organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-[2-(2,4-Di­nitro­phen­yl)hydrazin-1-yl­­idene]isobenzo­furan-1(3H)-one di­chloro­methane hemisolvate

aDepartment of Chemistry, St. Stephen's College, University Enclave, Delhi, 110007, India
*Correspondence e-mail: satish@ststephens.edu

(Received 14 February 2014; accepted 3 March 2014; online 12 March 2014)

In the title compound, 2C14H8N4O6·CH2Cl2, the di­chloro­methane solvent mol­ecule resides on a crystallographic twofold axis. The mean plane of the phthaliso­imide ring is oriented at a dihedral angle of 32.93 (12)° with respect to the nitro-substituted benzene ring. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal packing features a short Cl⋯O halogen-bond inter­action [3.093 (3) Å].

Related literature

For a general background, see: Kaufmann (1927[Kaufmann, H. P. (1927). Angew. Chem. Int. Ed. Engl. 40, 69-79.]); Maekawa & Nanya (1959[Maekawa, V. E. & Nanya, S. (1959). Bull. Chem. Soc. Jpn, 32, 1311-1316.]). For the preparation of hydrazone derivatives of phthalic anhydride, see: Chen et al. (1990[Chen, M. J., Chi, C. S. & Chen, Q. Y. (1990). J. Fluorine Chem. 49, 99-106.]). For halogen bond inter­actions, see: Gonnade et al. (2008[Gonnade, R. G., Bhadbhade, M. M. & Shashidhar, M. S. (2008). CrystEngComm, 10, 288-296.]); Metrangalo & Resnati (2007[Metrangalo, P. & Resnati, G. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 1-15.]); Pedireddi et al. (1992[Pedireddi, V. R., Sarma, J. A. R. P. & Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311-320.]). For a related structure, see: Guirado et al. (1997[Guirado, A., Zapata, A. & Arellano, M. C. R. D. (1997). Tetrahedron, 53, 5305-5324.]).

[Scheme 1]

Experimental

Crystal data
  • 2C14H8N4O6·CH2Cl2

  • Mr = 741.41

  • Monoclinic, C 2/c

  • a = 14.0834 (11) Å

  • b = 8.2605 (6) Å

  • c = 26.561 (2) Å

  • β = 93.816 (7)°

  • V = 3083.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 297 K

  • 0.40 × 0.40 × 0.15 mm

Data collection
  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.824, Tmax = 1.000

  • 20814 measured reflections

  • 3832 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.141

  • S = 1.03

  • 3832 reflections

  • 234 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6⋯O3 0.81 (3) 1.99 (3) 2.613 (3) 134 (2)

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Heterocyclic compounds are useful for their ion binding, medicinal and insecticidal properties. The title compound was synthesized as a side product in an effort directed towards development of colorimetric anion sensors and its crystal structure is reported here. The reaction involved treatment of 2,4-dinitrophenylhydrazine with phthaloyl chloride in presence of triethylamine as a base. There are only a few reports on the preparation of hydrazone derivatives of phthalic anhydride in the literature (Chen et al., 1990). The asymmetric unit (Fig. 1) consists of the title compound solvated with half a molecule of dichloromethane which lies on the crystallographic 2-fold axis. The phthalisoimides aromatic ring is nearly coplanar with nitroaromatic ring with a dihedral angle of 32.93 (C23—C11—C17—C10). A intramolecular hydrogen bond O3···H6 is also present in the title compound (Table 1). The crystal packing is stabilized by short Cl···.O halogen bond interaction (Fig 2) as reported in the literature (Gonnade et al., 2008), (Pedireddi et al., 1992), Metrangalo et al., 2007).

Related literature top

For a general background, see: Kaufmann (1927); Maekawa & Nanya (1959). For the preparation of hydrazone derivatives of phthalic anhydride, see: Chen et al. (1990). For halogen bond interactions, see: Gonnade et al. (2008); Metrangalo & Resnati (2007); Pedireddi et al. (1992). For [please specify], see: Guirado et al. (1997).

Experimental top

2,4-Dinitrophenylhydrazine (1.51 g, 7.65 mmol), dichloromethane (20 ml) and triethylamine (1 ml, 7.20 mmol) were taken in a 100 ml round bottom flask equipped with a magnetic stirrer bar. Phthalolyl chloride (0.5 ml, 2.46 mmol) was added to the stirred reaction mixture in a dropwise manner. The reaction mixture was stirred for 12 h and the precipitate obtained were filtered. The filtrate was added to 50 ml water. The organic layer was separated and washed thrice with 50 ml portion of 10% NaHCO3 solution followed by water. Organic layer was dried over sodium sulfate and kept overnight to yield light yellowish red crystals of the title compound as the side product of the reaction. Melting point 94–95°C.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed viewed along b axis, showing short intermolecular O···Cl halogen bonds and intramolecular N—H···O hydrogen bonds.
(Z)-3-[2-(2,4-Dinitrophenyl)hydrazin-1-ylidene]isobenzofuran-1(3H)-one dichloromethane hemisolvate top
Crystal data top
2C14H8N4O6·CH2Cl2F(000) = 1512
Mr = 741.41Dx = 1.597 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.0834 (11) ÅCell parameters from 3399 reflections
b = 8.2605 (6) Åθ = 3.0–29.2°
c = 26.561 (2) ŵ = 0.29 mm1
β = 93.816 (7)°T = 297 K
V = 3083.2 (3) Å3Rect. prism, clear yellow–red
Z = 40.4 × 0.4 × 0.15 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
3832 independent reflections
Radiation source: Enhance (Mo) X-ray Source2568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 15.9853 pixels mm-1θmax = 29.3°, θmin = 3.0°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1110
Tmin = 0.824, Tmax = 1.000l = 3536
20814 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057Only H-atom displacement parameters refined
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.053P)2 + 3.247P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3832 reflectionsΔρmax = 0.44 e Å3
234 parametersΔρmin = 0.35 e Å3
0 restraints
Crystal data top
2C14H8N4O6·CH2Cl2V = 3083.2 (3) Å3
Mr = 741.41Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.0834 (11) ŵ = 0.29 mm1
b = 8.2605 (6) ÅT = 297 K
c = 26.561 (2) Å0.4 × 0.4 × 0.15 mm
β = 93.816 (7)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
3832 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2568 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 1.000Rint = 0.039
20814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.141Only H-atom displacement parameters refined
S = 1.03Δρmax = 0.44 e Å3
3832 reflectionsΔρmin = 0.35 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39898 (6)0.54376 (10)0.73756 (3)0.0797 (3)
O20.41801 (11)0.47047 (18)0.54833 (5)0.0411 (4)
O30.30079 (13)0.1587 (2)0.45274 (6)0.0566 (5)
O40.48996 (13)0.4056 (2)0.62423 (6)0.0562 (5)
O50.24791 (13)0.0449 (2)0.38349 (7)0.0554 (5)
N60.33004 (14)0.4709 (2)0.45706 (7)0.0407 (4)
H60.3319 (18)0.386 (3)0.4723 (9)0.049*
N70.26939 (13)0.1660 (2)0.40803 (7)0.0408 (4)
N80.16035 (16)0.4760 (3)0.26002 (7)0.0529 (5)
N90.35397 (13)0.6171 (2)0.47867 (6)0.0403 (4)
C100.21556 (15)0.3263 (3)0.33550 (8)0.0381 (5)
H100.19610.23070.31950.046*
C110.42937 (14)0.7496 (3)0.55314 (8)0.0357 (5)
C120.39564 (15)0.6131 (3)0.52246 (8)0.0371 (5)
C130.47111 (15)0.6872 (3)0.59783 (8)0.0377 (5)
C140.46430 (15)0.5103 (3)0.59583 (8)0.0400 (5)
O150.1569 (2)0.6044 (3)0.23776 (8)0.0904 (8)
O160.13589 (19)0.3503 (3)0.23967 (7)0.0891 (8)
C170.28732 (14)0.4683 (3)0.40931 (7)0.0355 (5)
C180.25776 (14)0.3240 (3)0.38441 (8)0.0351 (5)
C190.20337 (15)0.4720 (3)0.31152 (8)0.0396 (5)
C200.42629 (17)0.9146 (3)0.54405 (9)0.0443 (5)
H200.39760.95650.51430.053*
C210.46757 (18)1.0142 (3)0.58095 (10)0.0508 (6)
H210.46761.12550.57570.061*
C220.23198 (16)0.6165 (3)0.33451 (8)0.0440 (5)
H220.22300.71410.31740.053*
C230.50939 (17)0.9519 (3)0.62607 (9)0.0495 (6)
H230.53611.02270.65030.059*
C240.27340 (16)0.6143 (3)0.38250 (8)0.0410 (5)
H240.29280.71120.39780.049*
C250.51179 (16)0.7874 (3)0.63543 (9)0.0449 (6)
H250.53930.74560.66550.054*
C260.50000.4238 (5)0.75000.0587 (10)
H260.49130.36310.77950.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0687 (5)0.0757 (5)0.0948 (6)0.0155 (4)0.0049 (4)0.0027 (4)
O20.0502 (9)0.0379 (8)0.0340 (8)0.0005 (7)0.0059 (7)0.0030 (7)
O30.0822 (13)0.0478 (10)0.0378 (9)0.0001 (9)0.0120 (8)0.0103 (8)
O40.0750 (12)0.0465 (10)0.0451 (10)0.0060 (9)0.0122 (8)0.0055 (8)
O50.0755 (12)0.0371 (9)0.0523 (10)0.0031 (8)0.0053 (9)0.0018 (8)
N60.0515 (11)0.0388 (11)0.0306 (10)0.0002 (9)0.0056 (8)0.0004 (8)
N70.0447 (10)0.0401 (11)0.0371 (10)0.0008 (8)0.0003 (8)0.0028 (8)
N80.0681 (14)0.0512 (13)0.0371 (11)0.0025 (11)0.0126 (10)0.0015 (10)
N90.0465 (10)0.0418 (11)0.0321 (9)0.0003 (8)0.0013 (8)0.0045 (8)
C100.0406 (11)0.0419 (12)0.0311 (11)0.0021 (10)0.0026 (9)0.0042 (9)
C110.0364 (10)0.0406 (12)0.0300 (10)0.0003 (9)0.0015 (8)0.0046 (9)
C120.0407 (11)0.0391 (12)0.0312 (11)0.0045 (9)0.0001 (9)0.0010 (9)
C130.0372 (11)0.0420 (12)0.0339 (11)0.0013 (9)0.0011 (9)0.0034 (9)
C140.0418 (12)0.0427 (13)0.0348 (11)0.0023 (10)0.0019 (9)0.0021 (10)
O150.151 (2)0.0621 (13)0.0527 (12)0.0099 (14)0.0355 (13)0.0106 (10)
O160.142 (2)0.0669 (14)0.0526 (12)0.0249 (14)0.0391 (13)0.0023 (11)
C170.0340 (10)0.0435 (12)0.0287 (10)0.0018 (9)0.0002 (8)0.0007 (9)
C180.0366 (10)0.0362 (11)0.0325 (11)0.0033 (9)0.0021 (8)0.0006 (9)
C190.0421 (12)0.0476 (13)0.0282 (11)0.0032 (10)0.0045 (9)0.0002 (10)
C200.0512 (13)0.0395 (13)0.0422 (12)0.0028 (10)0.0029 (10)0.0016 (10)
C210.0580 (15)0.0380 (13)0.0570 (15)0.0044 (11)0.0085 (12)0.0060 (11)
C220.0537 (14)0.0413 (13)0.0360 (12)0.0056 (11)0.0032 (10)0.0068 (10)
C230.0505 (14)0.0505 (15)0.0475 (14)0.0073 (11)0.0028 (11)0.0169 (12)
C240.0489 (13)0.0360 (12)0.0374 (12)0.0006 (10)0.0028 (10)0.0018 (9)
C250.0441 (12)0.0541 (15)0.0356 (12)0.0018 (11)0.0033 (9)0.0085 (10)
C260.070 (2)0.052 (2)0.053 (2)0.0000.0091 (18)0.000
Geometric parameters (Å, º) top
Cl1—C261.747 (2)C11—C201.385 (3)
O2—C121.389 (3)C13—C141.466 (3)
O2—C141.419 (3)C13—C251.391 (3)
O3—N71.241 (2)C17—C181.413 (3)
O4—C141.188 (3)C17—C241.407 (3)
O5—N71.221 (2)C19—C221.389 (3)
N6—H60.81 (3)C20—H200.9300
N6—N91.370 (3)C20—C211.378 (3)
N6—C171.367 (3)C21—H210.9300
N7—C181.453 (3)C21—C231.398 (4)
N8—O151.214 (3)C22—H220.9300
N8—O161.210 (3)C22—C241.366 (3)
N8—C191.459 (3)C23—H230.9300
N9—C121.268 (3)C23—C251.382 (3)
C10—H100.9300C24—H240.9300
C10—C181.392 (3)C25—H250.9300
C10—C191.367 (3)C26—Cl1i1.747 (2)
C11—C121.453 (3)C26—H260.9440
C11—C131.388 (3)
C12—O2—C14108.59 (16)C24—C17—C18117.35 (18)
N9—N6—H6123.9 (18)C10—C18—N7116.37 (19)
C17—N6—H6116.5 (18)C10—C18—C17121.29 (19)
C17—N6—N9118.88 (18)C17—C18—N7122.34 (18)
O3—N7—C18118.66 (18)C10—C19—N8119.2 (2)
O5—N7—O3122.09 (19)C10—C19—C22121.89 (19)
O5—N7—C18119.25 (17)C22—C19—N8118.9 (2)
O15—N8—C19118.5 (2)C11—C20—H20121.4
O16—N8—O15122.1 (2)C21—C20—C11117.2 (2)
O16—N8—C19119.2 (2)C21—C20—H20121.4
C12—N9—N6116.54 (18)C20—C21—H21119.2
C18—C10—H10120.7C20—C21—C23121.6 (2)
C19—C10—H10120.7C23—C21—H21119.2
C19—C10—C18118.7 (2)C19—C22—H22120.3
C13—C11—C12107.21 (19)C24—C22—C19119.5 (2)
C20—C11—C12131.4 (2)C24—C22—H22120.3
C20—C11—C13121.4 (2)C21—C23—H23119.3
O2—C12—C11109.01 (17)C25—C23—C21121.4 (2)
N9—C12—O2123.53 (19)C25—C23—H23119.3
N9—C12—C11127.5 (2)C17—C24—H24119.3
C11—C13—C14108.41 (19)C22—C24—C17121.3 (2)
C11—C13—C25121.6 (2)C22—C24—H24119.3
C25—C13—C14130.0 (2)C13—C25—H25121.6
O2—C14—C13106.77 (18)C23—C25—C13116.9 (2)
O4—C14—O2119.9 (2)C23—C25—H25121.6
O4—C14—C13133.3 (2)Cl1—C26—Cl1i110.9 (2)
N6—C17—C18123.03 (19)Cl1—C26—H26108.0
N6—C17—C24119.6 (2)Cl1i—C26—H26107.0
O3—N7—C18—C10175.26 (19)C14—O2—C12—N9179.8 (2)
O3—N7—C18—C174.7 (3)C14—O2—C12—C111.0 (2)
O5—N7—C18—C104.6 (3)C14—C13—C25—C23178.5 (2)
O5—N7—C18—C17175.45 (19)O15—N8—C19—C10174.2 (2)
N6—N9—C12—O20.6 (3)O15—N8—C19—C225.0 (4)
N6—N9—C12—C11179.12 (19)O16—N8—C19—C100.4 (4)
N6—C17—C18—N70.8 (3)O16—N8—C19—C22179.5 (2)
N6—C17—C18—C10179.2 (2)C17—N6—N9—C12178.2 (2)
N6—C17—C24—C22179.2 (2)C18—C10—C19—N8179.22 (19)
N8—C19—C22—C24179.2 (2)C18—C10—C19—C220.1 (3)
N9—N6—C17—C18178.27 (18)C18—C17—C24—C220.7 (3)
N9—N6—C17—C243.3 (3)C19—C10—C18—N7179.73 (18)
C10—C19—C22—C240.1 (3)C19—C10—C18—C170.3 (3)
C11—C13—C14—O20.5 (2)C19—C22—C24—C170.3 (3)
C11—C13—C14—O4179.2 (3)C20—C11—C12—O2178.5 (2)
C11—C13—C25—C230.5 (3)C20—C11—C12—N90.1 (4)
C11—C20—C21—C231.1 (3)C20—C11—C13—C14179.2 (2)
C12—O2—C14—O4179.9 (2)C20—C11—C13—C250.1 (3)
C12—O2—C14—C131.0 (2)C20—C21—C23—C250.5 (4)
C12—C11—C13—C140.1 (2)C21—C23—C25—C130.3 (3)
C12—C11—C13—C25179.23 (19)C24—C17—C18—N7179.32 (19)
C12—C11—C20—C21178.3 (2)C24—C17—C18—C100.7 (3)
C13—C11—C12—O20.7 (2)C25—C13—C14—O2178.5 (2)
C13—C11—C12—N9179.4 (2)C25—C13—C14—O40.2 (4)
C13—C11—C20—C210.9 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O30.81 (3)1.99 (3)2.613 (3)134 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6···O30.81 (3)1.99 (3)2.613 (3)134 (2)
 

Acknowledgements

The authors are thankful to the UGC (No. 41–235/2012) for providing a research grant. The authors are also thankful to the Principal of St Stephen's College and USIC (University of Delhi) for providing facilities.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationChen, M. J., Chi, C. S. & Chen, Q. Y. (1990). J. Fluorine Chem. 49, 99–106.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGonnade, R. G., Bhadbhade, M. M. & Shashidhar, M. S. (2008). CrystEngComm, 10, 288–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuirado, A., Zapata, A. & Arellano, M. C. R. D. (1997). Tetrahedron, 53, 5305–5324.  CSD CrossRef CAS Web of Science Google Scholar
First citationKaufmann, H. P. (1927). Angew. Chem. Int. Ed. Engl. 40, 69–79.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaekawa, V. E. & Nanya, S. (1959). Bull. Chem. Soc. Jpn, 32, 1311–1316.  CrossRef CAS Web of Science Google Scholar
First citationMetrangalo, P. & Resnati, G. (2007). J. Polym. Sci. Part A Polym. Chem. 45, 1–15.  Google Scholar
First citationPedireddi, V. R., Sarma, J. A. R. P. & Desiraju, G. R. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 311–320.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds