organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)carbonohydrazide methanol 0.47-solvate

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté de Medecine, de Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Senegal, and cDépartement de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Mauritania
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 11 February 2014; accepted 2 March 2014; online 12 March 2014)

In the title compound, C17H18N4O5·0.47CH3OH, the virtually planar (r.m.s. deviation = 0.128 Å) carbonohydrazide mol­ecule is located on a twofold axis and conformation of its C=N bonds is E. There are short intra­molecular O—H⋯N hydrogen bonds between the hy­droxy groups and hydrazide N atoms. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds assemble the carbonohydrazide mol­ecules into a three-dimensional network. There are C2 symmetric voids in this network, 47% of which are occupied by disordered methanol mol­ecules.

Related literature

For related structures, see: Du & Zhang (2010[Du, L. & Zhang, W. (2010). Acta Cryst. E66, o2645.]); He et al. (2010[He, Q.-P., Tan, B. & Lu, Z.-H. (2010). Acta Cryst. E66, o2968.]); Kong et al. (2010[Kong, L., Qiao, Y., Gao, Z. & Ju, X. (2010). Acta Cryst. E66, o2901.]). For the biological activity of carbonohydrazides, see: Bacchi et al. (1999[Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, C., Pelizzi, G. & Zani, F. (1999). J. Inorg. Biochem. 75, 123-133.]); El-Gammal et al. (2012[El-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E. & Radwan, A. H. (2012). J. Mol. Struct. 1020, 6-15.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4O5·0.47CH4O

  • Mr = 373.40

  • Orthorhombic, F d d 2

  • a = 9.4470 (7) Å

  • b = 17.5850 (9) Å

  • c = 22.8714 (12) Å

  • V = 3799.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.1 × 0.08 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9573 measured reflections

  • 862 independent reflections

  • 658 reflections with I > 2σ(I)

  • Rint = 0.105

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.25

  • 862 reflections

  • 146 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.91 (5) 1.86 (5) 2.703 (5) 152 (5)
N2—H2N⋯O3i 0.94 (6) 2.38 (5) 3.044 (6) 128 (4)
N2—H2N⋯O1i 0.94 (6) 2.33 (6) 3.204 (6) 155 (4)
Symmetry code: (i) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick,2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbonohydrazide derivatives give rise to a large spectrum of biological properties such as antioxidant (El-Gammal et al., 2012) and anticancer activities (Bacchi et al., 1999). We report here the crystal structure of the title compound synthesized according to literature (He et al., 2010; Du et al., 2010). All parameters are within normal ranges and comparable with the related structures (Kong et al., 2010).

The molecular structure of the title compound is shown in Fig. 1. The complete carbonohydrazide molecule is generated by a twofold crystallographic axis passing throuth the atoms C8 and O2. A three-center O···(N)H···O intermolecular hydrogen bond involving the amido H atoms and the phenoxo and methoxy O atoms is observed (Fig. 2). There are voids in a three dimensional network containing solvent methanol molecules. Only one methanol molecule can be accommodated in a small void that has C2 symmetry. This leads to disorder of methanol molecules. In addition refinement of occupancy factors of methanol O and C atoms converged at 0.234 (1), indicating that 47% of voids are occupied by the solvent.

Related literature top

For related structures, see: Du & Zhang (2010); He et al. (2010); Kong et al. (2010). For the biological activity of carbonohydrazides, see: Bacchi et al. (1999); El-Gammal et al. (2012).

Experimental top

In a round bottomed flask, carbonohydrazide (1.0 g, 11.11 mmol) was introduced with methanol (10 ml). o-Vanillin (3.3 g, 22.22 mmol) dissolved in 10 ml of the same solvent was added. Two drops of glacial acetic acid were added while stirring. After one hour under reflux, the precipitate formed that after cooling to room temperature was filtered off and washed with cold methanol. The resulting solid was dried in air. The filtrate was left at room temperature. Slow evaporation of the solvent gave colorless crystals after one day. Yield: 95%; m.p. 378 K. Anal. Calc. for [C17H18N4O5] (%): C, 56.98; H, 5.06, N, 15.63. Found: C, 56.96; H, 5.04; N, 15.60. Selected IR data (cm-1, KBr pellet): 3291, 2942, 1696, 1553, 1200, 1167. 1H-NMR (DMSO-d6) δ: 3.8 (s, 6H, O—CH3); 6.7 – 7.1 (m, 6H, HAromatic); 8.5 (s, 2H, H—CN); 7.3 (s, 1H, H—N); 11 (s, 2H, H—O) p.p.m. 13C-NMR (DMSO-d6) d: 151.8 (CO); 147.8, 146.1, 119.5, 119.4, 118.8, 112.8 (CAromatic); 58,7 (–O—CH3).

Refinement top

H atoms of the NH and OH groups were located in the Fourier difference maps and refined without restraints. Otherg H atoms were geometrically optimized and refined as riding on their carriers with Uiso(H) = 1.2Ueq(C)(1.5 for CH3 groups). Considerable disorder was detected for the solvent methanol molecule. The occupancy factor of the C and O atoms of methanol refined at 0.234 (1). Thus, there are 0.46 methanol molecules per one carbonohydrazide molecule in the crystal. Owing to a negligible anomalous dispersion effect the Friedel pairs were merged and the absolute structure was not determined.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level. Only one position of the disordered solvent methanol molecule is shown for clarity. The symmetry code for generating primed atoms is 2-x,-y,z
[Figure 2] Fig. 2. Intramoleculr and intermolecular hydrogen bonds. Solvent methanol molecules are omitted as they do not form hydrogen bonds.
1,5-Bis(2-hydroxy-3-methoxybenzylidene)carbonohydrazide methanol 0.47-solvate top
Crystal data top
C17H18N4O5·0.47CH4OF(000) = 1571.4
Mr = 373.40Dx = 1.306 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 25 reflections
a = 9.4470 (7) Åθ = 11–15°
b = 17.5850 (9) ŵ = 0.10 mm1
c = 22.8714 (12) ÅT = 293 K
V = 3799.5 (4) Å3Prismatic, colorless
Z = 80.1 × 0.08 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.105
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.6°
Graphite monochromatorh = 1111
non–profiled ω/2θ scansk = 120
9573 measured reflectionsl = 2727
862 independent reflections2 standard reflections every 120 min
658 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0306P)2 + 5.2614P]
where P = (Fo2 + 2Fc2)/3
862 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C17H18N4O5·0.47CH4OV = 3799.5 (4) Å3
Mr = 373.40Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 9.4470 (7) ŵ = 0.10 mm1
b = 17.5850 (9) ÅT = 293 K
c = 22.8714 (12) Å0.1 × 0.08 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.105
9573 measured reflections2 standard reflections every 120 min
862 independent reflections intensity decay: 2%
658 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.25Δρmax = 0.17 e Å3
862 reflectionsΔρmin = 0.19 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6805 (4)0.1635 (2)0.02775 (15)0.0559 (10)
O21.00000.00000.0525 (2)0.0641 (14)
O30.4920 (4)0.2637 (2)0.00424 (17)0.0680 (12)
N10.8123 (4)0.0896 (2)0.11591 (18)0.0471 (10)
N20.9127 (5)0.0436 (2)0.1418 (2)0.0533 (11)
C10.6048 (5)0.1974 (3)0.0728 (2)0.0459 (12)
C20.5016 (5)0.2512 (3)0.0560 (2)0.0512 (13)
C30.4200 (5)0.2864 (3)0.0996 (3)0.0567 (14)
H30.35050.32110.08880.068*
C40.4409 (5)0.2704 (3)0.1594 (3)0.0595 (15)
H40.38560.29460.18740.071*
C50.5434 (5)0.2189 (3)0.1765 (2)0.0528 (13)
H50.55800.20870.21590.063*
C60.6269 (5)0.1813 (3)0.1329 (2)0.0423 (11)
C70.7364 (5)0.1284 (3)0.1531 (2)0.0459 (12)
H70.75190.12230.19300.055*
C81.00000.00000.1068 (3)0.0467 (17)
C90.4052 (7)0.3261 (4)0.0244 (3)0.0779 (19)
H9A0.40810.32830.06630.117*
H9B0.44050.37290.00860.117*
H9C0.30930.31850.01180.117*
O40.579 (2)0.1913 (12)0.3182 (9)0.098 (9)0.234 (11)
H1M0.56010.15990.34530.148*0.234 (11)
C100.703 (3)0.2337 (18)0.3207 (10)0.075 (10)0.234 (11)
H10A0.72210.26380.35540.113*0.234 (11)
H10B0.72210.26380.28610.113*0.234 (11)
H10C0.76320.18900.32070.113*0.234 (11)
H1O0.743 (5)0.134 (3)0.048 (2)0.057 (15)*
H2N0.916 (5)0.040 (3)0.183 (3)0.052 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.062 (2)0.055 (2)0.051 (2)0.0187 (18)0.0048 (18)0.0067 (17)
O20.077 (4)0.069 (3)0.047 (3)0.019 (3)0.0000.000
O30.076 (3)0.063 (2)0.066 (3)0.026 (2)0.0196 (19)0.001 (2)
N10.043 (2)0.045 (2)0.053 (2)0.004 (2)0.0026 (19)0.0038 (19)
N20.054 (3)0.059 (2)0.047 (3)0.020 (2)0.001 (2)0.004 (2)
C10.038 (3)0.044 (2)0.056 (3)0.000 (2)0.002 (2)0.005 (2)
C20.046 (3)0.042 (2)0.065 (3)0.004 (2)0.010 (3)0.001 (3)
C30.039 (3)0.049 (3)0.082 (4)0.006 (2)0.001 (3)0.005 (3)
C40.047 (3)0.052 (3)0.080 (4)0.002 (3)0.017 (3)0.008 (3)
C50.046 (3)0.053 (3)0.059 (3)0.002 (2)0.014 (2)0.002 (3)
C60.039 (3)0.035 (2)0.052 (3)0.001 (2)0.004 (2)0.002 (2)
C70.047 (3)0.044 (3)0.046 (3)0.001 (2)0.000 (2)0.006 (2)
C80.047 (4)0.040 (4)0.053 (5)0.003 (3)0.0000.000
C90.082 (4)0.058 (3)0.094 (5)0.015 (3)0.025 (4)0.014 (3)
O40.117 (19)0.087 (15)0.091 (17)0.004 (12)0.030 (13)0.010 (12)
C100.07 (2)0.10 (3)0.057 (16)0.021 (19)0.001 (11)0.018 (15)
Geometric parameters (Å, º) top
O1—C11.389 (6)C4—H40.9300
O1—H1O0.91 (5)C5—C61.433 (7)
O2—C81.243 (8)C5—H50.9300
O3—C21.397 (6)C6—C71.466 (6)
O3—C91.445 (6)C7—H70.9300
N1—C71.305 (6)C8—N2i1.381 (6)
N1—N21.381 (5)C9—H9A0.9600
N2—C81.381 (6)C9—H9B0.9600
N2—H2N0.94 (6)C9—H9C0.9600
C1—C21.413 (6)O4—C101.39 (3)
C1—C61.418 (7)O4—H1M0.8500
C2—C31.405 (8)C10—C10ii1.06 (5)
C3—C41.411 (8)C10—H10A0.9700
C3—H30.9300C10—H10B0.9700
C4—C51.382 (7)C10—H10C0.9700
C1—O1—H1O102 (3)N1—C7—C6121.0 (4)
C2—O3—C9118.1 (4)N1—C7—H7119.5
C7—N1—N2113.9 (4)C6—C7—H7119.5
N1—N2—C8119.1 (5)O2—C8—N2125.4 (3)
N1—N2—H2N120 (3)O2—C8—N2i125.4 (3)
C8—N2—H2N121 (3)N2—C8—N2i109.2 (7)
O1—C1—C2116.1 (5)O3—C9—H9A109.5
O1—C1—C6123.9 (4)O3—C9—H9B109.5
C2—C1—C6120.0 (5)H9A—C9—H9B109.5
O3—C2—C3126.5 (5)O3—C9—H9C109.5
O3—C2—C1114.8 (5)H9A—C9—H9C109.5
C3—C2—C1118.7 (5)H9B—C9—H9C109.5
C2—C3—C4121.7 (5)C10—O4—H1M119.9
C2—C3—H3119.2C10ii—C10—O4177.6 (17)
C4—C3—H3119.2C10ii—C10—H10A63.1
C5—C4—C3120.2 (5)O4—C10—H10A118.9
C5—C4—H4119.9C10ii—C10—H10B63.1
C3—C4—H4119.9O4—C10—H10B114.5
C4—C5—C6119.4 (5)H10A—C10—H10B109.6
C4—C5—H5120.3C10ii—C10—H10C87.1
C6—C5—H5120.3O4—C10—H10C93.3
C1—C6—C5120.1 (4)H10A—C10—H10C109.6
C1—C6—C7122.3 (4)H10B—C10—H10C109.6
C5—C6—C7117.5 (4)
Symmetry codes: (i) x+2, y, z; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.91 (5)1.86 (5)2.703 (5)152 (5)
N2—H2N···O3iii0.94 (6)2.38 (5)3.044 (6)128 (4)
N2—H2N···O1iii0.94 (6)2.33 (6)3.204 (6)155 (4)
Symmetry code: (iii) x+1/4, y+1/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.91 (5)1.86 (5)2.703 (5)152 (5)
N2—H2N···O3i0.94 (6)2.38 (5)3.044 (6)128 (4)
N2—H2N···O1i0.94 (6)2.33 (6)3.204 (6)155 (4)
Symmetry code: (i) x+1/4, y+1/4, z+1/4.
 

References

First citationBacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, C., Pelizzi, G. & Zani, F. (1999). J. Inorg. Biochem. 75, 123–133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDu, L. & Zhang, W. (2010). Acta Cryst. E66, o2645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E. & Radwan, A. H. (2012). J. Mol. Struct. 1020, 6–15.  CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHe, Q.-P., Tan, B. & Lu, Z.-H. (2010). Acta Cryst. E66, o2968.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKong, L., Qiao, Y., Gao, Z. & Ju, X. (2010). Acta Cryst. E66, o2901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds