metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m142-m143

Poly[di­ammonium [di­aqua­(μ7-benzene-1,2,3,4,5,6-hexa­carboxyl­ato)tetra­oxido­diuranium(VI)]]

aDepartment of Chemistry, The George Washington University, 725 21st St NW, Washington, DC 20052, USA
*Correspondence e-mail: cahill@gwu.edu

(Received 17 December 2013; accepted 18 March 2014; online 22 March 2014)

Uranyl-carboxyl­ate hybrid materials dominate the catalog of uranyl compounds owing in part to the affinity between COO functional groups and UO22+. Polycarboxyl­ate organic ligands may present a degree of steric hindrance and could thus influence the resulting uranyl topology. Single crystals of the title compound, {(NH4)2[(UO2)2(C12O12)(H2O)2]}n, were synthesized hydro­thermally as a result of reacting uranyl nitrate with benzene-1,2,3,4,5,6-hexa­carb­oxy­lic acid (mellitic acid). The structure is comprised of a single unique monomeric uranyl cation adopting a penta­gonal bipyramidal geometry. The uranyl coordination sphere is composed of four O atoms originating from one half of a fully deprotonated mellitic acid ligand and a single water mol­ecule. The observed axial U—O bonds display an average distance of 1.765 (8) Å, whereas equatorial O atoms are found at an average distance of 2.40 (5) Å. All uranium–oxygen bond lengths are in good agreement with literature values. Furthermore, the coordin­ation between the uranyl penta­gonal bipyramids and the mellitic acid anion constructs a three-dimensional anionic framework which is charge-balanced with ammonium cations. Additional stabilization of the structure is provided by O—H⋯O and N—H⋯O hydrogen bonding inter­actions between the components.

Related literature

The background literature for uranyl aromatic, carboxyl­ate coordination polymers is extensive: Go et al. (2007[Go, Y. B., Wang, X. & Jacobson, A. J. (2007). Inorg. Chem. 46, 6594-6600.]); Andrews & Cahill (2012[Andrews, M. B. & Cahill, C. L. (2012). Chem. Rev. 113, 1121-1136.]); Frisch & Cahill (2006[Frisch, M. & Cahill, C. L. (2006). Dalton Trans. pp. 4679-4690.]); Rowland & Cahill (2010[Rowland, C. E. & Cahill, C. L. (2010). Inorg. Chem. 49, 6716-6724.]); Couston et al. (1995[Couston, L., Pouyat, D., Moulin, C. & Decambox, P. (1995). Appl. Spectrosc. 49, 349-353.]); Severance et al. (2011[Severance, R. C., Vaughn, S. A., Smith, M. D. & zur Loye, H.-C. (2011). Solid State Sci. 13, 1344-1353.]); Mihalcea et al. (2012[Mihalcea, I., Volkringer, C., Henry, N. & Loiseau, T. (2012). Inorg. Chem. 51, 9610-9618.]); Thuery (2009[Thuery, P. (2009). CrystEngComm, 11, 1150-1156.]); Leciejewicz et al. (1995[Leciejewicz, J., Alcock, N. & Kemp, T. J. (1995). Coordination Chemistry - Structure and Bonding, Vol. 82, pp. 43-84. Berlin, Heidelberg: Springer.]). For related uranyl mellitic complexes, see: Volkringer et al. (2012[Volkringer, C., Henry, N., Grandjean, S. & Loiseau, T. (2012). J. Am. Chem. Soc. 134, 1275-1283.]). For f-block homo- and heterometallic mellitic acid compounds, see: Li et al. (2006[Li, Z.-F., Wang, C.-X., Wang, P. & Zhang, Q.-H. (2006). Acta Cryst. E62, m914-m915.]); Tang et al. (2008[Tang, X., Yue, S., Li, P., Wang, N. & Liu, Y. (2008). J. Rare Earths, 26, 800-803.]); Taylor et al. (2008[Taylor, K. M. L., Jin, A. & Lin, W. (2008). Angew. Chem. Int. Ed. 47, 7722-7725.]); Chui et al. (2001[Chui, S. S. Y., Siu, A., Feng, X., Ying Zhang, Z., Mak, T. C. W. & Williams, I. D. (2001). Inorg. Chem. Commun. 4, 467-470.]); Han et al. (2012[Han, Y., Fu, L., Mafra, L. & Shi, F.-N. (2012). J. Solid State Chem. 186, 165-170.]); Mihalcea et al. (2012[Mihalcea, I., Volkringer, C., Henry, N. & Loiseau, T. (2012). Inorg. Chem. 51, 9610-9618.]); Volkringer et al. (2012[Volkringer, C., Henry, N., Grandjean, S. & Loiseau, T. (2012). J. Am. Chem. Soc. 134, 1275-1283.]). For typical U=O bond lengths, see: Burns (2005[Burns, P. C. (2005). Can. Mineral. 43, 1839-1894.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)2[(UO2)2(C12O12)(H2O)2]

  • Mr = 948.29

  • Monoclinic, P 21 /c

  • a = 8.0083 (4) Å

  • b = 10.2948 (6) Å

  • c = 11.7481 (6) Å

  • β = 99.733 (1)°

  • V = 954.62 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 17.05 mm−1

  • T = 100 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.467, Tmax = 0.746

  • 18160 measured reflections

  • 2912 independent reflections

  • 2398 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.035

  • S = 1.04

  • 2698 reflections

  • 178 parameters

  • All H-atom parameters refined

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H6⋯O4i 0.74 (5) 2.02 (5) 2.700 (3) 152 (5)
O9—H5⋯O6ii 0.91 (6) 1.88 (5) 2.744 (3) 158 (4)
O9—H5⋯O7 0.91 (6) 2.38 (5) 2.884 (3) 115 (4)
N1—H3⋯O2iii 0.81 (5) 2.12 (5) 2.908 (4) 165 (5)
N1—H1⋯O5iv 0.85 (4) 2.36 (4) 2.990 (4) 131 (3)
N1—H1⋯O6v 0.85 (4) 2.29 (4) 2.905 (4) 130 (3)
N1—H4⋯O7 0.94 (5) 1.94 (5) 2.851 (4) 162 (5)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2009[CrystalMaker (2009). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.]) and ORTEP-3 (Burnett & Johnson 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The portfolio of uranyl hybrid materials displays diverse architectures, which may be attributed to the modification of synthetic parameters, especially varying the organic ligand. The literature provides prior studies focused on the reaction of the uranyl cation with a series of related organic ligands, typically decorated with carboxylate functional groups, in order to observe an influence on overall topology. The position of carboxylic acids on an aromatic ligand, such as those on mellitic acid, allows one to investigate the steric influence of multiple functional groups on the local and the global architecture of a UO22+ hybrid material. Indeed, other f-block homo- and heterometallic mellitic acid compounds have been reported in the literature. Li et al., (2006); Tang et al., (2008); Taylor et al., (2008); Chui et al., (2001); Han et al., (2012); Mihalcea et al., (2012); Volkringer et al., (2012).

The title coordination polymer was synthesized hydrothermally and contains a pentagonal monomer (U1) of the uranyl mellitic hybrid material contains typical U=O axial bond distances to O1 and O2 (1.760 (2) and 1.771 (2) Å, respectively) Burns (2005). Three mellitic acid molecules bind to U1: O3 and O8 bond in a monodentate fashion, while O4 and O5 participate in a pseudo-bidentate mode. An oxygen atom (O9) from a water molecule completes the local coordination sphere of U1 yielding a distance of 2.452 (2) Å. The rotation of carboxylate functional groups are a direct consequence of sterics within (NH4)2[(UO2)2(C12O12)(H2O)2]. The proximity of adjacent carboxylate groups O5—C6—O6 and O4—C1—O3 located on the benzene ring prompts a rotation of these functional groups (yielding torsion angles of 50.62° and 67.27°, respectively), thus connecting both to U1 while O4—C1—O3 further bonds to U1i. Similarly, O8ii—C5ii—O7ii bonds to U1ii and extends the formation of channels along the [100] direction as seen in Figure 2.

Related literature top

The background literature for uranyl aromatic, carboxylate coordination polymers is extensive: Go et al. (2007); Andrews & Cahill (2012); Frisch & Cahill (2006); Rowland & Cahill (2010); Couston et al. (1995); Severance et al. (2011); Mihalcea et al. (2012); Thuery (2009); Leciejewicz et al. (1995). For related uranyl mellitic complexes, see: Volkringer et al. (2012). For f-block homo- and heterometallic mellitic acid compounds, see: Li et al. (2006); Tang et al. (2008); Taylor et al. (2008); Chui et al. (2001); Han et al. (2012); Mihalcea et al. (2012); Volkringer et al. (2012). For typical U=O bond lengths, see: Burns (2005). Scheme - The scheme should show the correct repeating unit in brackets, i.e. either the asymmetric unit or (better) one mellitic acid anion, two uranyl units (with water molecules) and two ammonium cations. When doing so, the carboxylate groups should be shown with delocalised bonds. Furthermore, all O atoms of the ligand should have bonds outside the bracket; this is also true for all O atoms (except water and uranyl) of the pentagonal bipyramid.

Experimental top

Caution! Whereas the uranium oxynitrate hexahydrate, (UO2)(NO3)2·H2O, used in this investigation contains depleted uranium, standard precautions for handling radioactive substances should be followed. Uranium nitrate was recrystallized from a mixture of uranyl nitrate and uranyl oxide dissolved in concentrated nitric acid. Powder X-ray diffraction confirmed the formation of uranium oxinitrate hexahydrate. (PDF-#27–0936). Mellitic acid was commercially available and used without any further purification. Uranium oxynitrate hexahydrate (0.146 g, 0.29 mmol), mellitic acid (0.050 g, 0.14 mmol), and deionized water (1.5 ml, 83.2 mmol) were placed into a 23 ml Teflon-lined Parr bomb. Concentrated ammonium hydroxide was used to adjust the pH (pHi = 4.38). The vessel was sealed and heated statically at 150°C for three days. Yellow prismatic crystals were obtained. Phase purity was confirmed via powder X-ray diffraction data patterns. Calculated and observed elemental analysis results (Galbraith Laboratories, Knoxville, Tennessee, USA) of 1 agreed, confirming the contents of the material [observed (calculated): C 1.47% (1.51%), H < 0.5% (0.10%), N < 0.5% (0.25%)].

Refinement top

The hydrogen atoms on ammonium and water molecules were located in a difference Fourier map. No hydrogen atoms were located within bonding distance of oxygen atoms O6 and O7 and there was no attempt to calculate positions of riding H atoms on these two oxygen sites. Residual electron density surroudning U1 is noted and the deepest hole is 1.02 Å from U1. This may be considered an artifact of the heavy atom site.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2009) and ORTEP-3 (Burnett & Johnson 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The ORTEP representation of an asymmetric unit of (NH4)2[(UO2)2(C12O12)(H2O)2]. The ellipsoids are shown at the 50% level and the hydrogen atoms have been removed for clarity. [Symmetry codes: (i) x,-y + 3/2,z - 1/2; (ii) x,-y + 3/2,z + 1/2; (iii) -x,-y + 1,-z + 1; (iv) -x + 1,y + 1/2,-z + 1/2; and (v) -x + 1,y - 1/2,-z + 1/2].
[Figure 2] Fig. 2. Polyhedral representation of the channels down the [100] in 1. Yellow polyhedra represent uranium atoms; and red spheres, oxygen atoms. Hydrogen atoms and charge balancing NH4 molecules have been removed for clarity.
Poly[diammonium [diaqua(µ7-benzene-1,2,3,4,5,6-hexacarboxylato)tetraoxidodiuranium(VI)]] top
Crystal data top
(NH4)2[(UO2)2(C12O12)(H2O)2]F(000) = 852
Mr = 948.29Dx = 3.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 18686 reflections
a = 8.0083 (4) Åθ = 7.0–60.6°
b = 10.2948 (6) ŵ = 17.05 mm1
c = 11.7481 (6) ÅT = 100 K
β = 99.733 (1)°Rods, yellow
V = 954.62 (9) Å30.4 × 0.3 × 0.2 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2912 independent reflections
Radiation source: fine-focus sealed tube2398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 30.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 118
Tmin = 0.467, Tmax = 0.746k = 1414
18160 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.035All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0125P)2 + 1.2966P]
where P = (Fo2 + 2Fc2)/3
2698 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
(NH4)2[(UO2)2(C12O12)(H2O)2]V = 954.62 (9) Å3
Mr = 948.29Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0083 (4) ŵ = 17.05 mm1
b = 10.2948 (6) ÅT = 100 K
c = 11.7481 (6) Å0.4 × 0.3 × 0.2 mm
β = 99.733 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2912 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2398 reflections with I > 2σ(I)
Tmin = 0.467, Tmax = 0.746Rint = 0.036
18160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.035All H-atom parameters refined
S = 1.04Δρmax = 1.02 e Å3
2698 reflectionsΔρmin = 0.98 e Å3
178 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.412520 (13)0.721169 (10)0.152007 (9)0.00526 (4)
O10.5032 (3)0.5786 (2)0.10655 (18)0.0103 (4)
O20.3232 (3)0.8648 (2)0.19911 (18)0.0091 (4)
O30.2643 (3)0.6031 (2)0.28641 (18)0.0082 (4)
O50.1465 (3)0.6550 (2)0.05335 (18)0.0083 (4)
O40.3585 (3)0.7973 (2)0.04722 (18)0.0096 (4)
O80.6415 (3)0.8435 (2)0.10897 (18)0.0112 (4)
O90.6149 (3)0.7076 (2)0.3302 (2)0.0125 (5)
O70.8885 (3)0.7764 (2)0.21059 (19)0.0112 (4)
O60.1157 (3)0.6646 (2)0.04255 (18)0.0093 (4)
C10.2569 (4)0.6268 (3)0.3903 (2)0.0065 (6)
C20.1216 (4)0.5613 (3)0.4453 (2)0.0050 (5)
C30.0179 (4)0.6342 (3)0.5063 (2)0.0054 (5)
C50.8015 (4)0.8427 (3)0.1337 (2)0.0069 (5)
C40.1018 (4)0.4272 (3)0.4383 (2)0.0064 (6)
C60.0162 (4)0.7181 (3)0.0055 (2)0.0065 (5)
N10.8845 (4)0.5051 (3)0.1615 (3)0.0107 (5)
H10.852 (5)0.507 (4)0.089 (4)0.022 (11)*
H20.980 (6)0.463 (4)0.185 (4)0.031 (13)*
H30.813 (6)0.468 (4)0.190 (4)0.030 (13)*
H40.905 (6)0.590 (5)0.190 (4)0.035 (13)*
H60.571 (6)0.706 (4)0.381 (4)0.031 (14)*
H50.716 (7)0.748 (5)0.355 (4)0.041 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00418 (6)0.00674 (6)0.00524 (5)0.00009 (4)0.00189 (4)0.00013 (4)
O10.0106 (11)0.0116 (11)0.0092 (10)0.0035 (9)0.0032 (8)0.0001 (8)
O20.0094 (11)0.0093 (11)0.0096 (10)0.0007 (8)0.0045 (8)0.0028 (8)
O30.0085 (11)0.0096 (10)0.0069 (10)0.0019 (8)0.0023 (8)0.0015 (8)
O50.0059 (10)0.0079 (10)0.0106 (10)0.0008 (8)0.0001 (8)0.0004 (8)
O40.0090 (11)0.0132 (11)0.0073 (10)0.0058 (8)0.0034 (8)0.0035 (8)
O80.0062 (11)0.0136 (11)0.0141 (11)0.0020 (9)0.0027 (8)0.0039 (9)
O90.0083 (12)0.0229 (14)0.0068 (11)0.0051 (10)0.0026 (9)0.0000 (9)
O70.0112 (11)0.0108 (11)0.0118 (11)0.0005 (9)0.0029 (9)0.0057 (9)
O60.0091 (11)0.0083 (10)0.0103 (10)0.0009 (9)0.0011 (8)0.0003 (9)
C10.0055 (14)0.0061 (14)0.0081 (13)0.0026 (11)0.0014 (11)0.0018 (10)
C20.0024 (13)0.0100 (14)0.0027 (12)0.0001 (11)0.0005 (10)0.0005 (10)
C30.0047 (13)0.0054 (13)0.0055 (13)0.0001 (10)0.0005 (10)0.0001 (10)
C50.0099 (14)0.0047 (13)0.0074 (13)0.0004 (11)0.0056 (11)0.0023 (11)
C40.0040 (14)0.0094 (14)0.0061 (13)0.0015 (11)0.0016 (10)0.0001 (11)
C60.0062 (14)0.0082 (14)0.0065 (13)0.0007 (11)0.0048 (10)0.0005 (11)
N10.0113 (15)0.0110 (14)0.0108 (14)0.0006 (11)0.0045 (11)0.0019 (11)
Geometric parameters (Å, º) top
U1—O11.760 (2)O6—C61.240 (4)
U1—O21.771 (2)C1—O4ii1.269 (4)
U1—O52.348 (2)C1—C21.510 (4)
U1—O82.349 (2)C2—C41.391 (4)
U1—O92.425 (2)C2—C31.402 (4)
U1—O42.437 (2)C3—C4iii1.397 (4)
U1—O32.452 (2)C3—C6ii1.520 (4)
O3—C11.256 (4)C5—C4iv1.514 (4)
O5—C61.276 (4)C4—C3iii1.397 (4)
O4—C1i1.269 (3)C4—C5v1.514 (4)
O8—C51.264 (4)C6—C3i1.520 (4)
O7—C51.247 (4)
O1—U1—O2179.34 (10)C6—O5—U1132.53 (19)
O1—U1—O589.70 (9)C1i—O4—U1138.25 (19)
O2—U1—O590.90 (9)C5—O8—U1138.1 (2)
O1—U1—O890.27 (9)O3—C1—O4ii123.4 (3)
O2—U1—O889.48 (9)O3—C1—C2119.0 (3)
O5—U1—O8136.52 (7)O4ii—C1—C2117.6 (2)
O1—U1—O987.94 (9)C4—C2—C3119.3 (3)
O2—U1—O991.41 (9)C4—C2—C1120.1 (3)
O5—U1—O9145.87 (8)C3—C2—C1120.6 (3)
O8—U1—O977.55 (8)C4iii—C3—C2120.5 (3)
O1—U1—O489.55 (8)C4iii—C3—C6ii116.7 (2)
O2—U1—O490.93 (8)C2—C3—C6ii122.5 (3)
O5—U1—O467.67 (7)O7—C5—O8126.2 (3)
O8—U1—O468.85 (7)O7—C5—C4iv116.3 (3)
O9—U1—O4146.29 (8)O8—C5—C4iv117.5 (3)
O1—U1—O392.95 (9)C2—C4—C3iii120.1 (3)
O2—U1—O386.99 (8)C2—C4—C5v122.6 (3)
O5—U1—O371.12 (7)C3iii—C4—C5v117.2 (3)
O8—U1—O3152.22 (7)O6—C6—O5123.0 (3)
O9—U1—O375.01 (8)O6—C6—C3i117.0 (3)
O4—U1—O3138.70 (7)O5—C6—C3i120.0 (3)
C1—O3—U1129.60 (19)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H6···O4ii0.74 (5)2.02 (5)2.700 (3)152 (5)
O9—H5···O6vi0.91 (6)1.88 (5)2.744 (3)158 (4)
O9—H5···O70.91 (6)2.38 (5)2.884 (3)115 (4)
N1—H3···O2v0.81 (5)2.12 (5)2.908 (4)165 (5)
N1—H1···O5vii0.85 (4)2.36 (4)2.990 (4)131 (3)
N1—H1···O6viii0.85 (4)2.29 (4)2.905 (4)130 (3)
N1—H4···O70.94 (5)1.94 (5)2.851 (4)162 (5)
Symmetry codes: (ii) x, y+3/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+1, y+3/2, z+1/2; (vii) x+1, y+1, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H6···O4i0.74 (5)2.02 (5)2.700 (3)152 (5)
O9—H5···O6ii0.91 (6)1.88 (5)2.744 (3)158 (4)
O9—H5···O70.91 (6)2.38 (5)2.884 (3)115 (4)
N1—H3···O2iii0.81 (5)2.12 (5)2.908 (4)165 (5)
N1—H1···O5iv0.85 (4)2.36 (4)2.990 (4)131 (3)
N1—H1···O6v0.85 (4)2.29 (4)2.905 (4)130 (3)
N1—H4···O70.94 (5)1.94 (5)2.851 (4)162 (5)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1, y, z.
 

Acknowledgements

The study was funded by the Office of Basic Energy Sciences of the US Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center (grant No. DE-SC0001089).

References

First citationAndrews, M. B. & Cahill, C. L. (2012). Chem. Rev. 113, 1121–1136.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationBurns, P. C. (2005). Can. Mineral. 43, 1839–1894.  Web of Science CrossRef CAS Google Scholar
First citationChui, S. S. Y., Siu, A., Feng, X., Ying Zhang, Z., Mak, T. C. W. & Williams, I. D. (2001). Inorg. Chem. Commun. 4, 467–470.  Web of Science CSD CrossRef CAS Google Scholar
First citationCouston, L., Pouyat, D., Moulin, C. & Decambox, P. (1995). Appl. Spectrosc. 49, 349–353.  CrossRef CAS Web of Science Google Scholar
First citationCrystalMaker (2009). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. & Cahill, C. L. (2006). Dalton Trans. pp. 4679–4690.  Web of Science CSD CrossRef Google Scholar
First citationGo, Y. B., Wang, X. & Jacobson, A. J. (2007). Inorg. Chem. 46, 6594–6600.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHan, Y., Fu, L., Mafra, L. & Shi, F.-N. (2012). J. Solid State Chem. 186, 165–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeciejewicz, J., Alcock, N. & Kemp, T. J. (1995). Coordination Chemistry – Structure and Bonding, Vol. 82, pp. 43–84. Berlin, Heidelberg: Springer.  Google Scholar
First citationLi, Z.-F., Wang, C.-X., Wang, P. & Zhang, Q.-H. (2006). Acta Cryst. E62, m914–m915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMihalcea, I., Volkringer, C., Henry, N. & Loiseau, T. (2012). Inorg. Chem. 51, 9610–9618.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRowland, C. E. & Cahill, C. L. (2010). Inorg. Chem. 49, 6716–6724.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSeverance, R. C., Vaughn, S. A., Smith, M. D. & zur Loye, H.-C. (2011). Solid State Sci. 13, 1344–1353.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, X., Yue, S., Li, P., Wang, N. & Liu, Y. (2008). J. Rare Earths, 26, 800–803.  CSD CrossRef Google Scholar
First citationTaylor, K. M. L., Jin, A. & Lin, W. (2008). Angew. Chem. Int. Ed. 47, 7722–7725.  Web of Science CSD CrossRef CAS Google Scholar
First citationThuery, P. (2009). CrystEngComm, 11, 1150–1156.  CAS Google Scholar
First citationVolkringer, C., Henry, N., Grandjean, S. & Loiseau, T. (2012). J. Am. Chem. Soc. 134, 1275–1283.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m142-m143
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds