organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o413-o414

4-tert-Butyl­pyridinium chloride–4,4′-(propane-2,2-di­yl)bis­­(2,6-di­methyl­phenol)–toluene (2/2/1)

aChemistry, Institute of Natural and Mathematical Sciences, Massey University at Albany, PO Box 102904, North Shore Mail Centre, Auckland, New Zealand
*Correspondence e-mail: a.j.nielson@massey.ac.nz

(Received 5 December 2013; accepted 3 March 2014; online 12 March 2014)

In the title solvated salt, C9H14N+·Cl·C19H24O2·0.5C7H7, two mol­ecules of 4,4′-(propane-2,2-di­yl)bis­(2,6-di­methyl­phenol) are linked via O—H⋯Cl hydrogen bonds to two chloride ions, each of which is also engaged in N—H⋯Cl hydrogen bonding to a 4-tert-butyl­pyridinium cation, giving a cyclic hydrogen-bonded entity centred at 1/2, 1/2, 1/2. The toluene solvent mol­ecule resides in the lattice and resides on an inversion centre; the disorder of the methyl group requires it to have a site-occupancy factor of 0.5. No crystal packing channels are observed.

Related literature

For general background to hydrogen-bond structural information, see: Hamilton & Ibers (1968[Hamilton, W. C. & Ibers, J. I. (1968). Hydrogen Bonding in Solids, p. 16. New York: W. A. Benjamin.]). For hydrogen bonding between phenols and nitro­gen bases, see: Coupar et al. (1997[Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521-533.]); Steiner et al. (2000[Steiner, T., Wilson, C. C. & Majerz, I. (2000). Chem. Commun. pp. 1231-1232.]). For hydrogen bonding in phenol mol­ecules, see: Prout et al. (1988[Prout, K., Fail, J., Jones, R. M., Warner, R. E. & Emmett, J. C. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 265-284.]); Ziemer & Surygina, (2000[Ziemer, B. & Surygina, O. (2000). Acta Cryst. C56, e528.]). For the structure of a related bis-phenol mol­ecule, see: Okada (1996[Okada, K. (1996). J. Mol. Struct. 380, 223-233.]). For hydrogen bonds between pyridinium hydro­chloride and OH-containing mol­ecules, see: Sykora & Cioffi (2007[Sykora, R. E. & Cioffi, E. A. (2007). Acta Cryst. E63, o3148-o3149.]); Hossain et al. (1988[Hossain, M. A., Rahman, M. T., Rasul, G., Hursthouse, M. B. & Hussain, B. (1988). Acta Cryst. C44, 1318-1320.]). For structural data pertaining to pyridinium hydro­halides, see: Faber et al. (1999[Faber, A., Lemke, A., Spangenberg, B. & Bolte, M. (1999). Acta Cryst. C55, IUC9900156/1-3.]); Hensen et al. (1988[Hensen, K., Pullman, P. & Bats, J. W. (1988). Z. Anorg. Allg. Chem. 556, 62-69.]); Mootz & Hocken (1989[Mootz, D. & Hocken, J. (1989). Z. Naturforsch. Teil B, 44, 1239-1246.]); van de Streek et al. (2010[Streek, J. van de, Neumanna, M. A. & Perrin, M.-A. (2010). CrystEngComm, 12, 3827-3833.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N+·Cl·C19H24O2·0.5C7H7

  • Mr = 501.60

  • Monoclinic, P 21 /n

  • a = 13.5656 (9) Å

  • b = 14.3215 (9) Å

  • c = 15.787 (1) Å

  • β = 112.186 (1)°

  • V = 2840.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 150 K

  • 0.39 × 0.28 × 0.02 mm

Data collection
  • Siemens SMART diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.700, Tmax = 0.821

  • 14535 measured reflections

  • 4989 independent reflections

  • 3253 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.114

  • S = 1.08

  • 4989 reflections

  • 379 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N20—H20⋯Cl 1.06 (4) 1.98 (4) 3.035 (3) 173 (3)
O2—H2⋯Cli 0.85 (3) 2.30 (3) 3.079 (2) 153 (3)
O1—H1⋯Cl 0.90 (4) 2.27 (4) 3.118 (2) 157 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1995[Siemens (1995). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Experimental top

Synthesis and crystallization top

The title compound crystallized from toluene as very thin colourless plates from the reaction between TiCl4 and 4,4'-(propane-2,2-diyl)bis­(2,6-di­methyl­phenol) in the presence of 4-tert-butyl­pyridine.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms (except H1 and H2) were placed in calculated positions and in the refinement allowed to ride on the C atoms to which they were attached. H1 and H2 were located from a difference map and their positions were then allowed to ride on their oxygen atoms. All H atoms were assigned fixed isotropic thermal parameters. Disorder was associated with tert-butyl substituent on the pyridinium ion and two alternative positions were found for this group with site occupancy factors of 0.62 and 0.38. Both were refined as a rigid group. A half-weighted molecule of toluene disordered across a centre of symmetry was identified in the asymmetric unit. The numbering system used for the diphenol and pyridinium moieties is indicated in figure 1, where the linking of the moities via the chloride ion is shown.

Results and discussion top

As part of a study into the reactions of TiCl4 with various phenols in the presence of pyridines, crystals of the title compound were isolated from a toluene solution. X-ray structural analysis revealed two molecules of (CH3)2C(C6H2Me2OH)2 linked together by hydrogen bonds to 2 chloride ions which in turn are further linked to two 4-tert-butyl pyridinium-H ions about a centre of symmetry to form a ring of atoms (Figure 1). No Ti atom was present. Distances of 3.118 (2) and 3.079 (2) Å were observed for Cl···O1 and Cl···O2 respectively. The H contact distances and O–H···Cl angles observed were 2.27 (4) Å, 157 (3) ° and 2.30 (3) Å, 153 (3) ° for H1 and H2, respectively. The Cl is also H-bound to H20 of the pyridinium-H ion with Cl···N20 and Cl···H20 approaches of 3.035 (3) and 1.98 (4) Å respectively. The angle N20–H20···Cl is 173 (3) °. These distances are typical of such H-bonded distances as described elsewhere (Hamilton & Ibers, 1968). H-bonds between N bases and phenolic moieties are not uncommon (Coupar et al. 1997) and the inter­action is often strong (Steiner et al. 2000). However a Cl ion linking a phenol and an ammine hydro­cloride as occurs in the title compound has apparently not been observed before. A single link between pyridinium hydro­chloride and the OH hydrogen of tri­phenyl­methanol has been observed (Sykora & Cioffi, 2007) as has a similar link with the OH group of 1,1,3,3-tetra­phenyl-1,3-disiloxanediol (Hossain et al. 1988).

The N20 to Cl separation for the 4-tert-butyl­pyridinium hydro­chloride in the present compound [3.035 (3) Å] compares with that found for 4-methyl­pyridinium hydro­chloride itself at 2.999 (2) Å, 2.981 (4) Å in 3-methyl­pyridinium hydro­chloride and 3.162 (2) Å in 4-methyl­pyridinium hydro­bromide (Faber et al. 1999). Taking into account the imprecise positioning of hydrogen atoms in X-ray crystal structures, in the latter three compounds the N—H···Cl bond angles are 180 °, 177 (5)° [and 165 (5) °] and 173 (3) ° whereas in the present compound this angle is 173 (3) °. For (C6H5)3COH·C5H6N+·Cl- the N to Cl separation is 3.008 (2) Å and the N—H···Cl bond angle is 169 ° (Sykora & Cioffi, 2007). It is noted here that for pyridinium hydro­chloride itself two polymorphs found by crystallography (Hensen et al. 1988; Mootz & Hocken, 1989) have been substanti­ated by dispersion-corrected density functional theory calculations (van de Streek et al. 2010).

The O to Cl separations in the title compound are 3.079 (2) and 3.118 (2) Å and these compare with 3.134 (1) Å in (C6H5)3COH·C5H6N+·Cl- (Sykora & Cioffi, 2007). The C1–O1 bond length in the present compound [1.382 (3) Å] is not significantly different from the C15–O2 bond length [1.378 (3) Å] at the opposite end of the bis-phenol. In comparison, 2,4,6-tri­methyl­phenol which is structurally similar to the phenolic portion of the present molecule but contains a hydrogen bonded O—H···OH system, has a C–O bond length of 1.386 (2) Å (Ziemer & Surygina, 2000). 2,6-Diiso­propyl­phenol which also has a hydrogen bonded O—H···OH system has C–O bond lengths of 1.480 (7) Å (C—O—H···O section) and 1.382 (8) Å (C—O···H section) (Prout et al. 1988).

The chlorines in the present lattice form a pyramidal structure in the inter­actions with their 3 H-bonded neighbours (Figure 2). Angles are 118, 79 and 69 ° for O1···Cl···O2, O1···Cl···N20 and O2···Cl···N20 respectively and 117, 82 and 76 ° for H1···Cl···H2, H1···Cl···H20 and H2···Cl···H20 respectively. Within the phenolic moiety and the pyrdinium-H ion bond distances and angles are unremarkable. The two phenyl rings of the former (C1—C6 and C12—C17) are inclined to one another at an angle of 84.78 (8) °, a value which is similar to the values reported [86.9 (2), 83.6 (2) and 79.2 (2) °] for the three independent molecules in the asymmetric unit of (CH3)2C(C6H4OH)2 (bisphenol A) (Okada, 1996). Two disordered sites were found for the terminal tertiary butyl substitiuent on the pyridinium-H group. Toluene solvent molecules occupy space between the H-bound units in the crystal lying across centres of symmetry. No close approaches of this solvent to the other molecules are observed. The crystal packing shows that no channels are developed in the overall structure.

Related literature top

For general background to hydrogen-bond structural distances, see: Hamilton & Ibers (1968). For hydrogen bonding between phenols and nitrogen bases, see: Coupar et al. (1997); Steiner et al. (2000). For hydrogen bonding in phenol molecules, see: Prout et al. (1988); Ziemer & Surygina, (2000). For the structure of a related bis-phenol molecule, see: Okada (1996). For hydrogen bonds between pyridinium hydrochloride and OH-containing molecules, see: Sykora & Cioffi (2007); Hossain et al. (1988). For structural data pertaining to pyridinium hydrohalides, see: Faber et al. (1999); Hensen et al. (1988); Mootz & Hocken (1989); van de Streek et al. (2010).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound showing the numbering system and the H-bonding network. H not involved in this bonding have been omitted for reasons of clarity. Note also that only one of the disordered toluene methyl substituents has been included. Thermal ellipsoids have been drawn at the 50% probability level.
[Figure 2] Fig. 2. Edge-on ORTEP diagram showing the pyramidal structure about the Cl ions
4-tert-Butylpyridinium chloride–4,4'-(propane-2,2-diyl)bis(2,6-dimethylphenol)–toluene (2/2/1) top
Crystal data top
C9H14N+·Cl·C19H24O2·0.5C7H7F(000) = 1082
Mr = 501.60Dx = 1.173 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7233 reflections
a = 13.5656 (9) Åθ = 2.0–25.1°
b = 14.3215 (9) ŵ = 0.16 mm1
c = 15.787 (1) ÅT = 150 K
β = 112.186 (1)°Thin plate, colourless
V = 2840.0 (3) Å30.39 × 0.28 × 0.02 mm
Z = 4
Data collection top
Siemens SMART
diffractometer
4989 independent reflections
Radiation source: fine-focus sealed tube3253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
area–detector ω scanθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1610
Tmin = 0.700, Tmax = 0.821k = 1715
14535 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0296P)2 + 1.4177P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.009
4989 reflectionsΔρmax = 0.22 e Å3
379 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (5)
Crystal data top
C9H14N+·Cl·C19H24O2·0.5C7H7V = 2840.0 (3) Å3
Mr = 501.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5656 (9) ŵ = 0.16 mm1
b = 14.3215 (9) ÅT = 150 K
c = 15.787 (1) Å0.39 × 0.28 × 0.02 mm
β = 112.186 (1)°
Data collection top
Siemens SMART
diffractometer
4989 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3253 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.821Rint = 0.053
14535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.22 e Å3
4989 reflectionsΔρmin = 0.20 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N200.5777 (2)0.96003 (16)0.67143 (17)0.0415 (6)
Cl0.37477 (6)0.87567 (5)0.53461 (4)0.0384 (2)
O10.52861 (16)0.85019 (13)0.43127 (13)0.0406 (5)
C10.5296 (2)0.78792 (17)0.36475 (17)0.0305 (6)
C20.4550 (2)0.71593 (17)0.33306 (17)0.0306 (6)
C30.4654 (2)0.65504 (17)0.26836 (17)0.0305 (6)
H30.41580.60530.24690.037*
C40.5451 (2)0.66375 (17)0.23373 (17)0.0299 (6)
C50.6164 (2)0.73712 (17)0.26655 (17)0.0339 (6)
H50.67120.74490.24350.041*
C60.6106 (2)0.79978 (17)0.33215 (18)0.0329 (6)
C70.3669 (2)0.70383 (19)0.36795 (19)0.0400 (7)
H7A0.32090.65200.33550.060*
H7B0.32490.76140.35750.060*
H7C0.39750.69020.43360.060*
C80.6908 (2)0.8769 (2)0.3682 (2)0.0464 (8)
H8A0.73960.87660.33550.070*
H8B0.73130.86740.43370.070*
H8C0.65390.93710.35880.070*
C90.5473 (2)0.59489 (17)0.15972 (17)0.0331 (6)
C100.4500 (2)0.61622 (19)0.07168 (17)0.0428 (7)
H10A0.45260.68150.05420.064*
H10B0.38450.60540.08270.064*
H10C0.45110.57530.02230.064*
C110.6480 (2)0.60593 (19)0.13774 (19)0.0430 (7)
H11A0.71120.59970.19410.064*
H11B0.64780.66760.11090.064*
H11C0.64900.55750.09420.064*
C120.5458 (2)0.49417 (17)0.19209 (16)0.0271 (6)
C130.6213 (2)0.46605 (17)0.27644 (17)0.0289 (6)
H130.66880.51140.31410.035*
C140.62964 (19)0.37446 (17)0.30749 (16)0.0275 (6)
C150.5596 (2)0.30877 (17)0.25142 (17)0.0289 (6)
C160.4806 (2)0.33380 (17)0.16800 (17)0.0284 (6)
C170.4755 (2)0.42643 (17)0.14003 (16)0.0276 (6)
H170.42200.44410.08330.033*
C180.7107 (2)0.34792 (18)0.40014 (17)0.0355 (7)
H18A0.75880.30040.39270.053*
H18B0.67420.32290.43820.053*
H18C0.75190.40330.42970.053*
C190.4016 (2)0.26264 (18)0.11083 (18)0.0381 (7)
H19A0.37310.22740.14970.057*
H19B0.43700.21970.08310.057*
H19C0.34320.29450.06260.057*
O20.56282 (16)0.21611 (12)0.27588 (14)0.0407 (5)
C210.5685 (2)0.9709 (2)0.7521 (2)0.0462 (8)
H210.50920.94470.76180.055*
C220.6438 (2)1.01925 (19)0.8208 (2)0.0420 (7)
H220.63671.02580.87810.050*
C230.7310 (2)1.05919 (17)0.80820 (18)0.0324 (6)
C240.7377 (2)1.04480 (18)0.72336 (19)0.0374 (7)
H240.79671.06910.71200.045*
C250.6597 (2)0.99569 (19)0.65561 (19)0.0424 (7)
H250.66460.98730.59760.051*
C260.8127 (2)1.11584 (19)0.88468 (19)0.0408 (7)
C270.8489 (7)1.0589 (5)0.9743 (5)0.067 (3)0.619 (7)
H27A0.78671.04240.98850.100*0.619 (7)
H27B0.89821.09641.02430.100*0.619 (7)
H27C0.88471.00180.96700.100*0.619 (7)
C280.7510 (4)1.2038 (3)0.9005 (4)0.0549 (19)0.619 (7)
H28A0.79991.24250.94950.082*0.619 (7)
H28B0.69231.18280.91770.082*0.619 (7)
H28C0.72241.24040.84400.082*0.619 (7)
C290.9038 (5)1.1479 (5)0.8648 (4)0.070 (2)0.619 (7)
H29A0.94961.18700.91530.105*0.619 (7)
H29B0.87871.18430.80810.105*0.619 (7)
H29C0.94441.09380.85780.105*0.619 (7)
C300.8223 (8)1.2143 (6)0.8482 (7)0.069 (4)0.381 (7)
H30A0.87071.25240.89810.104*0.381 (7)
H30B0.75201.24380.82370.104*0.381 (7)
H30C0.85041.20890.79950.104*0.381 (7)
C310.8037 (13)1.1145 (11)0.9700 (8)0.104 (7)0.381 (7)
H31A0.86241.15011.01410.156*0.381 (7)
H31B0.80651.04980.99100.156*0.381 (7)
H31C0.73571.14260.96470.156*0.381 (7)
C320.9270 (7)1.0667 (8)0.8952 (7)0.073 (4)0.381 (7)
H32A0.92701.00130.91340.109*0.381 (7)
H32B0.98571.09990.94200.109*0.381 (7)
H32C0.93611.06980.83660.109*0.381 (7)
C410.3686 (5)0.8541 (4)0.9056 (4)0.0463 (15)0.50
H41A0.29660.86510.90390.069*0.50
H41B0.39580.79500.93720.069*0.50
H41C0.36670.85080.84300.069*0.50
C420.4352 (3)0.9272 (3)0.9523 (3)0.0648 (11)
C430.4328 (3)1.0136 (3)0.9105 (3)0.0702 (11)
H430.38631.02270.84860.084*
C440.5031 (3)0.9144 (3)1.0423 (3)0.0699 (11)
H440.50540.85591.07140.084*
H200.511 (3)0.927 (2)0.622 (2)0.092 (12)*
H20.593 (3)0.208 (2)0.333 (2)0.078 (12)*
H10.477 (3)0.842 (3)0.453 (3)0.099 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N200.0395 (15)0.0352 (14)0.0404 (15)0.0018 (12)0.0044 (13)0.0008 (11)
Cl0.0462 (4)0.0377 (4)0.0290 (4)0.0071 (3)0.0116 (3)0.0025 (3)
O10.0424 (12)0.0351 (11)0.0439 (12)0.0056 (9)0.0160 (10)0.0110 (9)
C10.0322 (15)0.0251 (14)0.0295 (15)0.0055 (12)0.0064 (12)0.0006 (12)
C20.0269 (14)0.0276 (14)0.0339 (15)0.0018 (12)0.0077 (12)0.0022 (12)
C30.0317 (15)0.0253 (14)0.0302 (14)0.0028 (12)0.0068 (12)0.0008 (11)
C40.0343 (15)0.0258 (14)0.0281 (14)0.0027 (12)0.0103 (12)0.0048 (11)
C50.0360 (16)0.0313 (15)0.0348 (16)0.0003 (13)0.0139 (13)0.0028 (13)
C60.0321 (15)0.0275 (14)0.0342 (15)0.0002 (12)0.0069 (13)0.0015 (12)
C70.0374 (17)0.0352 (16)0.0476 (18)0.0033 (13)0.0163 (14)0.0082 (13)
C80.0418 (18)0.0444 (18)0.0527 (19)0.0125 (15)0.0174 (15)0.0088 (15)
C90.0410 (16)0.0316 (15)0.0288 (14)0.0016 (13)0.0154 (13)0.0004 (12)
C100.059 (2)0.0350 (16)0.0285 (15)0.0023 (15)0.0094 (14)0.0037 (13)
C110.059 (2)0.0370 (17)0.0422 (17)0.0069 (14)0.0301 (15)0.0006 (13)
C120.0317 (14)0.0270 (14)0.0266 (14)0.0015 (12)0.0154 (12)0.0001 (11)
C130.0254 (14)0.0324 (15)0.0275 (14)0.0024 (12)0.0085 (12)0.0045 (12)
C140.0266 (14)0.0306 (14)0.0251 (13)0.0009 (12)0.0097 (11)0.0002 (12)
C150.0320 (15)0.0267 (14)0.0288 (14)0.0008 (12)0.0122 (12)0.0009 (11)
C160.0283 (14)0.0285 (14)0.0285 (14)0.0017 (12)0.0108 (12)0.0037 (11)
C170.0280 (14)0.0324 (15)0.0218 (13)0.0024 (12)0.0089 (11)0.0015 (11)
C180.0333 (15)0.0319 (15)0.0341 (15)0.0006 (12)0.0046 (12)0.0006 (12)
C190.0379 (16)0.0365 (16)0.0341 (16)0.0034 (13)0.0069 (13)0.0035 (13)
O20.0527 (13)0.0278 (11)0.0323 (12)0.0025 (9)0.0053 (10)0.0012 (9)
C210.0412 (18)0.0473 (19)0.052 (2)0.0104 (15)0.0204 (16)0.0086 (16)
C220.0415 (17)0.0466 (18)0.0400 (17)0.0110 (15)0.0177 (14)0.0086 (14)
C230.0287 (15)0.0292 (14)0.0366 (16)0.0022 (12)0.0093 (13)0.0041 (12)
C240.0367 (16)0.0351 (16)0.0416 (17)0.0004 (13)0.0160 (14)0.0060 (13)
C250.054 (2)0.0356 (17)0.0353 (17)0.0034 (15)0.0147 (15)0.0055 (13)
C260.0346 (16)0.0393 (17)0.0404 (17)0.0090 (14)0.0051 (13)0.0003 (14)
C270.074 (6)0.055 (4)0.040 (4)0.011 (3)0.014 (3)0.004 (3)
C280.049 (3)0.041 (3)0.060 (4)0.002 (3)0.004 (3)0.016 (3)
C290.052 (4)0.093 (6)0.068 (4)0.038 (4)0.025 (3)0.024 (4)
C300.062 (7)0.044 (6)0.073 (7)0.004 (5)0.007 (6)0.003 (5)
C310.115 (14)0.155 (17)0.045 (7)0.097 (13)0.032 (9)0.043 (11)
C320.042 (6)0.060 (7)0.086 (8)0.008 (5)0.009 (5)0.008 (6)
C410.040 (4)0.054 (4)0.046 (4)0.009 (3)0.017 (3)0.002 (3)
C420.047 (2)0.058 (2)0.105 (3)0.0047 (18)0.047 (2)0.027 (2)
C430.053 (2)0.080 (3)0.093 (3)0.005 (2)0.044 (2)0.017 (2)
C440.054 (2)0.070 (3)0.099 (3)0.004 (2)0.045 (2)0.012 (2)
Geometric parameters (Å, º) top
N20—C251.331 (4)C19—H19A0.9800
N20—C211.335 (4)C19—H19B0.9800
N20—Cl3.035 (3)C19—H19C0.9800
N20—H201.06 (4)O2—H20.85 (3)
Cl—H201.98 (4)C21—C221.365 (4)
Cl—H12.27 (4)C21—H210.9500
O1—C11.382 (3)C22—C231.394 (4)
O1—H10.90 (4)C22—H220.9500
C1—C61.389 (4)C23—C241.392 (4)
C1—C21.398 (3)C23—C261.528 (4)
C2—C31.390 (3)C24—C251.379 (4)
C2—C71.502 (4)C24—H240.9500
C3—C41.389 (4)C25—H250.9500
C3—H30.9500C26—C311.398 (12)
C4—C51.389 (3)C26—C291.459 (6)
C4—C91.538 (3)C26—C271.544 (8)
C5—C61.395 (4)C26—C301.547 (9)
C5—H50.9500C26—C281.584 (6)
C6—C81.504 (3)C26—C321.653 (10)
C7—H7A0.9800C27—H27A0.9800
C7—H7B0.9800C27—H27B0.9800
C7—H7C0.9800C27—H27C0.9800
C8—H8A0.9800C28—H28A0.9800
C8—H8B0.9800C28—H28B0.9800
C8—H8C0.9800C28—H28C0.9800
C9—C121.533 (3)C29—H29A0.9800
C9—C111.539 (4)C29—H29B0.9800
C9—C101.543 (4)C29—H29C0.9800
C10—H10A0.9800C30—H30A0.9800
C10—H10B0.9800C30—H30B0.9800
C10—H10C0.9800C30—H30C0.9800
C11—H11A0.9800C31—H31A0.9800
C11—H11B0.9800C31—H31B0.9800
C11—H11C0.9800C31—H31C0.9800
C12—C171.391 (3)C32—H32A0.9800
C12—C131.398 (3)C32—H32B0.9800
C13—C141.390 (3)C32—H32C0.9800
C13—H130.9500C41—C421.398 (6)
C14—C151.391 (3)C41—H41A0.9800
C14—C181.510 (3)C41—H41B0.9800
C15—O21.378 (3)C41—H41C0.9800
C15—C161.395 (3)C42—C441.383 (5)
C16—C171.392 (3)C42—C431.398 (5)
C16—C191.507 (3)C43—C44i1.373 (5)
C17—H170.9500C43—H430.9500
C18—H18A0.9800C44—C43i1.373 (5)
C18—H18B0.9800C44—H440.9500
C18—H18C0.9800
C25—N20—C21121.4 (3)C16—C19—H19C109.5
C25—N20—Cl128.1 (2)H19A—C19—H19C109.5
C21—N20—Cl109.82 (19)H19B—C19—H19C109.5
C25—N20—H20125 (2)C15—O2—H2113 (2)
C21—N20—H20113 (2)N20—C21—C22120.4 (3)
H20—Cl—H182.2 (14)N20—C21—H21119.8
C1—O1—H1116 (2)C22—C21—H21119.8
O1—C1—C6116.0 (2)C21—C22—C23121.0 (3)
O1—C1—C2122.3 (2)C21—C22—H22119.5
C6—C1—C2121.6 (2)C23—C22—H22119.5
C3—C2—C1117.7 (2)C24—C23—C22116.4 (2)
C3—C2—C7120.8 (2)C24—C23—C26123.2 (2)
C1—C2—C7121.5 (2)C22—C23—C26120.5 (2)
C4—C3—C2122.9 (2)C25—C24—C23120.8 (3)
C4—C3—H3118.6C25—C24—H24119.6
C2—C3—H3118.6C23—C24—H24119.6
C5—C4—C3117.2 (2)N20—C25—C24120.0 (3)
C5—C4—C9123.9 (2)N20—C25—H25120.0
C3—C4—C9118.9 (2)C24—C25—H25120.0
C4—C5—C6122.5 (3)C31—C26—C29126.9 (6)
C4—C5—H5118.8C31—C26—C23116.9 (5)
C6—C5—H5118.8C29—C26—C23114.7 (3)
C1—C6—C5118.1 (2)C29—C26—C27111.2 (5)
C1—C6—C8120.7 (2)C23—C26—C27109.2 (3)
C5—C6—C8121.2 (3)C31—C26—C30115.0 (8)
C2—C7—H7A109.5C29—C26—C3055.7 (5)
C2—C7—H7B109.5C23—C26—C30109.1 (4)
H7A—C7—H7B109.5C27—C26—C30141.3 (5)
C2—C7—H7C109.5C31—C26—C2867.4 (8)
H7A—C7—H7C109.5C29—C26—C28109.0 (4)
H7B—C7—H7C109.5C23—C26—C28106.1 (3)
C6—C8—H8A109.5C27—C26—C28106.2 (4)
C6—C8—H8B109.5C30—C26—C2857.2 (5)
H8A—C8—H8B109.5C31—C26—C32108.5 (8)
C6—C8—H8C109.5C29—C26—C3246.9 (4)
H8A—C8—H8C109.5C23—C26—C32103.1 (4)
H8B—C8—H8C109.5C27—C26—C3273.8 (5)
C12—C9—C4110.1 (2)C30—C26—C32102.6 (6)
C12—C9—C11107.2 (2)C28—C26—C32148.7 (4)
C4—C9—C11112.3 (2)C26—C27—H27A109.5
C12—C9—C10111.8 (2)C26—C27—H27B109.5
C4—C9—C10107.6 (2)C26—C27—H27C109.5
C11—C9—C10107.9 (2)C26—C28—H28A109.5
C9—C10—H10A109.5C26—C28—H28B109.5
C9—C10—H10B109.5C26—C28—H28C109.5
H10A—C10—H10B109.5C26—C29—H29A109.5
C9—C10—H10C109.5C26—C29—H29B109.5
H10A—C10—H10C109.5C26—C29—H29C109.5
H10B—C10—H10C109.5C26—C30—H30A109.5
C9—C11—H11A109.5C26—C30—H30B109.5
C9—C11—H11B109.5H30A—C30—H30B109.5
H11A—C11—H11B109.5C26—C30—H30C109.5
C9—C11—H11C109.5H30A—C30—H30C109.5
H11A—C11—H11C109.5H30B—C30—H30C109.5
H11B—C11—H11C109.5C26—C31—H31A109.5
C17—C12—C13117.0 (2)C26—C31—H31B109.5
C17—C12—C9123.5 (2)H31A—C31—H31B109.5
C13—C12—C9119.4 (2)C26—C31—H31C109.5
C14—C13—C12122.7 (2)H31A—C31—H31C109.5
C14—C13—H13118.6H31B—C31—H31C109.5
C12—C13—H13118.6C26—C32—H32A109.5
C13—C14—C15117.9 (2)C26—C32—H32B109.5
C13—C14—C18120.8 (2)H32A—C32—H32B109.5
C15—C14—C18121.3 (2)C26—C32—H32C109.5
O2—C15—C14122.1 (2)H32A—C32—H32C109.5
O2—C15—C16116.3 (2)H32B—C32—H32C109.5
C14—C15—C16121.6 (2)C42—C41—H41A109.5
C17—C16—C15118.2 (2)C42—C41—H41B109.5
C17—C16—C19121.0 (2)H41A—C41—H41B109.5
C15—C16—C19120.7 (2)C42—C41—H41C109.5
C12—C17—C16122.4 (2)H41A—C41—H41C109.5
C12—C17—H17118.8H41B—C41—H41C109.5
C16—C17—H17118.8C44—C42—C41119.3 (4)
C14—C18—H18A109.5C44—C42—C43119.4 (4)
C14—C18—H18B109.5C41—C42—C43121.3 (5)
H18A—C18—H18B109.5C44i—C43—C42120.8 (4)
C14—C18—H18C109.5C44i—C43—H43119.6
H18A—C18—H18C109.5C42—C43—H43119.6
H18B—C18—H18C109.5C43i—C44—C42119.9 (4)
C16—C19—H19A109.5C43i—C44—H44120.1
C16—C19—H19B109.5C42—C44—H44120.1
H19A—C19—H19B109.5
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20···Cl1.06 (4)1.98 (4)3.035 (3)173 (3)
O2—H2···Clii0.85 (3)2.30 (3)3.079 (2)153 (3)
O1—H1···Cl0.90 (4)2.27 (4)3.118 (2)157 (3)
Symmetry code: (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20···Cl1.06 (4)1.98 (4)3.035 (3)173 (3)
O2—H2···Cli0.85 (3)2.30 (3)3.079 (2)153 (3)
O1—H1···Cl0.90 (4)2.27 (4)3.118 (2)157 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to Ms Tanya Groutso of the University of Auckland for the data collection.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521–533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFaber, A., Lemke, A., Spangenberg, B. & Bolte, M. (1999). Acta Cryst. C55, IUC9900156/1-3.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamilton, W. C. & Ibers, J. I. (1968). Hydrogen Bonding in Solids, p. 16. New York: W. A. Benjamin.  Google Scholar
First citationHensen, K., Pullman, P. & Bats, J. W. (1988). Z. Anorg. Allg. Chem. 556, 62–69.  CSD CrossRef CAS Web of Science Google Scholar
First citationHossain, M. A., Rahman, M. T., Rasul, G., Hursthouse, M. B. & Hussain, B. (1988). Acta Cryst. C44, 1318–1320.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMootz, D. & Hocken, J. (1989). Z. Naturforsch. Teil B, 44, 1239–1246.  CAS Google Scholar
First citationOkada, K. (1996). J. Mol. Struct. 380, 223–233.  CSD CrossRef CAS Web of Science Google Scholar
First citationProut, K., Fail, J., Jones, R. M., Warner, R. E. & Emmett, J. C. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 265–284.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SAINT and SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSteiner, T., Wilson, C. C. & Majerz, I. (2000). Chem. Commun. pp. 1231–1232.  Web of Science CSD CrossRef Google Scholar
First citationStreek, J. van de, Neumanna, M. A. & Perrin, M.-A. (2010). CrystEngComm, 12, 3827–3833.  Google Scholar
First citationSykora, R. E. & Cioffi, E. A. (2007). Acta Cryst. E63, o3148–o3149.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZiemer, B. & Surygina, O. (2000). Acta Cryst. C56, e528.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o413-o414
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds