organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o405-o406

Bis{(R)-N-[(R)-2-benz­yl­oxy-1-(4-tert-butyl­phen­yl)eth­yl]-2-methyl­propane-2-sulfinamide} monohydrate

aDepartment of Chemistry, 120 Trustee Road, 412 Hutchison Hall, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: weix@chem.rochester.edu

(Received 12 February 2014; accepted 27 February 2014; online 8 March 2014)

The asymmetric unit of the title compound, 2C23H33NO2S·H2O, contains one organic mol­ecule in a general position and one co-crystallized water mol­ecule on a crystallographic twofold axis. Each water mol­ecule serves as a hydrogen-bond donor to a pair of S=O acceptors on symmetry-related mol­ecules. Thus, each trio of mol­ecules forms one title formula unit. These groupings are further connected along [010] via weak non-classical C—H⋯O hydrogen bonds.

Related literature

For a general method to synthesize the Grignard reagent used in the reaction that generated the title material, see: Tilstam & Weinmann (2002[Tilstam, U. & Weinmann, H. (2002). Org. Process Res. Dev. 6, 906-910.]). For in-depth discussions on methods to synthesize the precursor to the title mol­ecule from 2-butene-1,4-diol, see: Evans et al. (2008[Evans, D. A., Kvaernø, L., Dunn, T. B., Beauchemin, A., Raymer, B., Mulder, J. A., Olhava, E. J., Juhl, M., Kagechika, K. & Favor, D. A. (2008). J. Am. Chem. Soc. 130, 16295-16309.]); Tang et al. (2001[Tang, T. P., Volkman, S. K. & Ellman, J. A. (2001). J. Org. Chem. 66, 8772-8778.]). For the importance of 1,2-amino­alcohols, see: Bergmeier (2000[Bergmeier, S. C. (2000). Tetrahedron, 56, 2561-2576.]). For methods used to determine the absolute configuration, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Parsons & Flack (2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.]); Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • 2C23H33NO2S·H2O

  • Mr = 793.14

  • Monoclinic, C 2

  • a = 21.5717 (17) Å

  • b = 6.1097 (5) Å

  • c = 17.0838 (14) Å

  • β = 93.2220 (17)°

  • V = 2248.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.40 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD platform diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2012[Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.]) Tmin = 0.662, Tmax = 0.748

  • 34281 measured reflections

  • 12280 independent reflections

  • 9359 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.110

  • S = 1.01

  • 12280 reflections

  • 385 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack parameter determined using 3436 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2 0.82 (3) 2.02 (3) 2.8420 (19) 171 (3)
C2—H2A⋯O2i 0.96 (2) 2.52 (2) 3.372 (2) 148.1 (19)
C21—H21C⋯O3i 0.97 (2) 2.44 (2) 3.397 (3) 169.0 (19)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, WI, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, WI, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report the synthesis, isolation, and characterization of the protected 1,2-aminoalcohol (R)-N-((R)-2-(benzyloxy)- 1-(4-(tert-butyl)phenyl)ethyl)-2-methylpropane-2-sulfinamide (Fig. 1) from the addition of 4-tert-butylphenylmagnesium bromide to an N-tert-butanesulfinyl imine (Fig. 2) according to the procedure of Ellman (Tang et al., 2001). 1,2-Aminoalcohols are found in a variety of pharmaceutically active compounds and are an important component of the chiral pool (Bergmeier, 2000). The method of Ellman and Tang is one of the most direct to monosubstituted aminoalcohols and relies upon the chiral ammonia equivalent, 2-methyl-2-propanesulfinamide (tert-butanesulfinamide). In the original report, the absolute configuration of the products was determined by comparison of optical rotations and no structures of the products of these reactions have been reported in the database. This structure is consistent with the sense of induction reported by Ellman and Tang (Tang et al., 2001). There are 21 structures of N-sulfinyl-protected 1,2-aminoalcohols in the Cambridge Stuctural Database, but only two of these structures have no substitution at the 1 position and have substitution at the 2 position (Allen, 2002, refcodes FOKDUF, YEQBOM). Neither of these two structures was made by the method we used and neither has an aryl group at the 2 position.

Related literature top

For a general method to synthesize the Grignard reagent used in the reaction that generated the title material, see: Tilstam & Weinmann (2002). For in-depth discussions on methods to synthesize the precursor to the title molecule from 2-butene-1,4-diol, see: Evans et al. (2008); Tang et al. (2001). For the importance of 1,2-aminoalcohols, see: Bergmeier (2000). For methods used to determine the absolute configuration, see: Flack (1983); Parsons & Flack (2004); Parsons et al. (2013). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Dry solvents were prepared from ACS grade, inhibitor free solvents by passage through activated molecular sieves in an Innovative Technology solvent purification system. CDCl3 was purchased from Cambridge Isotope Laboratories, Inc., dried over molecular sieves, and stored in a desiccator until use. 1H and 13C NMR spectra were recorded on an Avance 500 MHz s pectrometer with residual protiated solvent as a reference.

To an oven dried 50 ml Schlenk flask equipped with a magnetic stir bar and a rubber septum, 0.685 g (3.9 mmol) of (R)-N-(2-(benzyloxy)ethylidene)-2-methylpropane-2-sulfinamide, prepared from 2-butene-1,4-diol (Evans et al., 2008, and Tang et al., 2001), and 20 ml of toluene were added, and the mixture was cooled to 195 K under nitrogen (Fig. 2). Also at 195 K and under positive nitrogen pressure, Grignard reagent 4-tert-butylmagnesium bromide (1.5 equivalents, 5.85 mmol), prepared from 4-tert-butylbromobenzene (Tilstam and Weinmann, 2002), was added dropwise via cannula. The reaction was stirred at 195 K until complete consumption of the imine was confirmed by TLC (25% ethyl acetate in hexanes). After quenching with aqueous saturated sodium sulfate, the mixture was warmed to room temperature, dried over sodium sulfate, and filtered through Celite. By 1H NMR, the crude product was a 3.6:1 ratio of diastereomers, favoring the title compound. Solvent was removed under reduced pressure and the resultant viscous yellow oil was purified by column chromatography (25% ethyl acetate in hexanes) to yield a white solid (266 mg, 18% yield). Initially single crystals of the unsolvated material were grown from a saturated pentane solution at 243 K. NMR analysis of these crystals showed only the title compound and none of the minor diastereomer, (R)-N-((S)-2-(benzyloxy)-1-(4-(tert- butyl)phenyl)ethyl)-2-methylpropane-2-sulfinamide. However, the structure suffered from severe disorder. High quality single crystals of the title material were obtained from slow evaporation of a methanol solution at room temperature.

The following characterizations were performed on the unsolvated material: Mp 334–336 K. 1H NMR (CDCl3, 500 MHz): δ 7.37–7.26 (m, 9H), 4.69–4.73 (m, 1H), 4.65 (d, J = 11 Hz, 1H), 4.54 (d, J = 12 Hz, 1H), 4.18 (s, 1H), 3.67–3.57 (m, 2H), 1.31 (s, 9H), 1.23 (s, 9H) p.p.m.. 13C{1H} NMR (CDCl3, 125 MHz): δ 150.90, 137.70, 135.37, 128.47, 128.36, 127.83, 127.54, 125.39, 74.19, 72.67, 56.89, 55.49, 34.55, 31.35, 22.64 p.p.m.. IR (neat): 3306, 1061 cm-1.

Crystal data for the highly disordered unsolvated compound: Orthorhombic, P212121; Cell constants (Å, °): a = 5.6753 (7), b = 17.305 (2), c = 22.188 (3); V = 2179.2 (5) Å3; Z = 4; T = 100.0 (5) K; 12121 reflections (9622 for [I > 2σ(I)]).

Refinement top

All H atoms were located from difference Fourier maps and freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title material, showing the atom numbering. The two organic molecules are related by a crystallographic twofold axis (1 - x, y, -z) that includes the water molecule. Intermolecular O–H···O hydrogen bonding is represented with dashed lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Reaction scheme.
Bis{(R)-N-[(R)-2-benzyloxy-1-(4-tert-butylphenyl)ethyl]-2-methylpropane-2-sulfinamide} monohydrate top
Crystal data top
2C23H33NO2S·H2OF(000) = 860
Mr = 793.14Dx = 1.172 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 21.5717 (17) ÅCell parameters from 4053 reflections
b = 6.1097 (5) Åθ = 2.2–37.9°
c = 17.0838 (14) ŵ = 0.16 mm1
β = 93.2220 (17)°T = 100 K
V = 2248.0 (3) Å3Needle, colorless
Z = 20.40 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
9359 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
ω scansθmax = 38.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
h = 3737
Tmin = 0.662, Tmax = 0.748k = 1010
34281 measured reflectionsl = 2929
12280 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050All H-atom parameters refined
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
12280 reflectionsΔρmax = 0.46 e Å3
385 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack parameter determined using 3436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
2C23H33NO2S·H2OV = 2248.0 (3) Å3
Mr = 793.14Z = 2
Monoclinic, C2Mo Kα radiation
a = 21.5717 (17) ŵ = 0.16 mm1
b = 6.1097 (5) ÅT = 100 K
c = 17.0838 (14) Å0.40 × 0.18 × 0.16 mm
β = 93.2220 (17)°
Data collection top
Bruker SMART APEXII CCD platform
diffractometer
12280 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2012)
9359 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.748Rint = 0.049
34281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050All H-atom parameters refined
wR(F2) = 0.110Δρmax = 0.46 e Å3
S = 1.01Δρmin = 0.25 e Å3
12280 reflectionsAbsolute structure: Flack parameter determined using 3436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
385 parametersAbsolute structure parameter: 0.01 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. All hydrogen atoms were found from the difference Fourier map and refined freely.

The absolute configuration was deterimined using 3436 quotients, which gave a Flack parameter of -0.01 (3) (Parsons and Flack, 2004, Parson et al., 2013). This is essentially the same value obtained without Dobs(h) as a restraint, which resulted in a Flack parameter of -0.01 (4), calculated from 5617 Friedel pairs (Flack, 1983).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42226 (2)0.46312 (7)0.15482 (2)0.01727 (8)
O10.58554 (6)0.8370 (2)0.16151 (7)0.0209 (2)
O20.46240 (7)0.2778 (2)0.13077 (8)0.0285 (3)
N10.46287 (6)0.6943 (2)0.16175 (8)0.0163 (2)
H1N0.4839 (11)0.719 (4)0.1199 (14)0.030 (6)*
C10.50207 (7)0.7109 (3)0.23545 (9)0.0161 (3)
H10.5262 (10)0.574 (4)0.2460 (12)0.016 (5)*
C20.54948 (7)0.8923 (3)0.22575 (9)0.0178 (3)
H2A0.5281 (10)1.029 (4)0.2189 (14)0.023 (6)*
H2B0.5749 (9)0.904 (3)0.2734 (12)0.012 (5)*
C30.62305 (8)1.0173 (3)0.13942 (10)0.0227 (3)
H3A0.5959 (11)1.147 (4)0.1336 (13)0.022 (6)*
H3B0.6351 (9)0.979 (4)0.0868 (13)0.022 (5)*
C40.67655 (8)1.0589 (3)0.19842 (9)0.0197 (3)
C50.68504 (9)1.2612 (3)0.23440 (11)0.0255 (4)
H50.6574 (12)1.379 (5)0.2226 (15)0.037 (7)*
C60.73526 (11)1.2977 (4)0.28735 (12)0.0341 (5)
H60.7411 (11)1.431 (5)0.3100 (15)0.036 (7)*
C70.77729 (10)1.1315 (4)0.30506 (13)0.0349 (5)
H70.8120 (12)1.157 (5)0.3420 (15)0.041 (7)*
C80.76889 (9)0.9273 (4)0.27026 (12)0.0314 (5)
H80.7981 (13)0.816 (5)0.2848 (16)0.046 (8)*
C90.71873 (8)0.8916 (3)0.21733 (11)0.0242 (3)
H90.7099 (12)0.759 (5)0.1917 (14)0.033 (7)*
C100.46395 (7)0.7656 (3)0.30471 (8)0.0154 (3)
C110.46392 (7)0.6297 (3)0.36989 (10)0.0177 (3)
H110.4859 (10)0.499 (4)0.3673 (13)0.024 (6)*
C120.43313 (8)0.6904 (3)0.43609 (9)0.0181 (3)
H120.4333 (10)0.594 (4)0.4788 (13)0.025 (6)*
C130.40197 (7)0.8894 (3)0.44018 (9)0.0161 (3)
C140.40172 (7)1.0238 (3)0.37349 (10)0.0184 (3)
H140.3801 (11)1.162 (4)0.3734 (13)0.024 (6)*
C150.43132 (7)0.9623 (3)0.30689 (9)0.0185 (3)
H150.4295 (10)1.052 (4)0.2600 (13)0.024 (6)*
C160.37205 (7)0.9653 (4)0.51461 (9)0.0192 (3)
C170.35710 (9)0.7726 (4)0.56789 (11)0.0248 (4)
H17A0.3367 (10)0.810 (4)0.6113 (13)0.025 (6)*
H17B0.3945 (12)0.696 (5)0.5893 (14)0.034 (7)*
H17C0.3302 (12)0.670 (5)0.5370 (15)0.039 (7)*
C180.31087 (10)1.0872 (5)0.49419 (13)0.0340 (5)
H18A0.2904 (12)1.139 (5)0.5422 (15)0.038 (7)*
H18B0.2843 (13)1.004 (5)0.4603 (18)0.051 (8)*
H18C0.3177 (11)1.213 (5)0.4672 (15)0.032 (7)*
C190.41775 (9)1.1181 (3)0.55980 (11)0.0249 (3)
H19A0.4012 (10)1.170 (4)0.6085 (13)0.020 (5)*
H19B0.4268 (10)1.243 (4)0.5268 (12)0.018 (5)*
H19C0.4586 (9)1.037 (4)0.5743 (12)0.017 (5)*
C200.37165 (7)0.5317 (3)0.06805 (10)0.0182 (3)
C210.40958 (8)0.5784 (3)0.00242 (10)0.0215 (3)
H21A0.3833 (11)0.591 (4)0.0478 (14)0.026 (6)*
H21B0.4409 (10)0.450 (5)0.0104 (14)0.030 (6)*
H21C0.4312 (11)0.717 (4)0.0028 (13)0.023 (6)*
C220.33246 (10)0.3261 (4)0.05314 (12)0.0293 (4)
H22A0.3027 (14)0.348 (6)0.0101 (18)0.052 (8)*
H22B0.3099 (12)0.280 (5)0.0976 (15)0.030 (6)*
H22C0.3551 (13)0.198 (5)0.0423 (16)0.049 (8)*
C230.33169 (9)0.7248 (4)0.09006 (12)0.0269 (4)
H23A0.2998 (13)0.757 (5)0.0466 (16)0.047 (8)*
H23B0.3557 (11)0.851 (4)0.0981 (14)0.029 (6)*
H23C0.3068 (11)0.692 (4)0.1352 (14)0.028 (6)*
O30.50000.0337 (4)0.00000.0323 (4)
H3O0.4903 (13)0.116 (5)0.0355 (16)0.047 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01922 (16)0.01591 (15)0.01623 (15)0.00308 (15)0.00284 (12)0.00315 (15)
O10.0192 (5)0.0285 (6)0.0150 (5)0.0090 (5)0.0021 (4)0.0026 (4)
O20.0358 (7)0.0181 (6)0.0304 (7)0.0067 (5)0.0080 (6)0.0006 (5)
N10.0162 (6)0.0182 (6)0.0140 (5)0.0052 (5)0.0017 (4)0.0013 (5)
C10.0150 (6)0.0194 (7)0.0137 (6)0.0000 (5)0.0018 (5)0.0007 (5)
C20.0153 (6)0.0233 (7)0.0146 (6)0.0031 (6)0.0005 (5)0.0011 (6)
C30.0225 (7)0.0301 (9)0.0152 (7)0.0099 (6)0.0015 (6)0.0035 (6)
C40.0181 (7)0.0251 (8)0.0157 (6)0.0066 (6)0.0011 (5)0.0007 (6)
C50.0281 (9)0.0244 (9)0.0241 (8)0.0056 (7)0.0014 (7)0.0009 (7)
C60.0412 (11)0.0354 (11)0.0253 (9)0.0187 (9)0.0020 (8)0.0050 (8)
C70.0265 (9)0.0502 (13)0.0267 (9)0.0176 (9)0.0092 (7)0.0087 (9)
C80.0203 (7)0.0418 (13)0.0316 (9)0.0043 (8)0.0033 (7)0.0136 (9)
C90.0235 (8)0.0252 (8)0.0241 (8)0.0047 (7)0.0024 (6)0.0027 (7)
C100.0139 (6)0.0184 (7)0.0134 (6)0.0015 (5)0.0025 (5)0.0013 (5)
C110.0189 (7)0.0162 (7)0.0178 (7)0.0006 (6)0.0005 (5)0.0022 (5)
C120.0192 (7)0.0194 (7)0.0156 (6)0.0007 (6)0.0002 (5)0.0033 (5)
C130.0132 (6)0.0198 (7)0.0149 (6)0.0014 (5)0.0023 (5)0.0000 (5)
C140.0168 (6)0.0184 (7)0.0197 (7)0.0030 (5)0.0004 (5)0.0029 (5)
C150.0179 (6)0.0210 (6)0.0166 (6)0.0020 (7)0.0001 (5)0.0050 (7)
C160.0175 (6)0.0245 (7)0.0156 (6)0.0022 (7)0.0007 (5)0.0018 (7)
C170.0237 (8)0.0308 (9)0.0205 (8)0.0048 (7)0.0062 (6)0.0014 (7)
C180.0269 (9)0.0531 (15)0.0220 (9)0.0182 (9)0.0004 (7)0.0013 (9)
C190.0328 (9)0.0221 (8)0.0195 (8)0.0039 (7)0.0018 (7)0.0022 (6)
C200.0157 (6)0.0195 (7)0.0189 (7)0.0039 (5)0.0030 (5)0.0023 (5)
C210.0233 (7)0.0233 (8)0.0174 (7)0.0027 (6)0.0024 (6)0.0046 (6)
C220.0283 (9)0.0320 (10)0.0270 (9)0.0142 (8)0.0033 (7)0.0004 (8)
C230.0206 (8)0.0292 (10)0.0307 (9)0.0044 (7)0.0012 (7)0.0029 (8)
O30.0374 (11)0.0194 (9)0.0399 (12)0.0000.0008 (10)0.000
Geometric parameters (Å, º) top
S1—O21.4967 (14)C12—H120.94 (2)
S1—N11.6628 (14)C13—C141.404 (2)
S1—C201.8394 (16)C13—C161.530 (2)
O1—C21.421 (2)C14—C151.387 (2)
O1—C31.430 (2)C14—H140.96 (2)
N1—C11.480 (2)C15—H150.97 (2)
N1—H1N0.88 (2)C16—C171.533 (3)
C1—C101.516 (2)C16—C191.534 (3)
C1—C21.523 (2)C16—C181.538 (3)
C1—H11.00 (2)C17—H17A0.91 (2)
C2—H2A0.96 (2)C17—H17B0.99 (3)
C2—H2B0.96 (2)C17—H17C0.99 (3)
C3—C41.511 (2)C18—H18A1.00 (3)
C3—H3A0.99 (2)C18—H18B0.94 (3)
C3—H3B0.98 (2)C18—H18C0.91 (3)
C4—C51.388 (3)C19—H19A0.98 (2)
C4—C91.394 (3)C19—H19B0.97 (2)
C5—C61.390 (3)C19—H19C1.03 (2)
C5—H50.95 (3)C20—C211.520 (2)
C6—C71.383 (4)C20—C231.521 (3)
C6—H60.91 (3)C20—C221.527 (3)
C7—C81.390 (4)C21—H21A0.94 (2)
C7—H70.96 (3)C21—H21B1.05 (3)
C8—C91.388 (3)C21—H21C0.97 (2)
C8—H80.95 (3)C22—H22A0.96 (3)
C9—H90.94 (3)C22—H22B0.97 (3)
C10—C111.389 (2)C22—H22C0.94 (3)
C10—C151.394 (2)C23—H23A1.00 (3)
C11—C121.394 (2)C23—H23B0.94 (3)
C11—H110.93 (2)C23—H23C0.99 (2)
C12—C131.393 (2)O3—H3O0.82 (3)
O2—S1—N1110.59 (8)C15—C14—C13121.74 (16)
O2—S1—C20106.10 (8)C15—C14—H14118.7 (14)
N1—S1—C2098.65 (7)C13—C14—H14119.5 (14)
C2—O1—C3111.30 (14)C14—C15—C10120.77 (15)
C1—N1—S1113.10 (11)C14—C15—H15121.8 (13)
C1—N1—H1N112.5 (16)C10—C15—H15117.4 (13)
S1—N1—H1N112.5 (17)C13—C16—C17111.92 (16)
N1—C1—C10111.72 (12)C13—C16—C19108.26 (13)
N1—C1—C2108.20 (13)C17—C16—C19108.61 (14)
C10—C1—C2108.77 (13)C13—C16—C18110.78 (13)
N1—C1—H1111.3 (12)C17—C16—C18107.46 (16)
C10—C1—H1110.2 (12)C19—C16—C18109.78 (18)
C2—C1—H1106.4 (12)C16—C17—H17A114.7 (15)
O1—C2—C1108.14 (13)C16—C17—H17B113.0 (15)
O1—C2—H2A113.2 (14)H17A—C17—H17B103.8 (19)
C1—C2—H2A109.1 (13)C16—C17—H17C107.9 (16)
O1—C2—H2B111.2 (11)H17A—C17—H17C107 (2)
C1—C2—H2B108.4 (12)H17B—C17—H17C110 (2)
H2A—C2—H2B106.8 (19)C16—C18—H18A112.2 (15)
O1—C3—C4112.08 (14)C16—C18—H18B111.4 (19)
O1—C3—H3A107.7 (13)H18A—C18—H18B113 (2)
C4—C3—H3A111.0 (14)C16—C18—H18C111.1 (16)
O1—C3—H3B103.9 (14)H18A—C18—H18C104 (2)
C4—C3—H3B114.9 (12)H18B—C18—H18C105 (2)
H3A—C3—H3B106.7 (18)C16—C19—H19A111.7 (13)
C5—C4—C9118.82 (17)C16—C19—H19B109.2 (13)
C5—C4—C3121.48 (17)H19A—C19—H19B109.6 (18)
C9—C4—C3119.70 (17)C16—C19—H19C110.3 (12)
C4—C5—C6120.6 (2)H19A—C19—H19C107.4 (18)
C4—C5—H5121.0 (16)H19B—C19—H19C108.5 (17)
C6—C5—H5118.3 (17)C21—C20—C23112.84 (15)
C7—C6—C5120.1 (2)C21—C20—C22109.86 (15)
C7—C6—H6119.5 (16)C23—C20—C22111.29 (15)
C5—C6—H6120.3 (16)C21—C20—S1111.06 (11)
C6—C7—C8119.82 (19)C23—C20—S1107.24 (12)
C6—C7—H7120.2 (17)C22—C20—S1104.18 (12)
C8—C7—H7120.0 (17)C20—C21—H21A110.1 (14)
C9—C8—C7119.9 (2)C20—C21—H21B110.0 (13)
C9—C8—H8122.6 (18)H21A—C21—H21B109 (2)
C7—C8—H8117.6 (18)C20—C21—H21C111.6 (13)
C8—C9—C4120.71 (19)H21A—C21—H21C106 (2)
C8—C9—H9124.8 (16)H21B—C21—H21C110.8 (19)
C4—C9—H9114.5 (16)C20—C22—H22A111 (2)
C11—C10—C15118.08 (14)C20—C22—H22B114.0 (16)
C11—C10—C1121.25 (15)H22A—C22—H22B107 (2)
C15—C10—C1120.51 (13)C20—C22—H22C115.1 (18)
C10—C11—C12120.89 (15)H22A—C22—H22C107 (3)
C10—C11—H11116.9 (14)H22B—C22—H22C102 (2)
C12—C11—H11122.2 (14)C20—C23—H23A110.2 (17)
C13—C12—C11121.75 (15)C20—C23—H23B111.1 (15)
C13—C12—H12119.3 (14)H23A—C23—H23B107 (2)
C11—C12—H12118.9 (14)C20—C23—H23C112.1 (15)
C12—C13—C14116.72 (14)H23A—C23—H23C104 (2)
C12—C13—C16122.24 (15)H23B—C23—H23C112 (2)
C14—C13—C16120.98 (15)
O2—S1—N1—C179.01 (13)C15—C10—C11—C121.2 (2)
C20—S1—N1—C1170.09 (11)C1—C10—C11—C12174.35 (15)
S1—N1—C1—C1075.83 (16)C10—C11—C12—C130.8 (3)
S1—N1—C1—C2164.47 (11)C11—C12—C13—C141.6 (2)
C3—O1—C2—C1169.06 (13)C11—C12—C13—C16175.44 (15)
N1—C1—C2—O159.44 (17)C12—C13—C14—C150.4 (2)
C10—C1—C2—O1179.02 (13)C16—C13—C14—C15176.72 (15)
C2—O1—C3—C472.42 (18)C13—C14—C15—C101.7 (3)
O1—C3—C4—C5123.42 (18)C11—C10—C15—C142.4 (2)
O1—C3—C4—C956.8 (2)C1—C10—C15—C14173.17 (15)
C9—C4—C5—C61.1 (3)C12—C13—C16—C1723.2 (2)
C3—C4—C5—C6178.68 (17)C14—C13—C16—C17159.92 (15)
C4—C5—C6—C70.3 (3)C12—C13—C16—C1996.5 (2)
C5—C6—C7—C80.5 (3)C14—C13—C16—C1980.41 (19)
C6—C7—C8—C90.6 (3)C12—C13—C16—C18143.07 (19)
C7—C8—C9—C40.1 (3)C14—C13—C16—C1840.0 (2)
C5—C4—C9—C81.0 (3)O2—S1—C20—C2154.50 (14)
C3—C4—C9—C8178.79 (16)N1—S1—C20—C2159.96 (13)
N1—C1—C10—C11122.18 (16)O2—S1—C20—C23178.21 (12)
C2—C1—C10—C11118.45 (17)N1—S1—C20—C2363.75 (13)
N1—C1—C10—C1562.37 (19)O2—S1—C20—C2263.72 (14)
C2—C1—C10—C1556.99 (18)N1—S1—C20—C22178.18 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O20.82 (3)2.02 (3)2.8420 (19)171 (3)
C2—H2A···O2i0.96 (2)2.52 (2)3.372 (2)148.1 (19)
C21—H21C···O3i0.97 (2)2.44 (2)3.397 (3)169.0 (19)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O20.82 (3)2.02 (3)2.8420 (19)171 (3)
C2—H2A···O2i0.96 (2)2.52 (2)3.372 (2)148.1 (19)
C21—H21C···O3i0.97 (2)2.44 (2)3.397 (3)169.0 (19)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Jill Caputo and Malik Al-Afyouni for guiding the synthetic work of CLH and TJB, and the University of Rochester Chemistry Department (CHM 234) for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergmeier, S. C. (2000). Tetrahedron, 56, 2561–2576.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, WI, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, D. A., Kvaernø, L., Dunn, T. B., Beauchemin, A., Raymer, B., Mulder, J. A., Olhava, E. J., Juhl, M., Kagechika, K. & Favor, D. A. (2008). J. Am. Chem. Soc. 130, 16295–16309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). SADABS. University of Göttingen, Germany.  Google Scholar
First citationTang, T. P., Volkman, S. K. & Ellman, J. A. (2001). J. Org. Chem. 66, 8772–8778.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTilstam, U. & Weinmann, H. (2002). Org. Process Res. Dev. 6, 906–910.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o405-o406
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds