organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis[(3-methyl­bi­phenyl-4-yl)imino]­butane

aKey Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jianchaoyuan@nwnu.edu.cn

(Received 3 March 2014; accepted 13 March 2014; online 19 March 2014)

The title compound, C30H28N2, is a product of the condensation reaction of 2-methyl-4-phenyl­aniline and butane-2,3-dione. The mol­ecule lies on a crystallographic inversion centre. The C=N bond has an E conformation. The dihedral angle between the two benzene rings of the 4-phenyl-2-methyl­phenyl group is 29.19 (76)°. The 1,4-di­aza­butadiene plane makes an angle of 70.1 (10)° with the N-bonded methyl­phenyl ring and an angle of 81.08 (97)° with the terminal phenyl group.

Related literature

The title compound was synthesized as an α-di­imine ligand for applications in olefin polymerization Ni(II)-α-di­imine catalysts, see: Johnson et al. (1995[Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.]); Killian et al. (1996[Killian, C. M., Tempel, D. J., Johnson, L. K. & Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664-11665.]); Wang et al. (2013[Wang, F. Z., Yuan, J. C., Song, F. Y., Li, J., Jia, Z. & Yuan, B. N. (2013). Appl. Organomet. Chem. 27, 319-327.]); Ionkin & Marshall (2004[Ionkin, A. S. & Marshall, W. J. (2004). Organometallics, 23, 3276-3283.]); Meinhard et al. (2007[Meinhard, D., Wegner, M., Kipiani, G., Hearley, A., Reuter, P., Fischer, S., Marti, O. & Rieger, B. J. (2007). J. Am. Chem. Soc, 129, 9182-9191.]). For the effect of the ligand structure on the activity of the catalyst and the properties of the products, see: Popeney & Guan (2005[Popeney, C. S. & Guan, Z. B. (2005). Organometallics, 24, 1145-1155.]); Yuan et al. (2005[Yuan, J. C., Silva, L. C., Gomes, P. T., Valerga, P., Campos, J. M., Ribeiro, M. R., Chien, J. C. W. & Marques, M. M. (2005). Polymer, 46, 2122-2132.]); Helldörfer et al. (2003[Helldörfer, M., Backhaus, J. & Alt, H. G. (2003). Inorg. Chim. Acta, 351, 34-42.]). For related structures, see: Yuan et al. (2013[Yuan, J. C., Jia, Z., Li, J., Song, F. Y., Wang, F. Z. & Yuan, B. N. (2013). Transition Met. Chem. 38, 341-350.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N2

  • Mr = 416.54

  • Orthorhombic, P b c a

  • a = 8.347 (3) Å

  • b = 7.063 (3) Å

  • c = 39.946 (16) Å

  • V = 2355.0 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.19 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.990

  • 15668 measured reflections

  • 2200 independent reflections

  • 1251 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.135

  • S = 1.01

  • 2200 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, a variety of α-diimine ligands containing various ortho and para position substituted N-aryl rings (Johnson et al. 1995; Killian et al.. 1996; Popeney et al.. 2005; Yuan et al., 2005; Wang et al. 2013) and backbone effects (Helldörfer et al.. 2003) and teraryl substituted-α-diimine ligands (Ionkin et al.. 2004; Meinhard et al.. 2007) were employed to study their influence on the catalytic activity of α-diimine-Ni(II) complexes. In this study, we designed and synthesized the title compound as a bidentate ligand. The molecule lies on a crystallographic inversion centre. The single bond of 1, 4-diazabutadiene fragment is (E)-configured. The dihedral angles between the 1,4-diazabutadiene plane and the benzene ring bonded to the N atom are 70.12 (96)° and 81.08 (97)° for the terminal phenyl group, resp. The dihedral angle between both aromatic ring planes is 29.19 (76)° (Figure 1). The crystal packing shows stacking of molecules along a-axis (Figure 2), however, no significant intermolecular H-bonding is observed. A very similar molecular structure is known from Yuan et al. (2013).

Related literature top

The title compound was synthesized as an α-diimine ligand for application in olefin polymerization Ni(II)-α-diimine catalysts, see: Johnson et al. (1995); Killian et al. (1996); Wang et al. (2013); Ionkin & Marshall (2004); Meinhard et al. (2007). For the effect of the ligand structure on the activity of the catalyst and the properties of the products, see: Popeney & Guan (2005); Yuan et al. (2005); Helldörfer et al. (2003). For related structures, see: Yuan et al. (2013).

Experimental top

Formic acid (0.5 ml) was added to a stirred solution of 2-methyl-4-phenylaniline (0.916 g, 2.2 mmol) and 2,3-Butanedione (0.086 g, 1 mmol) in 20 ml anhydrous ethanol (20 ml). The mixture was stirred at 50 oC for 24 h, then cooled, and the precipitate was separated by filtration. The solid was recrystallized from ethanol/dichloromethane (v/v= 8:1), washed with cold ethanol and dried under vacuum to give the title compound. Yield is 86%. Crystals suitable for X-ray structure determination were grown from a cyclohexane/dichloromethane (v:v= 1:2) solution. Anal. Calc. for C30H28N2: C, 86.50; H, 6.78; N, 6.72. Found: C, 86.62; H, 6.57; N, 6.58.

Refinement top

Positions of the methyl H atoms were derived from Fourier maps (HFIX 137), with C–H 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H distances distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids plotted at 50% probability level. Atoms with label "a" are related by the symmetry code (-x+1, -y+1, -z).
[Figure 2] Fig. 2. Crystal packing viewed along the a-axis.
2,3-Bis[(3-methylbiphenyl-4-yl)imino]butane top
Crystal data top
C30H28N2Dx = 1.175 Mg m3
Mr = 416.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1674 reflections
a = 8.347 (3) Åθ = 2.6–21.7°
b = 7.063 (3) ŵ = 0.07 mm1
c = 39.946 (16) ÅT = 293 K
V = 2355.0 (16) Å3Block, yellow
Z = 40.19 × 0.18 × 0.15 mm
F(000) = 888
Data collection top
Bruker APEXII CCD
diffractometer
2200 independent reflections
Radiation source: fine-focus sealed tube1251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.987, Tmax = 0.990k = 88
15668 measured reflectionsl = 4847
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.4273P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2200 reflectionsΔρmax = 0.15 e Å3
148 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (6)
Crystal data top
C30H28N2V = 2355.0 (16) Å3
Mr = 416.54Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 8.347 (3) ŵ = 0.07 mm1
b = 7.063 (3) ÅT = 293 K
c = 39.946 (16) Å0.19 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2200 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1251 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.990Rint = 0.088
15668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
2200 reflectionsΔρmin = 0.16 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6218 (4)0.0240 (5)0.17712 (7)0.0644 (9)
H10.71170.04680.16400.077*
C20.6029 (4)0.1219 (5)0.20680 (8)0.0716 (10)
H20.67920.21060.21330.086*
C30.4725 (4)0.0893 (5)0.22677 (7)0.0663 (9)
H30.45970.15480.24680.080*
C40.3612 (4)0.0413 (4)0.21680 (7)0.0594 (9)
H40.27260.06520.23030.071*
C50.3788 (4)0.1375 (4)0.18713 (6)0.0504 (8)
H50.30120.22480.18070.061*
C60.5099 (3)0.1070 (4)0.16654 (6)0.0442 (7)
C70.5276 (3)0.2107 (4)0.13451 (6)0.0425 (7)
C80.6072 (3)0.1298 (4)0.10744 (7)0.0509 (8)
H80.65630.01240.10990.061*
C90.6142 (3)0.2216 (4)0.07704 (7)0.0532 (8)
H90.66780.16520.05920.064*
C100.5427 (3)0.3961 (4)0.07266 (6)0.0423 (7)
C110.4688 (3)0.4856 (4)0.09956 (6)0.0432 (7)
C120.4629 (3)0.3887 (4)0.12980 (6)0.0443 (7)
H120.41260.44680.14790.053*
C130.3949 (4)0.6774 (4)0.09594 (8)0.0674 (10)
H13A0.28820.66480.08730.101*
H13B0.45800.75220.08080.101*
H13C0.39120.73840.11740.101*
C140.4850 (3)0.4425 (4)0.01552 (6)0.0440 (7)
C150.3729 (4)0.2792 (5)0.01278 (8)0.0773 (11)
H15A0.37220.21020.03350.116*
H15B0.40730.19720.00500.116*
H15C0.26700.32480.00810.116*
N10.5572 (3)0.4954 (3)0.04174 (5)0.0486 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.078 (3)0.0472 (19)0.013 (2)0.0012 (16)0.0083 (18)
C20.086 (3)0.075 (2)0.054 (2)0.016 (2)0.0096 (19)0.012 (2)
C30.092 (3)0.064 (2)0.0429 (18)0.005 (2)0.0080 (19)0.0083 (17)
C40.075 (2)0.063 (2)0.0400 (17)0.0046 (19)0.0066 (16)0.0005 (16)
C50.0651 (19)0.0476 (19)0.0386 (17)0.0013 (16)0.0034 (14)0.0006 (15)
C60.0502 (17)0.0475 (18)0.0349 (15)0.0018 (15)0.0037 (13)0.0025 (14)
C70.0388 (15)0.0504 (19)0.0381 (16)0.0011 (15)0.0014 (13)0.0022 (14)
C80.0587 (18)0.0529 (19)0.0410 (17)0.0119 (16)0.0057 (14)0.0047 (16)
C90.0593 (18)0.058 (2)0.0424 (18)0.0049 (17)0.0088 (15)0.0019 (16)
C100.0417 (15)0.0495 (18)0.0356 (16)0.0052 (15)0.0010 (13)0.0013 (14)
C110.0430 (15)0.0456 (17)0.0410 (17)0.0007 (14)0.0023 (13)0.0011 (14)
C120.0474 (16)0.0479 (18)0.0377 (16)0.0014 (15)0.0034 (13)0.0058 (14)
C130.088 (2)0.055 (2)0.059 (2)0.0099 (19)0.0034 (18)0.0063 (17)
C140.0404 (15)0.0522 (19)0.0395 (16)0.0047 (14)0.0022 (13)0.0024 (13)
C150.090 (2)0.086 (3)0.055 (2)0.041 (2)0.0109 (19)0.0185 (19)
N10.0521 (14)0.0561 (16)0.0375 (13)0.0075 (12)0.0012 (12)0.0028 (12)
Geometric parameters (Å, º) top
C1—C61.381 (4)C9—C101.380 (4)
C1—C21.382 (4)C9—H90.9300
C1—H10.9300C10—C111.391 (3)
C2—C31.369 (4)C10—N11.426 (3)
C2—H20.9300C11—C121.389 (3)
C3—C41.368 (4)C11—C131.496 (4)
C3—H30.9300C12—H120.9300
C4—C51.374 (4)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.386 (4)C13—H13C0.9600
C5—H50.9300C14—N11.265 (3)
C6—C71.481 (4)C14—C151.489 (4)
C7—C121.381 (4)C14—C14i1.504 (5)
C7—C81.392 (3)C15—H15A0.9600
C8—C91.378 (4)C15—H15B0.9600
C8—H80.9300C15—H15C0.9600
C6—C1—C2121.4 (3)C8—C9—H9119.6
C6—C1—H1119.3C9—C10—C11120.0 (3)
C2—C1—H1119.3C9—C10—N1120.8 (2)
C3—C2—C1120.4 (3)C11—C10—N1118.9 (3)
C3—C2—H2119.8C10—C11—C12117.6 (3)
C1—C2—H2119.8C10—C11—C13121.3 (3)
C4—C3—C2118.9 (3)C12—C11—C13121.1 (3)
C4—C3—H3120.5C7—C12—C11123.6 (3)
C2—C3—H3120.5C7—C12—H12118.2
C3—C4—C5120.8 (3)C11—C12—H12118.2
C3—C4—H4119.6C11—C13—H13A109.5
C5—C4—H4119.6C11—C13—H13B109.5
C4—C5—C6121.3 (3)H13A—C13—H13B109.5
C4—C5—H5119.4C11—C13—H13C109.5
C6—C5—H5119.4H13A—C13—H13C109.5
C1—C6—C5117.2 (3)H13B—C13—H13C109.5
C1—C6—C7121.9 (3)N1—C14—C15126.1 (3)
C5—C6—C7120.9 (3)N1—C14—C14i116.4 (3)
C12—C7—C8117.0 (3)C15—C14—C14i117.5 (3)
C12—C7—C6121.9 (3)C14—C15—H15A109.5
C8—C7—C6121.1 (3)C14—C15—H15B109.5
C9—C8—C7120.8 (3)H15A—C15—H15B109.5
C9—C8—H8119.6C14—C15—H15C109.5
C7—C8—H8119.6H15A—C15—H15C109.5
C10—C9—C8120.9 (3)H15B—C15—H15C109.5
C10—C9—H9119.6C14—N1—C10122.1 (2)
C6—C1—C2—C30.8 (5)C8—C9—C10—C113.0 (4)
C1—C2—C3—C40.2 (5)C8—C9—C10—N1176.7 (3)
C2—C3—C4—C50.5 (5)C9—C10—C11—C123.4 (4)
C3—C4—C5—C60.6 (5)N1—C10—C11—C12177.2 (2)
C2—C1—C6—C50.7 (5)C9—C10—C11—C13178.0 (3)
C2—C1—C6—C7179.0 (3)N1—C10—C11—C134.2 (4)
C4—C5—C6—C10.0 (4)C8—C7—C12—C112.3 (4)
C4—C5—C6—C7179.7 (3)C6—C7—C12—C11176.1 (3)
C1—C6—C7—C12152.1 (3)C10—C11—C12—C70.7 (4)
C5—C6—C7—C1228.3 (4)C13—C11—C12—C7179.4 (3)
C1—C6—C7—C829.6 (4)C15—C14—N1—C102.3 (5)
C5—C6—C7—C8150.0 (3)C14i—C14—N1—C10178.4 (3)
C12—C7—C8—C92.7 (4)C9—C10—N1—C1471.9 (4)
C6—C7—C8—C9175.7 (3)C11—C10—N1—C14114.4 (3)
C7—C8—C9—C100.1 (4)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H28N2
Mr416.54
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.347 (3), 7.063 (3), 39.946 (16)
V3)2355.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.19 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.987, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
15668, 2200, 1251
Rint0.088
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.135, 1.01
No. of reflections2200
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (20964003) for funding. We also thank the Key Laboratory of Eco Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province (Northwest Normal University), for financial support.

References

First citationBruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHelldörfer, M., Backhaus, J. & Alt, H. G. (2003). Inorg. Chim. Acta, 351, 34–42.  Web of Science CrossRef CAS Google Scholar
First citationIonkin, A. S. & Marshall, W. J. (2004). Organometallics, 23, 3276–3283.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.  CrossRef CAS Web of Science Google Scholar
First citationKillian, C. M., Tempel, D. J., Johnson, L. K. & Brookhart, M. (1996). J. Am. Chem. Soc. 118, 11664–11665.  CrossRef CAS Web of Science Google Scholar
First citationMeinhard, D., Wegner, M., Kipiani, G., Hearley, A., Reuter, P., Fischer, S., Marti, O. & Rieger, B. J. (2007). J. Am. Chem. Soc, 129, 9182–9191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPopeney, C. S. & Guan, Z. B. (2005). Organometallics, 24, 1145–1155.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F. Z., Yuan, J. C., Song, F. Y., Li, J., Jia, Z. & Yuan, B. N. (2013). Appl. Organomet. Chem. 27, 319–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, J. C., Jia, Z., Li, J., Song, F. Y., Wang, F. Z. & Yuan, B. N. (2013). Transition Met. Chem. 38, 341–350.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, J. C., Silva, L. C., Gomes, P. T., Valerga, P., Campos, J. M., Ribeiro, M. R., Chien, J. C. W. & Marques, M. M. (2005). Polymer, 46, 2122–2132.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds