | 1.92 (3) | 2.8154 (17) | 169 (2) |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the College of Applied Medical Sciences Research Center and the Deanship of Scientific Research at King Saud University for funding this research.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
CambridgeSoft (2001). CHEMDRAW Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121–2130. Web of Science CrossRef Google Scholar
Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996a). J. Org. Chem. 61, 647–655. CrossRef PubMed CAS Web of Science Google Scholar
Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996b). J. Org. Chem. 61, 656–661. CrossRef PubMed CAS Web of Science Google Scholar
Smith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029–1033. CrossRef Web of Science Google Scholar
Srinivasan, T., Suhitha, S., Priya, M. G. R., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2928. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In a continuation of our research focused on new synthetic routes towards novel substituted 3H-quinazolin-4-one derivatives (Smith et al., 1995, 1996a,b, 2004) we have synthesized 2-ethyl-3-((R)-2-phenylbutanoylamino)-3H-quinazolin-4-one (EQR) in a high yield. Herewith we present the crystal structure of its monohydrate.
In the title compound, EQR.H2O (Fig. 1), all bond lengths and angles are normal and correspond well to those observed in the related structures (Smith et al., 2004; Yang et al., 2009; Srinivasan et al., 2011). The quinazoline ring system forms a dihedral angle of 53.1 (1)° with the phenyl ring and an angle of 85.6 (1)° with the amide link. A pair of EQR molecules accepts O–H···O hydrogen bonds from two water molecules to form a R44(18) ring motif. These rings are linked by N–H···O bonds to form columns parallel to the b-axis (Fig. 2).