organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ethyl-3-[(R)-2-phenyl­butanamido]­quinazolin-4(3H)-one monohydrate

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

(Received 10 March 2014; accepted 18 March 2014; online 22 March 2014)

In the title compound, C20H21N3O2·H2O (EQR·H2O), the quinazoline ring system forms dihedral angles of 53.1 (1) and 85.6 (1)° with the phenyl ring and the amide link, respectively. In the crystal, O—H⋯O hydrogen bonds link two EQR and two water mol­ecules into a centrosymmetric R44(18) ring motif. N—H⋯O hydrogen bonds further link these hydrogen-bonded fragments into columns extending in [010].

Related literature

For convenient routes towards modifying 3H-quinazolin-4-one derivatives, see: Smith et al. (1995[Smith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029-1033.], 1996a[Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996a). J. Org. Chem. 61, 647-655.],b[Smith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996b). J. Org. Chem. 61, 656-661.], 2004[Smith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121-2130.]). For the crystal structures of related compounds, see: Yang et al. (2009[Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185-o186.]); Srinivasan et al. (2011[Srinivasan, T., Suhitha, S., Priya, M. G. R., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2928.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O2·H2O

  • Mr = 353.41

  • Monoclinic, P 21 /n

  • a = 14.5354 (2) Å

  • b = 7.3529 (1) Å

  • c = 18.1945 (3) Å

  • β = 98.591 (1)°

  • V = 1922.76 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 296 K

  • 0.41 × 0.21 × 0.08 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.723, Tmax = 1.000

  • 13383 measured reflections

  • 3796 independent reflections

  • 3341 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.05

  • 3796 reflections

  • 246 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3 0.86 1.92 2.7431 (15) 159
O3—H3A⋯O2i 0.92 (3) 1.89 (3) 2.7806 (15) 164 (2)
O3—H3B⋯O1ii 0.91 (3) 1.92 (3) 2.8154 (17) 169 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (CambridgeSoft, 2001[CambridgeSoft (2001). CHEMDRAW Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Comment top

In a continuation of our research focused on new synthetic routes towards novel substituted 3H-quinazolin-4-one derivatives (Smith et al., 1995, 1996a,b, 2004) we have synthesized 2-ethyl-3-((R)-2-phenylbutanoylamino)-3H-quinazolin-4-one (EQR) in a high yield. Herewith we present the crystal structure of its monohydrate.

In the title compound, EQR.H2O (Fig. 1), all bond lengths and angles are normal and correspond well to those observed in the related structures (Smith et al., 2004; Yang et al., 2009; Srinivasan et al., 2011). The quinazoline ring system forms a dihedral angle of 53.1 (1)° with the phenyl ring and an angle of 85.6 (1)° with the amide link. A pair of EQR molecules accepts O–H···O hydrogen bonds from two water molecules to form a R44(18) ring motif. These rings are linked by N–H···O bonds to form columns parallel to the b-axis (Fig. 2).

Related literature top

For convenient routes towards modifying 3H-quinazolin-4-one derivatives, see: Smith et al. (1995, 1996a,b, 2004). For the crystal structures of related compounds, see: Yang et al. (2009); Srinivasan et al. (2011).

Experimental top

To a stirred mixture of 3-amino-2-ethyl-3H-quinazolin-4-one (1.89 g, 10.0 mmol) and Et3N (3 ml) in anhydrous toluene (20 ml), was added a solution of 2-phenylbutanoyl chloride (0.91 g, 5.0 mmol) in anhydrous toluene (5 ml). The mixture was heated under reflux for 30 min, allowed to cool, washed with saturated aqueous NaHCO3 (2 x 10 ml) and H2O (2 x 15 ml), dried (MgSO4), and evaporated under reduced pressure. The residue obtained was purified by column chromatography on silica gel (Et2O–hexane, 1:4) followed by recrystallization from ethyl acetate to give 2-ethyl-3-(2-phenylbutanoylamino)-3H-quinazolin-4-one (1.36 g, 4.05 mmol; 81% based on acid chloride) as colourless crystals, m.p. 101–103 °C. The title compound (I) appears from its NMR spectra as a mixture of two diastereoisomers in unequal proportions (Ia:Ib = ca. 4:6), due to restricted rotation around the NN axis (Smith et al., 2004), but the X-ray crystallography showed a single type of crystal containing just one diastereoisomer but with both enantiomers in equal proportions (the structure displayed shows the structure as 2-ethyl-3-((R)-2-phenylbutanoylamino)-3H-quinazolin-4-one hydrate). The 1H NMR spectrum also showed diastereotopism for the CH2 protons of the ethyl groups, but was temperature dependent and showed a single set of signals at 150 °C (Smith et al., 2004). EI–MS: m/z (%) = 335 (M+, 5), 216 (40), 189 (17), 173 (12), 119 (65), 91 (100). HRMS (EI): Calculated for C20H21N3O2 [M]: 335.1634; found, 335.1634. NMR assignments have been made on the basis of expected chemical shifts and coupling patterns and have not been rigorously confirmed.

1H NMR (500 MHz, DMSO-d6, δ, p.p.m.) 8.15 (d, J = 8 Hz, 0.6 H, H-5 of Ib), 8.06 (d, J = 8 Hz, 0.4 H, H-5 of Ia), 7.87–7.82 (m, 1 H, H-7 of Ia and Ib), 7.68 (d, J = 8 Hz, 0.4 H, H-8 of Ia), 7.65 (d, J = 8 Hz, 0.6 H, H-8 of Ib), 7.57–5.48 (m, 1 H, H-6 of Ia and Ib), 7.45–7.35 (m, 4 H, H-2 and H-3 of Ph of Ia and Ib), 7.32–7.27 (m, 1 H, H-4 of Ph of Ia and Ib), 3.75–3.67 (m, 1 H, CH of Ia and Ib), 2.76 (dq, J = 15, 7.5 Hz, 0.4 H, ArCHaHb of Ia), 2.63 (dq, J = 15, 7.5 Hz, 0.4 H, ArCHaHb of Ia), 2.30 (dq, J = 15, 7.5 Hz, 0.6 Hz, ArCHaHb of Ib), 2.20 (dq, J = 15, 7.5 Hz, 0.6 H, ArCHaHb of Ib), 2.18–2.04 (m, 1 H, CHCHaHb of Ia and Ib), 1.86–1.71 (m, 1 H, CHCHaHb of Ia and Ib), 1.25 (app. t, J = 7.5 Hz, 1.2 H, CH3CH2Ar of Ia), 0.99 (app. t, J = 7.5 Hz, 1.8 H, CH3CH2Ar of Ib), 0.96–0.90 (m, 3 H, CH3CH2CH of Ia and Ib). 13C NMR (125 MHz, DMSO-d6, δ, p.p.m.) 173.0 (s, C=O of Ia), 172.9 (s, C=O of Ib), 159.7 (s, C-4 of Ib), 159.6 (s, C-4 of Ia), 159.5 (s, C-2 of Ib), 159.3 (s, C-2 of Ia), 147.1 (s, C-8a of Ib), 147.0 (s, C-8a of Ia), 139.9 (s, C-1 of Ph of Ib), 139.6 (s, C-1 of Ph of Ia), 135.4 (d, C-7 of Ib), 135.3 (d, C-7 of Ia), 128.9 (d, C-3/C-5 of Ph of Ib), 128.7 (d, C-3/C-5 of Ph of Ia), 128.5 (d, C-2/C-6 of Ph od Ia), 128.1 (d, C-2/C-6 of Ph of Ib), 127.6 (d, three overlapping signals, C-6 of Ia and Ib and C-8 of Ib), 127.4 (d, C-8 of Ia), 127.2 (d, C-5 of Ib), 127.1 (d, C-5 of Ia), 126.9 (d, C-4 of Ph), 126.8 (d, C-4 of Ph), 121.1 (s, two overlapping signals, C-4a of Ia and Ib), 51.9 (d, CH of Ia), 51.8 (d, CH of Ib), 27.0 (t, CH2CH of Ia), 26.9 (t, CH2CH of Ib), 26.6 (t, CH2Ar of Ib), 25.9 (t, CH2Ar of Ia), 12.6 (q, CH3CH2CH of Ia), 12.5 (q, CH3CH2CH of Ib), 11.0 (q, CH3CH2Ar of Ia), 10.8 (q, CH3CH2Ar of Ib).

Refinement top

The hydrogen atoms of the water molecule were located in the difference Fourier map and refined isotropically. The C- and N-bound hydrogen atoms were positioned geometrically, and refined using a riding model, with Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (CambridgeSoft, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A portion of the crystal packing viewed along the a axis and showing the hydrogen bonds as dotted green lines. C-bound H atoms were omitted for clarity.
2-Ethyl-3-[(R)-2-phenylbutanamido]quinazolin-4(3H)-one monohydrate top
Crystal data top
C20H21N3O2·H2OF(000) = 752
Mr = 353.41Dx = 1.221 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 14.5354 (2) ÅCell parameters from 3341 reflections
b = 7.3529 (1) Åθ = 3.6–67.7°
c = 18.1945 (3) ŵ = 0.68 mm1
β = 98.591 (1)°T = 296 K
V = 1922.76 (5) Å3Plate, colourless
Z = 40.41 × 0.21 × 0.08 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3341 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.017
ω scansθmax = 73.5°, θmin = 3.6°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
h = 1617
Tmin = 0.723, Tmax = 1.000k = 98
13383 measured reflectionsl = 2221
3796 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.3851P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.29 e Å3
3796 reflectionsΔρmin = 0.36 e Å3
246 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0033 (3)
Crystal data top
C20H21N3O2·H2OV = 1922.76 (5) Å3
Mr = 353.41Z = 4
Monoclinic, P21/nCu Kα radiation
a = 14.5354 (2) ŵ = 0.68 mm1
b = 7.3529 (1) ÅT = 296 K
c = 18.1945 (3) Å0.41 × 0.21 × 0.08 mm
β = 98.591 (1)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3796 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
3341 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 1.000Rint = 0.017
13383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
3796 reflectionsΔρmin = 0.36 e Å3
246 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent, 2014): Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71716 (9)0.66803 (17)0.06334 (7)0.0466 (3)
C20.81747 (9)0.69215 (18)0.07879 (8)0.0525 (3)
C30.85958 (9)0.72040 (19)0.15199 (9)0.0557 (3)
C40.72196 (9)0.69526 (17)0.19860 (7)0.0470 (3)
C50.87036 (12)0.6905 (3)0.02072 (11)0.0732 (5)
H50.84180.66880.02770.088*
C60.96387 (14)0.7207 (3)0.03496 (15)0.0952 (7)
H60.99920.72050.00370.114*
C71.00601 (13)0.7517 (3)0.10751 (16)0.0979 (7)
H71.06970.77310.11680.117*
C80.95599 (11)0.7514 (3)0.16581 (13)0.0796 (5)
H80.98570.77150.21400.096*
C90.52278 (8)0.79347 (16)0.10850 (7)0.0410 (3)
C100.41982 (8)0.74708 (17)0.10069 (7)0.0418 (3)
H100.40920.63570.07110.050*
C110.39529 (8)0.70884 (18)0.17738 (7)0.0456 (3)
C120.34870 (10)0.5513 (2)0.19121 (8)0.0593 (4)
H120.33340.46660.15340.071*
C130.32464 (13)0.5187 (3)0.26100 (10)0.0781 (5)
H130.29280.41280.26950.094*
C140.34730 (15)0.6408 (3)0.31718 (10)0.0835 (5)
H140.33080.61850.36380.100*
C150.39456 (14)0.7967 (3)0.30473 (9)0.0769 (5)
H150.41100.87910.34320.092*
C160.41781 (11)0.8314 (2)0.23522 (8)0.0600 (4)
H160.44900.93830.22710.072*
C170.66472 (11)0.6937 (2)0.26021 (8)0.0611 (4)
H17A0.62660.58480.25590.073*
H17B0.62320.79770.25450.073*
C180.72124 (14)0.6992 (3)0.33713 (9)0.0749 (5)
H18A0.75990.59290.34450.112*
H18B0.68000.70210.37370.112*
H18C0.75970.80600.34190.112*
C190.35937 (9)0.8981 (2)0.06048 (7)0.0512 (3)
H19A0.36351.00570.09160.061*
H19B0.38260.92920.01480.061*
C200.25831 (10)0.8397 (2)0.04242 (9)0.0628 (4)
H20A0.25400.73370.01130.094*
H20B0.22240.93640.01690.094*
H20C0.23460.81190.08760.094*
N10.81045 (8)0.72053 (16)0.21145 (7)0.0557 (3)
N20.67465 (7)0.66873 (14)0.12675 (6)0.0429 (2)
N30.57841 (7)0.64529 (14)0.11660 (6)0.0446 (3)
H30.55470.53800.11550.054*
O10.67227 (7)0.64818 (15)0.00151 (5)0.0613 (3)
O20.55448 (6)0.94696 (12)0.11169 (6)0.0557 (3)
O30.50861 (9)0.30699 (16)0.07666 (10)0.0873 (5)
H3A0.5189 (19)0.193 (4)0.0963 (14)0.124 (9)*
H3B0.450 (2)0.306 (4)0.0514 (15)0.123 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (6)0.0406 (6)0.0543 (7)0.0049 (5)0.0061 (5)0.0001 (5)
C20.0436 (7)0.0456 (7)0.0687 (8)0.0041 (5)0.0100 (6)0.0023 (6)
C30.0412 (7)0.0474 (7)0.0766 (9)0.0026 (5)0.0032 (6)0.0011 (6)
C40.0482 (7)0.0384 (6)0.0518 (7)0.0015 (5)0.0008 (5)0.0040 (5)
C50.0592 (9)0.0781 (11)0.0871 (12)0.0042 (8)0.0264 (8)0.0011 (9)
C60.0634 (11)0.1038 (16)0.1273 (19)0.0029 (10)0.0433 (12)0.0105 (14)
C70.0429 (9)0.1033 (15)0.151 (2)0.0051 (9)0.0268 (11)0.0150 (15)
C80.0432 (8)0.0802 (12)0.1115 (15)0.0009 (8)0.0010 (8)0.0100 (10)
C90.0421 (6)0.0375 (6)0.0439 (6)0.0001 (5)0.0077 (5)0.0028 (5)
C100.0387 (6)0.0418 (6)0.0451 (6)0.0001 (5)0.0069 (5)0.0000 (5)
C110.0392 (6)0.0504 (7)0.0473 (6)0.0002 (5)0.0070 (5)0.0036 (5)
C120.0591 (8)0.0608 (9)0.0582 (8)0.0127 (7)0.0088 (6)0.0058 (7)
C130.0840 (12)0.0812 (12)0.0721 (10)0.0192 (9)0.0212 (9)0.0191 (9)
C140.1001 (14)0.0986 (14)0.0564 (9)0.0080 (11)0.0265 (9)0.0127 (9)
C150.0934 (13)0.0861 (12)0.0536 (9)0.0062 (10)0.0185 (8)0.0089 (8)
C160.0655 (9)0.0603 (9)0.0561 (8)0.0090 (7)0.0157 (7)0.0048 (6)
C170.0644 (9)0.0651 (9)0.0533 (8)0.0004 (7)0.0074 (6)0.0071 (7)
C180.0978 (13)0.0720 (11)0.0522 (8)0.0035 (9)0.0023 (8)0.0017 (7)
C190.0465 (7)0.0560 (8)0.0516 (7)0.0083 (6)0.0096 (5)0.0071 (6)
C200.0473 (7)0.0793 (10)0.0590 (8)0.0111 (7)0.0012 (6)0.0030 (7)
N10.0464 (6)0.0538 (7)0.0627 (7)0.0000 (5)0.0057 (5)0.0015 (5)
N20.0356 (5)0.0398 (5)0.0521 (6)0.0007 (4)0.0025 (4)0.0010 (4)
N30.0350 (5)0.0363 (5)0.0618 (6)0.0024 (4)0.0046 (4)0.0000 (4)
O10.0554 (6)0.0734 (7)0.0533 (6)0.0040 (5)0.0022 (4)0.0047 (5)
O20.0473 (5)0.0367 (5)0.0830 (7)0.0019 (4)0.0092 (4)0.0053 (4)
O30.0695 (8)0.0397 (6)0.1395 (13)0.0015 (5)0.0278 (8)0.0025 (6)
Geometric parameters (Å, º) top
C1—O11.2220 (16)C12—C131.387 (2)
C1—N21.3879 (17)C12—H120.9300
C1—C21.4539 (18)C13—C141.364 (3)
C2—C31.396 (2)C13—H130.9300
C2—C51.397 (2)C14—C151.372 (3)
C3—N11.382 (2)C14—H140.9300
C3—C81.405 (2)C15—C161.381 (2)
C4—N11.2860 (17)C15—H150.9300
C4—N21.3969 (16)C16—H160.9300
C4—C171.493 (2)C17—C181.514 (2)
C5—C61.363 (3)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C6—C71.389 (3)C18—H18A0.9600
C6—H60.9300C18—H18B0.9600
C7—C81.373 (3)C18—H18C0.9600
C7—H70.9300C19—C201.519 (2)
C8—H80.9300C19—H19A0.9700
C9—O21.2172 (15)C19—H19B0.9700
C9—N31.3516 (16)C20—H20A0.9600
C9—C101.5208 (16)C20—H20B0.9600
C10—C111.5171 (17)C20—H20C0.9600
C10—C191.5324 (17)N2—N31.3941 (14)
C10—H100.9800N3—H30.8600
C11—C121.3836 (19)O3—H3A0.92 (3)
C11—C161.387 (2)O3—H3B0.91 (3)
O1—C1—N2121.53 (12)C13—C14—C15119.81 (16)
O1—C1—C2125.08 (13)C13—C14—H14120.1
N2—C1—C2113.39 (12)C15—C14—H14120.1
C3—C2—C5120.71 (14)C14—C15—C16120.18 (17)
C3—C2—C1119.13 (13)C14—C15—H15119.9
C5—C2—C1120.14 (14)C16—C15—H15119.9
N1—C3—C2122.86 (12)C15—C16—C11120.84 (15)
N1—C3—C8118.55 (15)C15—C16—H16119.6
C2—C3—C8118.58 (16)C11—C16—H16119.6
N1—C4—N2121.97 (13)C4—C17—C18114.06 (14)
N1—C4—C17121.28 (12)C4—C17—H17A108.7
N2—C4—C17116.75 (11)C18—C17—H17A108.7
C6—C5—C2120.05 (19)C4—C17—H17B108.7
C6—C5—H5120.0C18—C17—H17B108.7
C2—C5—H5120.0H17A—C17—H17B107.6
C5—C6—C7119.54 (19)C17—C18—H18A109.5
C5—C6—H6120.2C17—C18—H18B109.5
C7—C6—H6120.2H18A—C18—H18B109.5
C8—C7—C6121.67 (17)C17—C18—H18C109.5
C8—C7—H7119.2H18A—C18—H18C109.5
C6—C7—H7119.2H18B—C18—H18C109.5
C7—C8—C3119.43 (19)C20—C19—C10111.44 (12)
C7—C8—H8120.3C20—C19—H19A109.3
C3—C8—H8120.3C10—C19—H19A109.3
O2—C9—N3121.75 (11)C20—C19—H19B109.3
O2—C9—C10124.94 (11)C10—C19—H19B109.3
N3—C9—C10113.18 (10)H19A—C19—H19B108.0
C11—C10—C9108.59 (10)C19—C20—H20A109.5
C11—C10—C19112.12 (10)C19—C20—H20B109.5
C9—C10—C19111.61 (10)H20A—C20—H20B109.5
C11—C10—H10108.1C19—C20—H20C109.5
C9—C10—H10108.1H20A—C20—H20C109.5
C19—C10—H10108.1H20B—C20—H20C109.5
C12—C11—C16118.18 (13)C4—N1—C3118.51 (12)
C12—C11—C10120.74 (12)C1—N2—N3116.87 (10)
C16—C11—C10121.08 (12)C1—N2—C4124.09 (11)
C11—C12—C13120.56 (15)N3—N2—C4119.02 (10)
C11—C12—H12119.7C9—N3—N2119.14 (10)
C13—C12—H12119.7C9—N3—H3120.4
C14—C13—C12120.43 (16)N2—N3—H3120.4
C14—C13—H13119.8H3A—O3—H3B106 (2)
C12—C13—H13119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O30.861.922.7431 (15)159
O3—H3A···O2i0.92 (3)1.89 (3)2.7806 (15)164 (2)
O3—H3B···O1ii0.91 (3)1.92 (3)2.8154 (17)169 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O30.861.922.7431 (15)159.4
O3—H3A···O2i0.92 (3)1.89 (3)2.7806 (15)164 (2)
O3—H3B···O1ii0.91 (3)1.92 (3)2.8154 (17)169 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank the College of Applied Medical Sciences Research Center and the Deanship of Scientific Research at King Saud University for funding this research.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridgeSoft (2001). CHEMDRAW Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Abdel-Megeed, M. F. (2004). Synthesis, pp. 2121–2130.  Web of Science CrossRef Google Scholar
First citationSmith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996a). J. Org. Chem. 61, 647–655.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSmith, K., El-Hiti, G. A., Abdel-Megeed, M. F. & Abdo, M. A. (1996b). J. Org. Chem. 61, 656–661.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSmith, K., El-Hiti, G. A., Abdo, M. A. & Abdel-Megeed, M. F. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1029–1033.  CrossRef Web of Science Google Scholar
First citationSrinivasan, T., Suhitha, S., Priya, M. G. R., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2928.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds