organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Bis(chloro­meth­yl)-4,4′-dieth­­oxy-1,1′-biphen­yl

aUniversity of Monastir, Faculté de Pharmacie, Avenue Avicenne, 5019 Monastir, Tunisia, and bUniversity of Monastir, Faculté des Sciences, Avenue de l'Environnement, 5019 Monastir, Tunisia
*Correspondence e-mail: salah_belkiria@yahoo.com

(Received 11 February 2014; accepted 26 February 2014; online 5 March 2014)

The asymmetric unit of the title compound, C18H20Cl2O2, consists of a half-mol­ecule, the other half being generated by an inversion center, located at the mid-point of the benzene–benzene bond. Except for the two Cl atoms, all other atoms of the compound are nearly coplanar, with the atomic displacements from the mol­ecular mean plane ranging from 0.0037 (19) to 0.071 (2) Å. The two Cl atoms are in trans positions and are displaced with respect to the mean plane by 1.687 (2) and −1.693 (3) Å. The crystal packing is governed by van der Waals inter­actions.

Related literature

For general background and synthesis, see: Trad et al. (2006[Trad, H., Majdoub, M. & Davenas, J. (2006). Mater. Sci. Eng. C, 26, 334-339.]); Hrichi et al. (2013[Hrichi, H., Hriz, K., Jaballah, N., Ben Chaâbane, R., Simonetti, O. & Majdoub, M. (2013). J. Polym. Res. 20, 241.]). For related structures, see: Huang et al. (2011[Huang, X., Ren, L.-H., Yin, R.-H. & Gao, F. (2011). Acta Cryst. E67, o2330.]); Trad et al. (2012[Trad, H., Majdoub, M. & Belkhiria, M. S. (2012). Acta Cryst. E68, o2339.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20Cl2O2

  • Mr = 339.24

  • Monoclinic, P 21 /n

  • a = 4.984 (2) Å

  • b = 11.598 (5) Å

  • c = 14.578 (8) Å

  • β = 98.387 (2)°

  • V = 833.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.20 × 0.14 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.937, Tmax = 0.953

  • 8808 measured reflections

  • 2010 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.149

  • S = 1.05

  • 2010 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis of the compound 3,3'-Bis(chloromethyl)-4,4'-diethoxy-1,1'-biphenyl (BipEt2Cl2) is a part of an ongoing program on the investigation of new π-conjugated electroluminescent polymers derived from bisphenols (Trad et al., 2006; Hrichi et al., 2013).

The asymmetric unit of the title compound contains one-half of the molecule (Fig. 1) with the other half generated by an inversion center lieing between the two phenyl groups, at the the mid-point of the carbon-carbon bond. All atoms of the compound (BipEt2Cl2) lie in the same plane, the largest deviation being 0.0709 (22) Å for atom C9, except the two chlorine atoms. A π-conjugated system accounts for the planarity of the molecule and probably prevents the free rotation around the central carbon-carbon bond between the phenyl groups. The planes containing respectively the chloromethyl group and the biphenyl group are nearly orthogonal to each other, with a dihedral angle equal to 88.98 (9)°, such a value is nearly close to that observed for the 1-benzyloxy-2,5-bis(chloromethyl)-4-methoxybenzene (Trad et al., 2012). The values of bond lengths and angles agree with those reported for similar compounds (Huang et al. 2011; Trad et al. 2012). A projection of the crystal structure of the compound, on the (010) plane, is given the by the figure 2.

Related literature top

For general background and synthesis, see: Trad et al. (2006); Hrichi et al. (2013). For related structures, see: Huang et al. (2011); Trad et al. (2012).

Experimental top

The compound 3,3'-Bis(chloromethyl)-4,4'-diethoxy-1,1'-biphenyl (BipEt2Cl2) was synthesized in two steps: a mixture of 4,4'-dihydroxy-1,1'-biphenyl (10 mmol), bromoethane (30 mmol) and anhydrous potassium carbonate (60 mmol) was added to 10 ml of DMF and was stirred for 24 h at room temperature. The reaction mixture was poured into distilled water and the intermediate product, 4,4'-diethoxy-1,1'-biphenyl (BipEt2), was extracted with diethyl ether, purified by recrystallization from ethanol/acetone (4/1) and then obtained as white fine powder. Yield: 80%; mp: 450–452 K. In a second step, a suspension of (BipEt2) (10 mmol) and paraformaldehyde (80 mmol), in a mixture of glacial acetic acid (30 ml) and 37% hydrochloric acid (8 ml), was left to stir for approximately 5 h at 328 K. After cooling, the resulting mixture was then poured into distilled water. The product (BipEt2Cl2) was extracted with diethylether and recrystallized from ethanol as colorless needle-like crystals. Yield: 65%; mp: 388 (2) K.

Refinement top

All H atoms were refined using a riding model with C—H = 0.96 (CH3), 0.97 (CH2), 0.93 (CArH) Å and Uiso(H) = 1.5 Ueq(C), 1.2 Ueq(C) and 1.2 Ueq(C) respectively.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound BipEt2Cl2 with displacement ellipsoids drawn at 20% probability level for non hydrogen atoms.
[Figure 2] Fig. 2. The crystal packing of compound BipEt2Cl2 viewed along b axis.
3,3'-Bis(chloromethyl)-4,4'-diethoxy-1,1'-biphenyl top
Crystal data top
C18H20Cl2O2F(000) = 356
Mr = 339.24Dx = 1.351 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8808 reflections
a = 4.984 (2) Åθ = 2.3–29.0°
b = 11.598 (5) ŵ = 0.39 mm1
c = 14.578 (8) ÅT = 298 K
β = 98.387 (2)°Needle, colourless
V = 833.7 (7) Å30.20 × 0.14 × 0.10 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2010 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi/w scansθmax = 28.1°, θmin = 2.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 66
Tmin = 0.937, Tmax = 0.953k = 015
8808 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.077P)2 + 0.059P]
where P = (Fo2 + 2Fc2)/3
2010 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H20Cl2O2V = 833.7 (7) Å3
Mr = 339.24Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.984 (2) ŵ = 0.39 mm1
b = 11.598 (5) ÅT = 298 K
c = 14.578 (8) Å0.20 × 0.14 × 0.10 mm
β = 98.387 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2010 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1252 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.953Rint = 0.048
8808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2010 reflectionsΔρmin = 0.28 e Å3
100 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.58814 (14)0.13757 (6)0.12470 (5)0.0713 (3)
O0.5754 (3)0.20148 (12)0.11362 (11)0.0483 (4)
C10.0870 (3)0.45550 (16)0.01787 (13)0.0345 (4)
C20.1168 (4)0.34506 (17)0.01950 (15)0.0391 (5)
H20.02170.32640.06780.047*
C30.2804 (4)0.26160 (17)0.01136 (13)0.0385 (5)
C40.4206 (4)0.28839 (17)0.08584 (14)0.0388 (5)
C50.3944 (4)0.39671 (18)0.12463 (14)0.0425 (5)
H50.48690.41500.17370.051*
C60.2315 (4)0.47848 (18)0.09126 (14)0.0424 (5)
H60.21730.55120.11850.051*
C70.3035 (4)0.14484 (18)0.03221 (16)0.0493 (6)
H7A0.32630.08760.01450.059*
H7B0.13770.12720.05680.059*
C80.7054 (4)0.2217 (2)0.19346 (16)0.0500 (6)
H8A0.83460.28440.18160.060*
H8B0.57200.24220.24620.060*
C90.8482 (5)0.1126 (2)0.21296 (19)0.0618 (7)
H9A0.93800.12340.26630.093*
H9B0.71830.05130.22480.093*
H9C0.97950.09320.16030.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0797 (5)0.0631 (5)0.0694 (5)0.0113 (3)0.0046 (3)0.0182 (3)
O0.0565 (9)0.0371 (9)0.0568 (9)0.0086 (6)0.0266 (7)0.0025 (7)
C10.0339 (10)0.0325 (11)0.0380 (10)0.0000 (7)0.0090 (7)0.0006 (8)
C20.0423 (10)0.0346 (12)0.0433 (11)0.0010 (8)0.0156 (8)0.0015 (9)
C30.0444 (11)0.0293 (11)0.0435 (11)0.0001 (8)0.0115 (9)0.0002 (9)
C40.0364 (10)0.0359 (12)0.0459 (12)0.0019 (7)0.0122 (8)0.0045 (9)
C50.0466 (12)0.0398 (12)0.0454 (12)0.0020 (8)0.0206 (9)0.0042 (9)
C60.0485 (11)0.0327 (11)0.0490 (12)0.0026 (8)0.0169 (9)0.0071 (9)
C70.0557 (13)0.0360 (12)0.0596 (15)0.0039 (9)0.0193 (11)0.0031 (10)
C80.0524 (13)0.0511 (14)0.0503 (13)0.0068 (10)0.0206 (10)0.0039 (10)
C90.0685 (16)0.0540 (16)0.0679 (16)0.0123 (11)0.0267 (13)0.0088 (12)
Geometric parameters (Å, º) top
Cl—C71.811 (2)C2—C31.382 (3)
O—C41.366 (2)C3—C41.409 (3)
O—C81.432 (3)C3—C71.493 (3)
C1—C21.391 (3)C4—C51.376 (3)
C1—C61.399 (3)C5—C61.382 (3)
C1—C1i1.490 (3)C8—C91.499 (3)
C4—O—C8117.53 (16)C3—C7—Cl111.25 (15)
C2—C1—C6115.93 (17)C3—C7—H7A109.4
C2—C1—C1i122.3 (2)Cl—C7—H7A109.4
C6—C1—C1i121.7 (2)C3—C7—H7B109.4
C3—C2—C1123.47 (18)Cl—C7—H7B109.4
C3—C2—H2118.3H7A—C7—H7B108.0
C1—C2—H2118.3O—C8—C9107.42 (19)
C2—C3—C4118.59 (18)O—C8—H8A110.2
C2—C3—C7120.61 (18)C9—C8—H8A110.2
C4—C3—C7120.78 (17)O—C8—H8B110.2
O—C4—C5125.14 (18)C9—C8—H8B110.2
O—C4—C3115.51 (17)H8A—C8—H8B108.5
C5—C4—C3119.35 (17)C8—C9—H9A109.5
C4—C5—C6120.47 (18)C8—C9—H9B109.5
C4—C5—H5119.8H9A—C9—H9B109.5
C6—C5—H5119.8C8—C9—H9C109.5
C5—C6—C1122.17 (19)H9A—C9—H9C109.5
C5—C6—H6118.9H9B—C9—H9C109.5
C1—C6—H6118.9
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H20Cl2O2
Mr339.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.984 (2), 11.598 (5), 14.578 (8)
β (°) 98.387 (2)
V3)833.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.20 × 0.14 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.937, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
8808, 2010, 1252
Rint0.048
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.149, 1.05
No. of reflections2010
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: COLLECT (Nonius, 2002), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia and they acknowledge Dr Michel Giorgi, University of Aix-Marseille, for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHrichi, H., Hriz, K., Jaballah, N., Ben Chaâbane, R., Simonetti, O. & Majdoub, M. (2013). J. Polym. Res. 20, 241.  Web of Science CrossRef Google Scholar
First citationHuang, X., Ren, L.-H., Yin, R.-H. & Gao, F. (2011). Acta Cryst. E67, o2330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrad, H., Majdoub, M. & Belkhiria, M. S. (2012). Acta Cryst. E68, o2339.  CSD CrossRef IUCr Journals Google Scholar
First citationTrad, H., Majdoub, M. & Davenas, J. (2006). Mater. Sci. Eng. C, 26, 334–339.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds