organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o470-o471

3-Acetyl-2-fluoro-6H-benzo[c]chromen-6-one

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 14 February 2014; accepted 17 March 2014; online 26 March 2014)

The title compound, C15H9FO3, was obtained in a one-pot synthesis by Suzuki–Miyaura cross-coupling and nucleophilic substitution reaction of 4′-chloro-2′,5′-di­fluoro­aceto­phenone with o-(meth­oxy­carbon­yl)phenyl­boronic acid. The asymmetric unit contains two crystallographically independent mol­ecules related by a non-crystallographic inversion centre. There are face-to-face stacking inter­actions between the aromatic rings of the benzoate and aceto­phenone units of the symmetry-independent mol­ecules [centroid–centroid distances = 3.870 (3) and 3.986 (3) Å]. In the crystal, mol­ecules are further assembled via stacking inter­actions along the a-axis direction. One of the mol­ecules inter­acts with its inversion equivalent [centroid–centroid distance between the aromatic rings of the benzoate and aceto­phenone units = 3.932 (3) Å], and the other inter­acts with its twofold axis equivalent [centroid–centroid distance between the aromatic rings of aceto­phenone units = 3.634 (3) Å].

Related literature

For background to this study, see: Dias et al. (2009[Dias, A., Bouvier, D., Crépin, T., McCarthy, A. A., Hart, D. J., Baudin, F., Cusack, S. & Ruigrok, R. W. (2009). Nature, 458, 914-918.]); Ishikawa & Fujii (2011[Ishikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221-225.]). For related compounds and structures, see: Bringmann & Menche (2001[Bringmann, G. & Menche, D. (2001). Acc. Chem. Res. 34, 615-624.]); Robinson et al. (1991[Robinson, P. D., Hua, D. H., Roche, D. & Saha, S. (1991). Acta Cryst. C47, 2490-2492.]); Siegel et al. (2010[Siegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366.]); Dasari et al. (2012[Dasari, S., Bhadbhade, M. & Neilan, B. A. (2012). Acta Cryst. E68, o1471.]). For the biological activity of related compounds, see: Sun et al. (2006[Sun, W., Cama, L. D., Birzin, E. T., Warrier, S., Locco, L., Mosley, R., Hammond, M. L. & Rohrer, S. P. (2006). Bioorg. Med. Chem. Lett. 16, 1468-1472.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9FO3

  • Mr = 256.23

  • Monoclinic, C 2/c

  • a = 26.005 (19) Å

  • b = 13.169 (4) Å

  • c = 13.297 (8) Å

  • β = 98.02 (6)°

  • V = 4509 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.40 × 0.34 × 0.25 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 6119 measured reflections

  • 5160 independent reflections

  • 3534 reflections with F2 > 2σ(F2)

  • Rint = 0.017

  • 3 standard reflections every 150 reflections intensity decay: −0.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.01

  • 5160 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Aryl diketo acids are known to inhibit influenza virus metalloenzyme endonuclease by chelating its metal center (Dias et al.,2009). According to our inhibitor design targeting this metalloenzyme (Ishikawa & Fujii, 2011), we tried to synthesize a biphenyl derivative with acetyl, methoxycarbonyl and difluoro groups by Suzuki-Miyaura cross-coupling reaction of 4'-chloro-2',5'-difluoroacetophenone with o-(methoxycarbonyl)phenylboronic acid in N,N-dimethylformamide (DMF) in the presence of Pd(PPh3)4 and K2CO3. Usual work-up yielded a pink solid, which was not fully analyzed by 1H NMR and MS.

The crystallographic analysis revealed that it is an unexpected biphenyl lactone derivative shown in Fig.1, which should be formed as a result of intramolecular cyclization by additional nucleophilic substitution reaction of the hydrolyzed carboxylate with the proximal fluoride group after the intermolecular cross-coupling reaction. This result well accounts for the 1H NMR and MS spectra. The asymmetric unit of the title compound contains two crystallographically independent molecules related by a non-crystallographic inversion centre. The biphenyl lactone rings are essentially planar, and the mean atomic deviations from the corresponding least-square planes composed of the non-hydrogen atoms of the rings are 0.0137 and 0.0188 Å for molecules A and B, respectively. In addition, face-to-face stacking interactions between the aromatic rings of the benzoate and acetophenone units are observed [centroid–centroid distances = 3.870 (3) and 3.986 (3) Å]. In the crystal, the molecules are further assembled via stacking interaction along the a-axis direction. Molecule A interacts with its inversion equivalent [centroid-centroid distance between the aromatic rings of the benzoate and acetophenone units = 3.932 (3) Å], and molecule B interacts with its twofold axis equivalent [centroid-centroid distance between the aromatic rings of acetophenone units = 3.634 (3) Å].

Biphenyl lactone is a key structural motif found in many natural products and pharmaceuticals (Bringmann et al., 2001). The crystal structures (Robinson et al.,1991; Siegel et al., 2010, Dasari et al., 2012) and biological activity (Sun et al., 2006) of the related compounds are reported.

Related literature top

For background to this study, see: Dias et al. (2009); Ishikawa & Fujii (2011). For related compounds and structures, see: Bringmann & Menche (2001); Robinson et al. (1991); Siegel et al. (2010); Dasari et al. (2012). For the biological activity of related compounds, see: Sun et al. (2006).

Experimental top

In a Schlenk tube under nitrogen atmosphere, the mixture of 4'-chloro-2',5'-difluoroacetophenone (1.0 g, 0.0052 mol), o-(methoxycarbonyl)phenylboronic acid (0.83 g, 0.0046 mol), K2CO3 (0.87 g, 0.0063 mol) and Pd(PPh3)4 (0.15 g, 0.00013 mol) in 30 ml of DMF were stirred at 100 °C for 18 h. After cooling to room temperature and filtration, ethyl acetate and water were added to the filtrate. The organic phase was separated, washed with water and brine, dried with MgSO4, and was slowly evaporated to give the pink solid (yield: 14%). 1H NMR (400 MHz, CDCl3): d = 2.71 (d, 3H, J = 4.8 Hz), 7.71 (t, 1H, J = 8.0 Hz), 7.82 (d, 1H, J = 11.2 Hz), 7.88 (t, 1H, J = 8.0 Hz), 7.91 (d, 1H, J = 8.0 Hz), 7.08 (d, 1H, J = 8.0 Hz), 8.46 (d, 1H, J = 8.0 Hz). DART-MS calcd for [C15H9FO3 + H+]: 257.061, found 257.081. Single crystals suitable for X-ray diffraction were obtained by recrystalization of an ethyl acetate solution of the title compound at room temperature.

Refinement top

The hydrogen atoms were placed in geometrical positions [C–H 0.95 Å for phenyl, C–H 0.98 Å for methyl, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme for the title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
3-Acetyl-2-fluoro-6H-benzo[c]chromen-6-one top
Crystal data top
C15H9FO3F(000) = 2112.00
Mr = 256.23Dx = 1.510 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 26.005 (19) Åθ = 15.6–17.4°
b = 13.169 (4) ŵ = 0.12 mm1
c = 13.297 (8) ÅT = 100 K
β = 98.02 (6)°Block, pink
V = 4509 (5) Å30.40 × 0.34 × 0.25 mm
Z = 16
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω scansh = 1833
6119 measured reflectionsk = 017
5160 independent reflectionsl = 1716
3534 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.017 intensity decay: 0.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0742P)2 + 2.0957P]
where P = (Fo2 + 2Fc2)/3
5160 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.28 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H9FO3V = 4509 (5) Å3
Mr = 256.23Z = 16
Monoclinic, C2/cMo Kα radiation
a = 26.005 (19) ŵ = 0.12 mm1
b = 13.169 (4) ÅT = 100 K
c = 13.297 (8) Å0.40 × 0.34 × 0.25 mm
β = 98.02 (6)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.017
6119 measured reflections3 standard reflections every 150 reflections
5160 independent reflections intensity decay: 0.4%
3534 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
5160 reflectionsΔρmin = 0.28 e Å3
343 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.31263 (5)1.07390 (8)0.04611 (8)0.0259 (3)
F1B0.44773 (4)0.42794 (8)0.02258 (8)0.0251 (3)
O1A0.31217 (5)0.78443 (9)0.24820 (9)0.0216 (3)
O2A0.31393 (5)0.62794 (10)0.30292 (10)0.0246 (3)
O3A0.30739 (5)1.15534 (10)0.25742 (9)0.0234 (3)
O1B0.42805 (5)0.71154 (10)0.31463 (9)0.0202 (3)
O2B0.42512 (5)0.86817 (10)0.37147 (10)0.0258 (3)
O3B0.44045 (6)0.33924 (11)0.31809 (10)0.0277 (4)
C1A0.31365 (6)0.82575 (13)0.06925 (12)0.0150 (4)
C2A0.31386 (7)0.90307 (13)0.00280 (13)0.0171 (4)
C3A0.31233 (7)1.00254 (14)0.02744 (13)0.0175 (4)
C4A0.31038 (7)1.03261 (13)0.12886 (13)0.0167 (4)
C5A0.31047 (7)0.95538 (13)0.20015 (13)0.0181 (4)
C6A0.31227 (7)0.85494 (13)0.17052 (13)0.0171 (4)
C7A0.31431 (6)0.71708 (13)0.04513 (13)0.0152 (4)
C8A0.31428 (7)0.64746 (14)0.12495 (13)0.0175 (4)
C9A0.31458 (7)0.54330 (14)0.10615 (14)0.0217 (4)
C10A0.31479 (7)0.50751 (14)0.00851 (14)0.0207 (4)
C11A0.31461 (7)0.57649 (14)0.07141 (14)0.0195 (4)
C13A0.31366 (7)0.68230 (14)0.23014 (14)0.0201 (4)
C14A0.30814 (7)1.14026 (13)0.16662 (13)0.0176 (4)
C15A0.30670 (9)1.22769 (15)0.09546 (14)0.0283 (5)
C1B0.44025 (6)0.67388 (14)0.14047 (13)0.0165 (4)
C2B0.44531 (7)0.59797 (14)0.06830 (13)0.0186 (4)
C3B0.44303 (7)0.49787 (14)0.09551 (13)0.0175 (4)
C4B0.43642 (7)0.46580 (14)0.19314 (13)0.0174 (4)
C5B0.43176 (7)0.54154 (14)0.26455 (13)0.0176 (4)
C6B0.43337 (7)0.64274 (14)0.23804 (13)0.0168 (4)
C14B0.43523 (7)0.35764 (14)0.22744 (14)0.0199 (4)
C7B0.44059 (6)0.78242 (14)0.11788 (13)0.0176 (4)
C12B0.44570 (7)0.82098 (15)0.02167 (14)0.0205 (4)
C11B0.44476 (7)0.92443 (15)0.00505 (15)0.0235 (4)
C10B0.43892 (8)0.99194 (15)0.08315 (16)0.0252 (5)
C9B0.43407 (7)0.95588 (15)0.17896 (15)0.0234 (4)
C12A0.31442 (6)0.67979 (14)0.05381 (13)0.0170 (4)
C13B0.42922 (7)0.81498 (14)0.29949 (14)0.0203 (4)
C15B0.42691 (9)0.27294 (15)0.15133 (15)0.0289 (5)
C8B0.43480 (7)0.85080 (14)0.19627 (13)0.0177 (4)
H1A0.31510.88660.07270.0205*
H2A0.30930.97200.27000.0217*
H3A0.31460.49680.16070.0260*
H4A0.31510.43650.00430.0248*
H5A0.31460.55200.13860.0234*
H6A0.31440.72580.10880.0204*
H7A0.27881.21710.05390.0339*
H8A0.30031.29060.13450.0339*
H9A0.34011.23270.05120.0339*
H1B0.45030.61590.00110.0223*
H2B0.42750.52340.33200.0211*
H6B0.44980.77580.03230.0246*
H5B0.44810.94990.06060.0282*
H4B0.43831.06300.07060.0302*
H3B0.43031.00180.23260.0280*
H7B0.42720.20780.18700.0346*
H8B0.45470.27380.10860.0346*
H9B0.39330.28200.10870.0346*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0483 (7)0.0158 (6)0.0137 (6)0.0002 (5)0.0051 (5)0.0042 (5)
F1B0.0400 (7)0.0202 (6)0.0162 (6)0.0028 (5)0.0074 (5)0.0029 (5)
O1A0.0361 (8)0.0167 (7)0.0129 (6)0.0005 (6)0.0073 (6)0.0025 (5)
O2A0.0370 (8)0.0195 (7)0.0184 (7)0.0000 (6)0.0079 (6)0.0055 (6)
O3A0.0351 (8)0.0206 (7)0.0148 (6)0.0002 (6)0.0048 (6)0.0026 (6)
O1B0.0272 (7)0.0195 (7)0.0146 (6)0.0014 (6)0.0049 (5)0.0027 (5)
O2B0.0309 (8)0.0260 (8)0.0206 (7)0.0018 (6)0.0041 (6)0.0072 (6)
O3B0.0417 (9)0.0235 (8)0.0177 (7)0.0027 (7)0.0032 (6)0.0033 (6)
C1A0.0149 (8)0.0161 (9)0.0141 (8)0.0004 (7)0.0027 (6)0.0002 (7)
C2A0.0211 (9)0.0177 (9)0.0122 (8)0.0010 (7)0.0017 (7)0.0006 (7)
C3A0.0228 (9)0.0165 (9)0.0134 (8)0.0001 (7)0.0027 (7)0.0040 (7)
C4A0.0172 (9)0.0163 (9)0.0169 (9)0.0003 (7)0.0035 (7)0.0017 (7)
C5A0.0244 (9)0.0178 (9)0.0125 (8)0.0005 (7)0.0047 (7)0.0021 (7)
C6A0.0204 (9)0.0165 (9)0.0149 (8)0.0009 (7)0.0043 (7)0.0050 (7)
C7A0.0142 (8)0.0146 (9)0.0167 (8)0.0006 (7)0.0022 (7)0.0013 (7)
C8A0.0173 (9)0.0184 (9)0.0172 (9)0.0001 (7)0.0038 (7)0.0010 (7)
C9A0.0244 (10)0.0188 (10)0.0218 (9)0.0001 (8)0.0031 (8)0.0025 (8)
C10A0.0236 (9)0.0138 (9)0.0247 (10)0.0001 (7)0.0040 (8)0.0010 (8)
C11A0.0172 (9)0.0206 (10)0.0203 (9)0.0003 (7)0.0013 (7)0.0028 (7)
C13A0.0227 (9)0.0190 (9)0.0188 (9)0.0014 (8)0.0039 (7)0.0028 (8)
C14A0.0198 (9)0.0158 (9)0.0171 (9)0.0001 (7)0.0024 (7)0.0010 (7)
C15A0.0486 (13)0.0186 (10)0.0184 (10)0.0013 (9)0.0075 (9)0.0017 (8)
C1B0.0143 (8)0.0193 (9)0.0157 (8)0.0001 (7)0.0017 (7)0.0009 (7)
C2B0.0190 (9)0.0235 (10)0.0134 (8)0.0017 (7)0.0029 (7)0.0013 (7)
C3B0.0196 (9)0.0194 (10)0.0140 (8)0.0019 (7)0.0035 (7)0.0042 (7)
C4B0.0184 (9)0.0188 (10)0.0150 (8)0.0017 (7)0.0021 (7)0.0010 (7)
C5B0.0200 (9)0.0211 (10)0.0118 (8)0.0005 (7)0.0031 (7)0.0017 (7)
C6B0.0165 (8)0.0195 (9)0.0145 (8)0.0007 (7)0.0022 (7)0.0026 (7)
C14B0.0214 (9)0.0200 (10)0.0189 (9)0.0027 (8)0.0047 (7)0.0015 (8)
C7B0.0134 (8)0.0179 (9)0.0213 (9)0.0007 (7)0.0016 (7)0.0010 (7)
C12B0.0195 (9)0.0233 (10)0.0190 (9)0.0009 (8)0.0036 (7)0.0013 (8)
C11B0.0231 (10)0.0233 (10)0.0244 (10)0.0015 (8)0.0038 (8)0.0029 (8)
C10B0.0241 (10)0.0184 (10)0.0331 (11)0.0025 (8)0.0037 (8)0.0021 (8)
C9B0.0227 (10)0.0188 (10)0.0282 (10)0.0007 (8)0.0023 (8)0.0042 (8)
C12A0.0161 (8)0.0181 (9)0.0165 (9)0.0002 (7)0.0014 (7)0.0000 (7)
C13B0.0191 (9)0.0203 (10)0.0209 (9)0.0001 (7)0.0010 (7)0.0037 (8)
C15B0.0417 (12)0.0212 (11)0.0248 (10)0.0034 (9)0.0085 (9)0.0041 (8)
C8B0.0156 (8)0.0196 (10)0.0177 (9)0.0010 (7)0.0010 (7)0.0016 (7)
Geometric parameters (Å, º) top
F1A—C3A1.356 (3)C3B—C4B1.398 (3)
F1B—C3B1.355 (3)C4B—C5B1.394 (3)
O1A—C6A1.389 (3)C4B—C14B1.497 (3)
O1A—C13A1.366 (3)C5B—C6B1.381 (3)
O2A—C13A1.205 (3)C14B—C15B1.501 (3)
O3A—C14A1.221 (3)C7B—C12B1.400 (3)
O1B—C6B1.384 (3)C7B—C8B1.401 (3)
O1B—C13B1.378 (3)C12B—C11B1.380 (3)
O2B—C13B1.203 (3)C11B—C10B1.391 (3)
O3B—C14B1.218 (3)C10B—C9B1.382 (3)
C1A—C2A1.398 (3)C9B—C8B1.403 (3)
C1A—C6A1.396 (3)C13B—C8B1.478 (3)
C1A—C7A1.466 (3)C2A—H1A0.950
C2A—C3A1.369 (3)C5A—H2A0.950
C3A—C4A1.400 (3)C9A—H3A0.950
C4A—C5A1.391 (3)C10A—H4A0.950
C4A—C14A1.502 (3)C11A—H5A0.950
C5A—C6A1.379 (3)C15A—H7A0.980
C7A—C8A1.402 (3)C15A—H8A0.980
C7A—C12A1.404 (3)C15A—H9A0.980
C8A—C9A1.394 (3)C2B—H1B0.950
C8A—C13A1.470 (3)C5B—H2B0.950
C9A—C10A1.381 (3)C12B—H6B0.950
C10A—C11A1.399 (3)C11B—H5B0.950
C11A—C12A1.380 (3)C10B—H4B0.950
C14A—C15A1.494 (3)C9B—H3B0.950
C1B—C2B1.405 (3)C12A—H6A0.950
C1B—C6B1.396 (3)C15B—H7B0.980
C1B—C7B1.461 (3)C15B—H8B0.980
C2B—C3B1.370 (3)C15B—H9B0.980
F1A···C14A2.947 (3)C7B···H3B3.2949
F1A···C15A2.755 (3)C12B···H1B2.7190
F1B···C14B2.938 (3)C12B···H4B3.2637
F1B···C15B2.766 (3)C11B···H3B3.2631
O1A···C7A2.835 (3)C10B···H6B3.2652
O2A···C6A3.473 (3)C9B···H5B3.2572
O2A···C9A2.842 (3)C12A···H1A2.7352
O3A···C5A2.739 (3)C12A···H4A3.2710
O1B···C7B2.839 (3)C13B···H3B2.6177
O2B···C6B3.480 (3)C8B···H6B3.2710
O2B···C9B2.847 (3)C8B···H4B3.2636
O3B···C5B2.759 (3)H1A···H6A2.1726
C1A···C4A2.835 (3)H3A···H4A2.3321
C1A···C13A2.854 (3)H4A···H5A2.3464
C2A···C5A2.775 (3)H5A···H6A2.3231
C2A···C12A3.017 (3)H1B···H6B2.1521
C3A···C6A2.720 (3)H6B···H5B2.3225
C3A···C15A3.097 (3)H5B···H4B2.3346
C6A···C8A2.798 (3)H4B···H3B2.3356
C7A···C10A2.802 (3)F1A···H2Ai2.5325
C8A···C11A2.772 (3)F1A···H4Aii3.2972
C9A···C12A2.785 (3)F1A···H4B3.2409
C1B···C4B2.834 (3)F1A···H9Bxi3.4807
C1B···C13B2.859 (3)F1B···H4A3.4268
C2B···C5B2.783 (3)F1B···H1Biii2.7751
C2B···C12B3.002 (3)F1B···H2Biv2.5957
C3B···C6B2.725 (3)O1A···H7Avii3.4018
C3B···C15B3.096 (3)O1A···H8Avii3.1165
C6B···C8B2.797 (3)O1A···H7Biv3.2290
C7B···C10B2.797 (3)O1A···H9Biv3.1562
C12B···C9B2.793 (3)O2A···H4Aiv2.7044
C11B···C8B2.767 (3)O2A···H5Aiv2.4943
F1A···O1Ai3.312 (2)O2A···H7Avii3.0891
F1A···C5Ai3.404 (3)O2A···H9Biv2.7803
F1A···C10Aii3.452 (4)O3A···H1Avi2.3615
F1A···C10B3.427 (4)O3A···H6Avi2.3950
F1B···F1Biii3.436 (3)O1B···H8Ai3.4828
F1B···O1Biv3.300 (2)O1B···H9Ai3.1774
F1B···O3Bv3.548 (3)O2B···H9Ai2.8892
F1B···C10A3.581 (4)O2B···H5Bi2.6011
F1B···C2Biii3.202 (3)O2B···H4Bi2.7742
F1B···C3Biii3.569 (3)O3B···H1Bix2.4828
F1B···C5Biv3.422 (3)O3B···H6Bix2.4851
O1A···F1Avi3.312 (2)O3B···H8Bv2.8952
O1A···O3Avii3.553 (3)C1A···H6Aii3.3663
O1A···C15Avii3.556 (4)C1A···H6B3.5681
O1A···C15Biv3.517 (4)C2A···H2Ai3.4573
O2A···O3Avii3.381 (3)C3A···H2Ai3.4521
O2A···O3Biv3.482 (3)C3A···H4Aii3.4635
O2A···C4Avii3.469 (3)C3A···H5Aii3.4979
O2A···C10Aiv3.267 (3)C3A···H4B3.4446
O2A···C11Aiv3.170 (3)C4A···H5Aii3.4212
O2A···C14Avii3.148 (4)C5A···H3Aviii3.5531
O2A···C15Avii3.494 (4)C5A···H5Aii3.4644
O2A···C4Biv3.423 (3)C5A···H3Bvi3.4070
O2A···C14Biv3.130 (4)C7A···H6Aii3.4191
O2A···C15Biv3.347 (4)C7A···H6B3.5890
O3A···O1Aviii3.553 (3)C8A···H1Aii3.5566
O3A···O2Aviii3.381 (3)C9A···H1Aii3.5823
O3A···O2Bvi3.308 (3)C9A···H2Avii3.5341
O3A···C2Avi3.307 (3)C9A···H8Axii3.3639
O3A···C8Aviii3.330 (4)C9A···H2Biv3.2766
O3A···C13Aviii3.149 (4)C10A···H8Axii3.3066
O3A···C12Avi3.343 (3)C13A···H5Aiv3.5463
O3A···C13Bvi3.177 (4)C13A···H7Avii3.5091
O3A···C8Bvi3.454 (4)C13A···H8Avii3.5439
O1B···F1Bix3.300 (2)C13A···H7Biv3.5973
O1B···C1Bv3.429 (4)C13A···H9Biv3.2166
O1B···C7Bv3.534 (3)C14A···H1Avi3.5145
O2B···O3Ai3.308 (3)C14A···H6Avi3.4911
O2B···C4Ai3.257 (3)C15A···H4Axi3.0480
O2B···C14Ai3.015 (3)C15A···H7Axiii3.2645
O2B···C15Ai3.413 (4)C15A···H9Bxi3.3534
O2B···C12Bv3.515 (4)C1B···H6A3.3130
O2B···C11Bi3.259 (3)C2B···H2Bv3.5280
O2B···C10Bi3.341 (3)C2B···H2Biv3.4978
O3B···F1Bv3.548 (3)C3B···H4A3.4747
O3B···O2Aix3.482 (3)C3B···H5A3.5387
O3B···C8Aix3.473 (4)C3B···H1Biii3.5481
O3B···C13Aix3.282 (4)C3B···H2Bv3.3883
O3B···C2Bix3.413 (3)C3B···H2Biv3.4818
O3B···C14Bv3.380 (4)C4B···H5A3.3476
O3B···C12Bix3.420 (3)C5B···H3Aix3.3708
O3B···C15Bv3.526 (4)C5B···H5A3.2682
C1A···C11Aii3.572 (4)C6B···H5A3.4023
C1A···C12B3.478 (4)C6B···H6A3.4987
C1A···C12Aii3.366 (4)C14B···H8Bv3.5242
C2A···O3Ai3.307 (3)C7B···H1A3.5150
C2A···C10Aii3.558 (4)C7B···H6A3.3517
C2A···C11Aii3.360 (4)C12B···H8Biii3.5381
C2A···C12B3.570 (4)C11B···H5Bx3.2354
C2A···C11B3.412 (4)C11B···H4Bx3.3387
C2A···C10B3.481 (4)C10B···H1A3.4919
C2A···C12Aii3.491 (4)C10B···H5Bx3.0902
C3A···C10Aii3.408 (4)C10B···H7Bxi3.1932
C3A···C11Aii3.433 (4)C9B···H1A3.3449
C3A···C11B3.562 (4)C9B···H2Ai3.5370
C3A···C10B3.416 (4)C9B···H7Bxi3.3247
C4A···O2Aviii3.469 (3)C13B···H9Ai3.3158
C4A···O2Bvi3.257 (3)C15B···H9Axii3.3075
C5A···F1Avi3.404 (3)C15B···H4Bxii2.9956
C7A···C12Aii3.600 (4)C8B···H1A3.3457
C8A···O3Avii3.330 (4)C8B···H6A3.5852
C8A···O3Biv3.473 (4)H1A···O3Ai2.3615
C10A···F1Aii3.452 (4)H1A···C8Aii3.5566
C10A···F1B3.581 (4)H1A···C9Aii3.5823
C10A···O2Aix3.267 (3)H1A···C14Ai3.5145
C10A···C2Aii3.558 (4)H1A···C7B3.5150
C10A···C3Aii3.408 (4)H1A···C10B3.4919
C10A···C3B3.430 (4)H1A···C9B3.3449
C11A···O2Aix3.170 (3)H1A···C8B3.3457
C11A···C1Aii3.572 (4)H1A···H2Ai2.8209
C11A···C2Aii3.360 (4)H2A···F1Avi2.5325
C11A···C3Aii3.433 (4)H2A···C2Avi3.4573
C11A···C1B3.511 (4)H2A···C3Avi3.4521
C11A···C2B3.417 (4)H2A···C9Aviii3.5341
C11A···C3B3.468 (4)H2A···C9Bvi3.5370
C13A···O3Avii3.149 (4)H2A···H1Avi2.8209
C13A···O3Biv3.282 (4)H2A···H3Aviii3.2422
C13A···C14Avii3.318 (4)H2A···H3Bvi3.1616
C13A···C14Biv3.330 (4)H3A···C5Avii3.5531
C13A···C15Biv3.578 (4)H3A···C5Biv3.3708
C14A···O2Aviii3.148 (4)H3A···H2Avii3.2422
C14A···O2Bvi3.015 (3)H3A···H5Aiv2.7443
C14A···C13Aviii3.318 (4)H3A···H8Axii2.7692
C14A···C13Bvi3.296 (4)H3A···H2Biv2.9605
C15A···O1Aviii3.556 (4)H4A···F1Aii3.2972
C15A···O2Aviii3.494 (4)H4A···F1B3.4268
C15A···O2Bvi3.413 (4)H4A···O2Aix2.7044
C1B···O1Bv3.429 (4)H4A···C3Aii3.4635
C1B···C11A3.511 (4)H4A···C15Axii3.0480
C1B···C6Bv3.478 (4)H4A···C3B3.4747
C1B···C12A3.315 (4)H4A···H7Axii3.1032
C2B···F1Biii3.202 (3)H4A···H7Aii3.3081
C2B···O3Biv3.413 (3)H4A···H8Axii2.6554
C2B···C11A3.417 (4)H4A···H9Axii2.8826
C2B···C12A3.550 (4)H4A···H9B3.0698
C3B···F1Biii3.569 (3)H5A···O2Aix2.4943
C3B···C10A3.430 (4)H5A···C3Aii3.4979
C3B···C11A3.468 (4)H5A···C4Aii3.4212
C3B···C5Bv3.564 (4)H5A···C5Aii3.4644
C4B···O2Aix3.423 (3)H5A···C13Aix3.5463
C4B···C4Bv3.439 (4)H5A···C3B3.5387
C4B···C5Bv3.539 (4)H5A···C4B3.3476
C5B···F1Bix3.422 (3)H5A···C5B3.2682
C5B···C3Bv3.564 (4)H5A···C6B3.4023
C5B···C4Bv3.539 (4)H5A···H3Aix2.7443
C6B···C1Bv3.478 (4)H6A···O3Ai2.3950
C6B···C6Bv3.436 (4)H6A···C1Aii3.3663
C14B···O2Aix3.130 (4)H6A···C7Aii3.4191
C14B···O3Bv3.380 (4)H6A···C14Ai3.4911
C14B···C13Aix3.330 (4)H6A···C1B3.3130
C14B···C14Bv3.338 (4)H6A···C6B3.4987
C7B···O1Bv3.534 (3)H6A···C7B3.3517
C7B···C12A3.541 (3)H6A···C8B3.5852
C7B···C13Bv3.437 (4)H6A···H8Ai3.4894
C12B···O2Bv3.515 (4)H7A···O1Aviii3.4018
C12B···O3Biv3.420 (3)H7A···O2Aviii3.0891
C12B···C1A3.478 (4)H7A···C13Aviii3.5091
C12B···C2A3.570 (4)H7A···C15Axiii3.2645
C11B···O2Bvi3.259 (3)H7A···H4Axi3.1032
C11B···C2A3.412 (4)H7A···H4Aii3.3081
C11B···C3A3.562 (4)H7A···H7Axiii2.3789
C11B···C11Bx3.513 (4)H7A···H8Axiii3.4586
C11B···C10Bx3.568 (4)H7A···H9Bxi3.5311
C10B···F1A3.427 (4)H8A···O1Aviii3.1165
C10B···O2Bvi3.341 (3)H8A···O1Bvi3.4828
C10B···C2A3.481 (4)H8A···C9Axi3.3639
C10B···C3A3.416 (4)H8A···C10Axi3.3066
C10B···C11Bx3.568 (4)H8A···C13Aviii3.5439
C12A···O3Ai3.343 (3)H8A···H3Axi2.7692
C12A···C1Aii3.366 (4)H8A···H4Axi2.6554
C12A···C2Aii3.491 (4)H8A···H6Avi3.4894
C12A···C7Aii3.600 (4)H8A···H7Axiii3.4586
C12A···C1B3.315 (4)H9A···O1Bvi3.1774
C12A···C2B3.550 (4)H9A···O2Bvi2.8892
C12A···C7B3.541 (3)H9A···C13Bvi3.3158
C13B···O3Ai3.177 (4)H9A···C15Bxi3.3075
C13B···C14Ai3.296 (4)H9A···H4Axi2.8826
C13B···C7Bv3.437 (4)H9A···H8Bxi3.4545
C13B···C8Bv3.560 (4)H9A···H9Bxi2.4573
C15B···O1Aix3.517 (4)H1B···F1Biii2.7751
C15B···O2Aix3.347 (4)H1B···O3Biv2.4828
C15B···O3Bv3.526 (4)H1B···C3Biii3.5481
C15B···C13Aix3.578 (4)H1B···H2Biv2.8982
C8B···O3Ai3.454 (4)H1B···H8Biii3.3691
C8B···C13Bv3.560 (4)H2B···F1Bix2.5957
C8B···C8Bv3.491 (4)H2B···C9Aix3.2766
F1A···H1A2.4909H2B···C2Bv3.5280
F1A···H7A2.4029H2B···C2Bix3.4978
F1A···H9A2.6103H2B···C3Bv3.3883
F1B···H1B2.4933H2B···C3Bix3.4818
F1B···H8B2.3248H2B···H3Aix2.9605
F1B···H9B2.7313H2B···H1Bix2.8982
O1A···H2A2.4865H6B···O3Biv2.4851
O2A···H3A2.5592H6B···C1A3.5681
O3A···H2A2.4215H6B···C7A3.5890
O3A···H7A3.0157H6B···H8Biii2.8843
O3A···H8A2.4418H5B···O2Bvi2.6011
O3A···H9A2.9370H5B···C11Bx3.2354
O1B···H2B2.4889H5B···C10Bx3.0902
O2B···H3B2.5683H5B···H5Bx3.2248
O3B···H2B2.4589H5B···H4Bx2.9805
O3B···H7B2.4465H5B···H3Bvi2.7987
O3B···H8B2.9877H4B···F1A3.2409
O3B···H9B2.9789H4B···O2Bvi2.7742
C1A···H2A3.2801H4B···C3A3.4446
C1A···H6A2.7070H4B···C11Bx3.3387
C2A···H6A2.7263H4B···C15Bxi2.9956
C3A···H2A3.2398H4B···H5Bx2.9805
C3A···H7A2.9637H4B···H7Bxi2.4979
C3A···H9A3.1414H4B···H8Bxi2.8437
C4A···H1A3.2863H4B···H9Bxi3.1786
C4A···H7A2.7925H3B···C5Ai3.4070
C4A···H8A3.4078H3B···H2Ai3.1616
C4A···H9A2.8948H3B···H5Bi2.7987
C6A···H1A3.2511H3B···H3Bv3.5899
C7A···H1A2.7258H3B···H7Bxi2.7783
C7A···H3A3.2839H7B···O1Aix3.2290
C7A···H5A3.2698H7B···C13Aix3.5973
C8A···H4A3.2650H7B···C10Bxii3.1932
C8A···H6A3.2750H7B···C9Bxii3.3247
C9A···H5A3.2564H7B···H4Bxii2.4979
C10A···H6A3.2716H7B···H3Bxii2.7783
C11A···H3A3.2606H8B···O3Bv2.8952
C13A···H3A2.6106H8B···C14Bv3.5242
C14A···H2A2.6100H8B···C12Biii3.5381
C1B···H2B3.2806H8B···H9Axii3.4545
C1B···H6B2.7023H8B···H1Biii3.3691
C2B···H6B2.7078H8B···H6Biii2.8843
C3B···H2B3.2438H8B···H4Bxii2.8437
C3B···H8B2.9691H9B···F1Axii3.4807
C3B···H9B3.1384H9B···O1Aix3.1562
C4B···H1B3.2882H9B···O2Aix2.7803
C4B···H7B3.4063H9B···C13Aix3.2166
C4B···H8B2.8340H9B···C15Axii3.3534
C4B···H9B2.8334H9B···H4A3.0698
C6B···H1B3.2603H9B···H7Axii3.5311
C14B···H2B2.6109H9B···H9Axii2.4573
C7B···H1B2.7190H9B···H4Bxii3.1786
C7B···H5B3.2652
C6A—O1A—C13A122.05 (14)C1B—C7B—C8B118.13 (16)
C6B—O1B—C13B122.21 (15)C12B—C7B—C8B118.71 (18)
C2A—C1A—C6A117.24 (16)C7B—C12B—C11B120.18 (18)
C2A—C1A—C7A124.22 (16)C12B—C11B—C10B120.84 (19)
C6A—C1A—C7A118.54 (15)C11B—C10B—C9B120.14 (19)
C1A—C2A—C3A119.90 (17)C10B—C9B—C8B119.31 (18)
F1A—C3A—C2A117.02 (16)C7A—C12A—C11A120.21 (17)
F1A—C3A—C4A119.66 (16)O1B—C13B—O2B116.95 (17)
C2A—C3A—C4A123.32 (17)O1B—C13B—C8B117.28 (16)
C3A—C4A—C5A116.53 (16)O2B—C13B—C8B125.76 (18)
C3A—C4A—C14A125.70 (16)C7B—C8B—C9B120.82 (17)
C5A—C4A—C14A117.78 (16)C7B—C8B—C13B121.36 (17)
C4A—C5A—C6A120.66 (17)C9B—C8B—C13B117.82 (17)
O1A—C6A—C1A122.04 (16)C1A—C2A—H1A120.044
O1A—C6A—C5A115.62 (16)C3A—C2A—H1A120.053
C1A—C6A—C5A122.34 (16)C4A—C5A—H2A119.672
C1A—C7A—C8A118.28 (16)C6A—C5A—H2A119.667
C1A—C7A—C12A123.01 (16)C8A—C9A—H3A119.881
C8A—C7A—C12A118.70 (17)C10A—C9A—H3A119.871
C7A—C8A—C9A120.54 (17)C9A—C10A—H4A120.235
C7A—C8A—C13A120.99 (17)C11A—C10A—H4A120.235
C9A—C8A—C13A118.47 (17)C10A—C11A—H5A119.615
C8A—C9A—C10A120.25 (17)C12A—C11A—H5A119.611
C9A—C10A—C11A119.53 (18)C14A—C15A—H7A109.473
C10A—C11A—C12A120.77 (18)C14A—C15A—H8A109.469
O1A—C13A—O2A116.56 (17)C14A—C15A—H9A109.471
O1A—C13A—C8A118.09 (16)H7A—C15A—H8A109.473
O2A—C13A—C8A125.34 (18)H7A—C15A—H9A109.470
O3A—C14A—C4A118.58 (16)H8A—C15A—H9A109.470
O3A—C14A—C15A120.17 (16)C1B—C2B—H1B120.248
C4A—C14A—C15A121.25 (16)C3B—C2B—H1B120.241
C2B—C1B—C6B117.54 (17)C4B—C5B—H2B119.735
C2B—C1B—C7B123.51 (17)C6B—C5B—H2B119.726
C6B—C1B—C7B118.94 (17)C7B—C12B—H6B119.910
C1B—C2B—C3B119.51 (17)C11B—C12B—H6B119.911
F1B—C3B—C2B116.95 (16)C12B—C11B—H5B119.574
F1B—C3B—C4B119.61 (17)C10B—C11B—H5B119.585
C2B—C3B—C4B123.44 (17)C11B—C10B—H4B119.936
C3B—C4B—C5B116.74 (17)C9B—C10B—H4B119.926
C3B—C4B—C14B125.49 (17)C10B—C9B—H3B120.341
C5B—C4B—C14B117.76 (17)C8B—C9B—H3B120.351
C4B—C5B—C6B120.54 (17)C7A—C12A—H6A119.901
O1B—C6B—C1B122.04 (17)C11A—C12A—H6A119.891
O1B—C6B—C5B115.73 (16)C14B—C15B—H7B109.477
C1B—C6B—C5B122.23 (17)C14B—C15B—H8B109.477
O3B—C14B—C4B119.10 (17)C14B—C15B—H9B109.459
O3B—C14B—C15B120.32 (18)H7B—C15B—H8B109.474
C4B—C14B—C15B120.57 (16)H7B—C15B—H9B109.468
C1B—C7B—C12B123.16 (17)H8B—C15B—H9B109.472
C6A—O1A—C13A—O2A179.30 (15)O3A—C14A—C15A—H9A112.0
C6A—O1A—C13A—C8A1.3 (3)C4A—C14A—C15A—H7A51.9
C13A—O1A—C6A—C1A0.3 (3)C4A—C14A—C15A—H8A171.9
C13A—O1A—C6A—C5A179.78 (14)C4A—C14A—C15A—H9A68.1
C6B—O1B—C13B—O2B178.78 (14)C2B—C1B—C6B—O1B179.93 (14)
C6B—O1B—C13B—C8B1.9 (3)C2B—C1B—C6B—C5B0.4 (3)
C13B—O1B—C6B—C1B0.0 (3)C6B—C1B—C2B—C3B0.4 (3)
C13B—O1B—C6B—C5B179.59 (14)C6B—C1B—C2B—H1B179.6
C2A—C1A—C6A—O1A179.71 (15)C2B—C1B—C7B—C12B0.4 (3)
C2A—C1A—C6A—C5A0.9 (3)C2B—C1B—C7B—C8B179.50 (14)
C6A—C1A—C2A—C3A0.5 (3)C7B—C1B—C2B—C3B178.09 (14)
C6A—C1A—C2A—H1A179.5C7B—C1B—C2B—H1B1.9
C2A—C1A—C7A—C8A179.67 (14)C6B—C1B—C7B—C12B178.07 (14)
C2A—C1A—C7A—C12A1.0 (3)C6B—C1B—C7B—C8B1.0 (2)
C7A—C1A—C2A—C3A178.92 (14)C7B—C1B—C6B—O1B1.5 (3)
C7A—C1A—C2A—H1A1.1C7B—C1B—C6B—C5B178.91 (13)
C6A—C1A—C7A—C8A0.9 (3)C1B—C2B—C3B—F1B179.49 (14)
C6A—C1A—C7A—C12A178.41 (14)C1B—C2B—C3B—C4B0.8 (3)
C7A—C1A—C6A—O1A0.8 (3)H1B—C2B—C3B—F1B0.5
C7A—C1A—C6A—C5A178.61 (14)H1B—C2B—C3B—C4B179.2
C1A—C2A—C3A—F1A180.00 (15)F1B—C3B—C4B—C5B179.91 (13)
C1A—C2A—C3A—C4A0.2 (3)F1B—C3B—C4B—C14B1.6 (3)
H1A—C2A—C3A—F1A0.0C2B—C3B—C4B—C5B0.3 (3)
H1A—C2A—C3A—C4A179.8C2B—C3B—C4B—C14B178.12 (15)
F1A—C3A—C4A—C5A179.66 (14)C3B—C4B—C5B—C6B0.4 (3)
F1A—C3A—C4A—C14A0.4 (3)C3B—C4B—C5B—H2B179.6
C2A—C3A—C4A—C5A0.5 (3)C3B—C4B—C14B—O3B164.33 (17)
C2A—C3A—C4A—C14A179.39 (16)C3B—C4B—C14B—C15B16.6 (3)
C3A—C4A—C5A—C6A0.2 (3)C5B—C4B—C14B—O3B14.1 (3)
C3A—C4A—C5A—H2A179.8C5B—C4B—C14B—C15B164.96 (15)
C3A—C4A—C14A—O3A178.88 (17)C14B—C4B—C5B—C6B179.01 (14)
C3A—C4A—C14A—C15A1.3 (3)C14B—C4B—C5B—H2B1.0
C5A—C4A—C14A—O3A1.2 (3)C4B—C5B—C6B—O1B179.62 (15)
C5A—C4A—C14A—C15A178.62 (15)C4B—C5B—C6B—C1B0.8 (3)
C14A—C4A—C5A—C6A179.75 (15)H2B—C5B—C6B—O1B0.4
C14A—C4A—C5A—H2A0.3H2B—C5B—C6B—C1B179.2
C4A—C5A—C6A—O1A179.99 (15)O3B—C14B—C15B—H7B0.9
C4A—C5A—C6A—C1A0.5 (3)O3B—C14B—C15B—H8B120.9
H2A—C5A—C6A—O1A0.0O3B—C14B—C15B—H9B119.1
H2A—C5A—C6A—C1A179.5C4B—C14B—C15B—H7B180.0
C1A—C7A—C8A—C9A179.62 (13)C4B—C14B—C15B—H8B60.0
C1A—C7A—C8A—C13A0.1 (3)C4B—C14B—C15B—H9B60.0
C1A—C7A—C12A—C11A179.45 (13)C1B—C7B—C12B—C11B178.81 (14)
C1A—C7A—C12A—H6A0.6C1B—C7B—C12B—H6B1.2
C8A—C7A—C12A—C11A0.1 (3)C1B—C7B—C8B—C9B179.09 (13)
C8A—C7A—C12A—H6A179.9C1B—C7B—C8B—C13B0.8 (3)
C12A—C7A—C8A—C9A0.3 (3)C12B—C7B—C8B—C9B0.1 (3)
C12A—C7A—C8A—C13A179.41 (14)C12B—C7B—C8B—C13B179.99 (14)
C7A—C8A—C9A—C10A0.1 (3)C8B—C7B—C12B—C11B0.3 (3)
C7A—C8A—C9A—H3A179.9C8B—C7B—C12B—H6B179.7
C7A—C8A—C13A—O1A1.2 (3)C7B—C12B—C11B—C10B0.2 (3)
C7A—C8A—C13A—O2A179.49 (16)C7B—C12B—C11B—H5B179.8
C9A—C8A—C13A—O1A178.53 (15)H6B—C12B—C11B—C10B179.8
C9A—C8A—C13A—O2A0.8 (3)H6B—C12B—C11B—H5B0.2
C13A—C8A—C9A—C10A179.54 (15)C12B—C11B—C10B—C9B0.1 (3)
C13A—C8A—C9A—H3A0.5C12B—C11B—C10B—H4B179.9
C8A—C9A—C10A—C11A0.1 (3)H5B—C11B—C10B—C9B179.9
C8A—C9A—C10A—H4A179.9H5B—C11B—C10B—H4B0.1
H3A—C9A—C10A—C11A179.9C11B—C10B—C9B—C8B0.4 (3)
H3A—C9A—C10A—H4A0.1C11B—C10B—C9B—H3B179.6
C9A—C10A—C11A—C12A0.2 (3)H4B—C10B—C9B—C8B179.6
C9A—C10A—C11A—H5A179.7H4B—C10B—C9B—H3B0.4
H4A—C10A—C11A—C12A179.8C10B—C9B—C8B—C7B0.3 (3)
H4A—C10A—C11A—H5A0.2C10B—C9B—C8B—C13B179.66 (15)
C10A—C11A—C12A—C7A0.1 (3)H3B—C9B—C8B—C7B179.7
C10A—C11A—C12A—H6A179.9H3B—C9B—C8B—C13B0.4
H5A—C11A—C12A—C7A179.9O1B—C13B—C8B—C7B2.3 (3)
H5A—C11A—C12A—H6A0.1O1B—C13B—C8B—C9B177.64 (13)
O3A—C14A—C15A—H7A128.0O2B—C13B—C8B—C7B178.43 (16)
O3A—C14A—C15A—H8A8.0O2B—C13B—C8B—C9B1.6 (3)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x+1, y+1, z; (iv) x, y+1, z1/2; (v) x+1, y, z+1/2; (vi) x, y+2, z1/2; (vii) x+1/2, y1/2, z1/2; (viii) x+1/2, y+1/2, z1/2; (ix) x, y+1, z+1/2; (x) x+1, y+2, z; (xi) x, y+1, z; (xii) x, y1, z; (xiii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC15H9FO3
Mr256.23
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)26.005 (19), 13.169 (4), 13.297 (8)
β (°) 98.02 (6)
V3)4509 (5)
Z16
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.34 × 0.25
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6119, 5160, 3534
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.01
No. of reflections5160
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

This work was partly supported by Grants-in-Aid (No. 24590141 to YI) for Scientific Research from the Japan Society for the Promotion of Science. We acknowledge the University of Shizuoka for instrumental support, and thank Professor Kei Manabe (University of Shizuoka, Japan) for helpful discussions.

References

First citationBringmann, G. & Menche, D. (2001). Acc. Chem. Res. 34, 615–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDasari, S., Bhadbhade, M. & Neilan, B. A. (2012). Acta Cryst. E68, o1471.  CSD CrossRef IUCr Journals Google Scholar
First citationDias, A., Bouvier, D., Crépin, T., McCarthy, A. A., Hart, D. J., Baudin, F., Cusack, S. & Ruigrok, R. W. (2009). Nature, 458, 914–918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221–225.  CrossRef PubMed Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobinson, P. D., Hua, D. H., Roche, D. & Saha, S. (1991). Acta Cryst. C47, 2490–2492.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, W., Cama, L. D., Birzin, E. T., Warrier, S., Locco, L., Mosley, R., Hammond, M. L. & Rohrer, S. P. (2006). Bioorg. Med. Chem. Lett. 16, 1468–1472.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o470-o471
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds