organic compounds
1,5-Bis(2-hydroxy-3-methoxybenzylidene)carbonohydrazide methanol 0.47-solvate
aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté de Medecine, de Pharmacie et d'Odonto-stomatologie, Université Cheikh Anta Diop, Dakar, Senegal, and cDépartement de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Mauritania
*Correspondence e-mail: mlgayeastou@yahoo.fr
In the title compound, C17H18N4O5·0.47CH3OH, the virtually planar (r.m.s. deviation = 0.128 Å) carbonohydrazide molecule is located on a twofold axis and conformation of its C=N bonds is E. There are short intramolecular O—H⋯N hydrogen bonds between the hydroxy groups and hydrazide N atoms. In the crystal, bifurcated N—H⋯(O,O) hydrogen bonds assemble the carbonohydrazide molecules into a three-dimensional network. There are C2 symmetric voids in this network, 47% of which are occupied by disordered methanol molecules.
CCDC reference: 989432
Related literature
For related structures, see: Du & Zhang (2010); He et al. (2010); Kong et al. (2010). For the biological activity of carbonohydrazides, see: Bacchi et al. (1999); El-Gammal et al. (2012).
Experimental
Crystal data
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 989432
10.1107/S1600536814004802/gk2603sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004802/gk2603Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814004802/gk2603Isup3.cml
In a round bottomed flask, carbonohydrazide (1.0 g, 11.11 mmol) was introduced with methanol (10 ml). o-Vanillin (3.3 g, 22.22 mmol) dissolved in 10 ml of the same solvent was added. Two drops of glacial acetic acid were added while stirring. After one hour under reflux, the precipitate formed that after cooling to room temperature was filtered off and washed with cold methanol. The resulting solid was dried in air. The filtrate was left at room temperature. Slow evaporation of the solvent gave colorless crystals after one day. Yield: 95%; m.p. 378 K. Anal. Calc. for [C17H18N4O5] (%): C, 56.98; H, 5.06, N, 15.63. Found: C, 56.96; H, 5.04; N, 15.60. Selected IR data (cm-1, KBr pellet): 3291, 2942, 1696, 1553, 1200, 1167. 1H-NMR (DMSO-d6) δ: 3.8 (s, 6H, O—CH3); 6.7 – 7.1 (m, 6H, HAromatic); 8.5 (s, 2H, H—C═N); 7.3 (s, 1H, H—N); 11 (s, 2H, H—O) p.p.m. 13C-NMR (DMSO-d6) d: 151.8 (C═O); 147.8, 146.1, 119.5, 119.4, 118.8, 112.8 (CAromatic); 58,7 (–O—CH3).
H atoms of the NH and OH groups were located in the Fourier difference maps and refined without restraints. Otherg H atoms were geometrically optimized and refined as riding on their carriers with Uiso(H) = 1.2Ueq(C)(1.5 for CH3 groups). Considerable disorder was detected for the solvent methanol molecule. The occupancy factor of the C and O atoms of methanol refined at 0.234 (1). Thus, there are 0.46 methanol molecules per one carbonohydrazide molecule in the crystal. Owing to a negligible
effect the Friedel pairs were merged and the was not determined.Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick,2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C17H18N4O5·0.47CH4O | F(000) = 1571.4 |
Mr = 373.40 | Dx = 1.306 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 25 reflections |
a = 9.4470 (7) Å | θ = 11–15° |
b = 17.5850 (9) Å | µ = 0.10 mm−1 |
c = 22.8714 (12) Å | T = 293 K |
V = 3799.5 (4) Å3 | Prismatic, colorless |
Z = 8 | 0.1 × 0.08 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.105 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.6° |
Graphite monochromator | h = −11→11 |
non–profiled ω/2θ scans | k = −1→20 |
9573 measured reflections | l = −27→27 |
862 independent reflections | 2 standard reflections every 120 min |
658 reflections with I > 2σ(I) | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.25 | w = 1/[σ2(Fo2) + (0.0306P)2 + 5.2614P] where P = (Fo2 + 2Fc2)/3 |
862 reflections | (Δ/σ)max < 0.001 |
146 parameters | Δρmax = 0.17 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
C17H18N4O5·0.47CH4O | V = 3799.5 (4) Å3 |
Mr = 373.40 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 9.4470 (7) Å | µ = 0.10 mm−1 |
b = 17.5850 (9) Å | T = 293 K |
c = 22.8714 (12) Å | 0.1 × 0.08 × 0.05 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.105 |
9573 measured reflections | 2 standard reflections every 120 min |
862 independent reflections | intensity decay: 2% |
658 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.044 | 1 restraint |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.25 | Δρmax = 0.17 e Å−3 |
862 reflections | Δρmin = −0.19 e Å−3 |
146 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.6805 (4) | 0.1635 (2) | 0.02775 (15) | 0.0559 (10) | |
O2 | 1.0000 | 0.0000 | 0.0525 (2) | 0.0641 (14) | |
O3 | 0.4920 (4) | 0.2637 (2) | −0.00424 (17) | 0.0680 (12) | |
N1 | 0.8123 (4) | 0.0896 (2) | 0.11591 (18) | 0.0471 (10) | |
N2 | 0.9127 (5) | 0.0436 (2) | 0.1418 (2) | 0.0533 (11) | |
C1 | 0.6048 (5) | 0.1974 (3) | 0.0728 (2) | 0.0459 (12) | |
C2 | 0.5016 (5) | 0.2512 (3) | 0.0560 (2) | 0.0512 (13) | |
C3 | 0.4200 (5) | 0.2864 (3) | 0.0996 (3) | 0.0567 (14) | |
H3 | 0.3505 | 0.3211 | 0.0888 | 0.068* | |
C4 | 0.4409 (5) | 0.2704 (3) | 0.1594 (3) | 0.0595 (15) | |
H4 | 0.3856 | 0.2946 | 0.1874 | 0.071* | |
C5 | 0.5434 (5) | 0.2189 (3) | 0.1765 (2) | 0.0528 (13) | |
H5 | 0.5580 | 0.2087 | 0.2159 | 0.063* | |
C6 | 0.6269 (5) | 0.1813 (3) | 0.1329 (2) | 0.0423 (11) | |
C7 | 0.7364 (5) | 0.1284 (3) | 0.1531 (2) | 0.0459 (12) | |
H7 | 0.7519 | 0.1223 | 0.1930 | 0.055* | |
C8 | 1.0000 | 0.0000 | 0.1068 (3) | 0.0467 (17) | |
C9 | 0.4052 (7) | 0.3261 (4) | −0.0244 (3) | 0.0779 (19) | |
H9A | 0.4081 | 0.3283 | −0.0663 | 0.117* | |
H9B | 0.4405 | 0.3729 | −0.0086 | 0.117* | |
H9C | 0.3093 | 0.3185 | −0.0118 | 0.117* | |
O4 | 0.579 (2) | 0.1913 (12) | 0.3182 (9) | 0.098 (9) | 0.234 (11) |
H1M | 0.5601 | 0.1599 | 0.3453 | 0.148* | 0.234 (11) |
C10 | 0.703 (3) | 0.2337 (18) | 0.3207 (10) | 0.075 (10) | 0.234 (11) |
H10A | 0.7221 | 0.2638 | 0.3554 | 0.113* | 0.234 (11) |
H10B | 0.7221 | 0.2638 | 0.2861 | 0.113* | 0.234 (11) |
H10C | 0.7632 | 0.1890 | 0.3207 | 0.113* | 0.234 (11) |
H1O | 0.743 (5) | 0.134 (3) | 0.048 (2) | 0.057 (15)* | |
H2N | 0.916 (5) | 0.040 (3) | 0.183 (3) | 0.052 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.062 (2) | 0.055 (2) | 0.051 (2) | 0.0187 (18) | −0.0048 (18) | −0.0067 (17) |
O2 | 0.077 (4) | 0.069 (3) | 0.047 (3) | 0.019 (3) | 0.000 | 0.000 |
O3 | 0.076 (3) | 0.063 (2) | 0.066 (3) | 0.026 (2) | −0.0196 (19) | −0.001 (2) |
N1 | 0.043 (2) | 0.045 (2) | 0.053 (2) | 0.004 (2) | −0.0026 (19) | 0.0038 (19) |
N2 | 0.054 (3) | 0.059 (2) | 0.047 (3) | 0.020 (2) | −0.001 (2) | 0.004 (2) |
C1 | 0.038 (3) | 0.044 (2) | 0.056 (3) | 0.000 (2) | −0.002 (2) | −0.005 (2) |
C2 | 0.046 (3) | 0.042 (2) | 0.065 (3) | 0.004 (2) | −0.010 (3) | 0.001 (3) |
C3 | 0.039 (3) | 0.049 (3) | 0.082 (4) | 0.006 (2) | −0.001 (3) | −0.005 (3) |
C4 | 0.047 (3) | 0.052 (3) | 0.080 (4) | 0.002 (3) | 0.017 (3) | −0.008 (3) |
C5 | 0.046 (3) | 0.053 (3) | 0.059 (3) | −0.002 (2) | 0.014 (2) | 0.002 (3) |
C6 | 0.039 (3) | 0.035 (2) | 0.052 (3) | −0.001 (2) | 0.004 (2) | −0.002 (2) |
C7 | 0.047 (3) | 0.044 (3) | 0.046 (3) | −0.001 (2) | 0.000 (2) | 0.006 (2) |
C8 | 0.047 (4) | 0.040 (4) | 0.053 (5) | 0.003 (3) | 0.000 | 0.000 |
C9 | 0.082 (4) | 0.058 (3) | 0.094 (5) | 0.015 (3) | −0.025 (4) | 0.014 (3) |
O4 | 0.117 (19) | 0.087 (15) | 0.091 (17) | 0.004 (12) | 0.030 (13) | 0.010 (12) |
C10 | 0.07 (2) | 0.10 (3) | 0.057 (16) | 0.021 (19) | −0.001 (11) | −0.018 (15) |
O1—C1 | 1.389 (6) | C4—H4 | 0.9300 |
O1—H1O | 0.91 (5) | C5—C6 | 1.433 (7) |
O2—C8 | 1.243 (8) | C5—H5 | 0.9300 |
O3—C2 | 1.397 (6) | C6—C7 | 1.466 (6) |
O3—C9 | 1.445 (6) | C7—H7 | 0.9300 |
N1—C7 | 1.305 (6) | C8—N2i | 1.381 (6) |
N1—N2 | 1.381 (5) | C9—H9A | 0.9600 |
N2—C8 | 1.381 (6) | C9—H9B | 0.9600 |
N2—H2N | 0.94 (6) | C9—H9C | 0.9600 |
C1—C2 | 1.413 (6) | O4—C10 | 1.39 (3) |
C1—C6 | 1.418 (7) | O4—H1M | 0.8500 |
C2—C3 | 1.405 (8) | C10—C10ii | 1.06 (5) |
C3—C4 | 1.411 (8) | C10—H10A | 0.9700 |
C3—H3 | 0.9300 | C10—H10B | 0.9700 |
C4—C5 | 1.382 (7) | C10—H10C | 0.9700 |
C1—O1—H1O | 102 (3) | N1—C7—C6 | 121.0 (4) |
C2—O3—C9 | 118.1 (4) | N1—C7—H7 | 119.5 |
C7—N1—N2 | 113.9 (4) | C6—C7—H7 | 119.5 |
N1—N2—C8 | 119.1 (5) | O2—C8—N2 | 125.4 (3) |
N1—N2—H2N | 120 (3) | O2—C8—N2i | 125.4 (3) |
C8—N2—H2N | 121 (3) | N2—C8—N2i | 109.2 (7) |
O1—C1—C2 | 116.1 (5) | O3—C9—H9A | 109.5 |
O1—C1—C6 | 123.9 (4) | O3—C9—H9B | 109.5 |
C2—C1—C6 | 120.0 (5) | H9A—C9—H9B | 109.5 |
O3—C2—C3 | 126.5 (5) | O3—C9—H9C | 109.5 |
O3—C2—C1 | 114.8 (5) | H9A—C9—H9C | 109.5 |
C3—C2—C1 | 118.7 (5) | H9B—C9—H9C | 109.5 |
C2—C3—C4 | 121.7 (5) | C10—O4—H1M | 119.9 |
C2—C3—H3 | 119.2 | C10ii—C10—O4 | 177.6 (17) |
C4—C3—H3 | 119.2 | C10ii—C10—H10A | 63.1 |
C5—C4—C3 | 120.2 (5) | O4—C10—H10A | 118.9 |
C5—C4—H4 | 119.9 | C10ii—C10—H10B | 63.1 |
C3—C4—H4 | 119.9 | O4—C10—H10B | 114.5 |
C4—C5—C6 | 119.4 (5) | H10A—C10—H10B | 109.6 |
C4—C5—H5 | 120.3 | C10ii—C10—H10C | 87.1 |
C6—C5—H5 | 120.3 | O4—C10—H10C | 93.3 |
C1—C6—C5 | 120.1 (4) | H10A—C10—H10C | 109.6 |
C1—C6—C7 | 122.3 (4) | H10B—C10—H10C | 109.6 |
C5—C6—C7 | 117.5 (4) |
Symmetry codes: (i) −x+2, −y, z; (ii) −x+3/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N1 | 0.91 (5) | 1.86 (5) | 2.703 (5) | 152 (5) |
N2—H2N···O3iii | 0.94 (6) | 2.38 (5) | 3.044 (6) | 128 (4) |
N2—H2N···O1iii | 0.94 (6) | 2.33 (6) | 3.204 (6) | 155 (4) |
Symmetry code: (iii) x+1/4, −y+1/4, z+1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N1 | 0.91 (5) | 1.86 (5) | 2.703 (5) | 152 (5) |
N2—H2N···O3i | 0.94 (6) | 2.38 (5) | 3.044 (6) | 128 (4) |
N2—H2N···O1i | 0.94 (6) | 2.33 (6) | 3.204 (6) | 155 (4) |
Symmetry code: (i) x+1/4, −y+1/4, z+1/4. |
References
Bacchi, A., Carcelli, M., Pelagatti, P., Pelizzi, C., Pelizzi, G. & Zani, F. (1999). J. Inorg. Biochem. 75, 123–133. Web of Science CrossRef PubMed CAS Google Scholar
Du, L. & Zhang, W. (2010). Acta Cryst. E66, o2645. Web of Science CSD CrossRef IUCr Journals Google Scholar
El-Gammal, O. A., Abu El-Reash, G. M., Ghazy, S. E. & Radwan, A. H. (2012). J. Mol. Struct. 1020, 6–15. CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
He, Q.-P., Tan, B. & Lu, Z.-H. (2010). Acta Cryst. E66, o2968. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kong, L., Qiao, Y., Gao, Z. & Ju, X. (2010). Acta Cryst. E66, o2901. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbonohydrazide derivatives give rise to a large spectrum of biological properties such as antioxidant (El-Gammal et al., 2012) and anticancer activities (Bacchi et al., 1999). We report here the crystal structure of the title compound synthesized according to literature (He et al., 2010; Du et al., 2010). All parameters are within normal ranges and comparable with the related structures (Kong et al., 2010).
The molecular structure of the title compound is shown in Fig. 1. The complete carbonohydrazide molecule is generated by a twofold crystallographic axis passing throuth the atoms C8 and O2. A three-center O···(N)H···O intermolecular hydrogen bond involving the amido H atoms and the phenoxo and methoxy O atoms is observed (Fig. 2). There are voids in a three dimensional network containing solvent methanol molecules. Only one methanol molecule can be accommodated in a small void that has C2 symmetry. This leads to disorder of methanol molecules. In addition refinement of occupancy factors of methanol O and C atoms converged at 0.234 (1), indicating that 47% of voids are occupied by the solvent.