organic compounds
Bis{(R)-N-[(R)-2-benzyloxy-1-(4-tert-butylphenyl)ethyl]-2-methylpropane-2-sulfinamide} monohydrate
aDepartment of Chemistry, 120 Trustee Road, 412 Hutchison Hall, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: weix@chem.rochester.edu
The 23H33NO2S·H2O, contains one organic molecule in a general position and one co-crystallized water molecule on a crystallographic twofold axis. Each water molecule serves as a hydrogen-bond donor to a pair of S=O acceptors on symmetry-related molecules. Thus, each trio of molecules forms one title formula unit. These groupings are further connected along [010] via weak non-classical C—H⋯O hydrogen bonds.
of the title compound, 2CCCDC reference: 989104
Related literature
For a general method to synthesize the Grignard reagent used in the reaction that generated the title material, see: Tilstam & Weinmann (2002). For in-depth discussions on methods to synthesize the precursor to the title molecule from 2-butene-1,4-diol, see: Evans et al. (2008); Tang et al. (2001). For the importance of 1,2-aminoalcohols, see: Bergmeier (2000). For methods used to determine the see: Flack (1983); Parsons & Flack (2004); Parsons et al. (2013). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 989104
10.1107/S1600536814004589/gk2604sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004589/gk2604Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814004589/gk2604Isup3.cml
Dry solvents were prepared from ACS grade, inhibitor free solvents by passage through activated molecular sieves in an Innovative Technology solvent purification system. CDCl3 was purchased from Cambridge Isotope Laboratories, Inc., dried over molecular sieves, and stored in a desiccator until use. 1H and 13C NMR spectra were recorded on an Avance 500 MHz s pectrometer with residual protiated solvent as a reference.
To an oven dried 50 ml Schlenk flask equipped with a magnetic stir bar and a rubber septum, 0.685 g (3.9 mmol) of (R)-N-(2-(benzyloxy)ethylidene)-2-methylpropane-2-sulfinamide, prepared from 2-butene-1,4-diol (Evans et al., 2008, and Tang et al., 2001), and 20 ml of toluene were added, and the mixture was cooled to 195 K under nitrogen (Fig. 2). Also at 195 K and under positive nitrogen pressure, Grignard reagent 4-tert-butylmagnesium bromide (1.5 equivalents, 5.85 mmol), prepared from 4-tert-butylbromobenzene (Tilstam and Weinmann, 2002), was added dropwise via cannula. The reaction was stirred at 195 K until complete consumption of the imine was confirmed by TLC (25% ethyl acetate in hexanes). After quenching with aqueous saturated sodium sulfate, the mixture was warmed to room temperature, dried over sodium sulfate, and filtered through Celite. By 1H NMR, the crude product was a 3.6:1 ratio of
favoring the title compound. Solvent was removed under reduced pressure and the resultant viscous yellow oil was purified by (25% ethyl acetate in hexanes) to yield a white solid (266 mg, 18% yield). Initially single crystals of the unsolvated material were grown from a saturated pentane solution at 243 K. NMR analysis of these crystals showed only the title compound and none of the minor diastereomer, (R)-N-((S)-2-(benzyloxy)-1-(4-(tert- butyl)phenyl)ethyl)-2-methylpropane-2-sulfinamide. However, the structure suffered from severe disorder. High quality single crystals of the title material were obtained from slow evaporation of a methanol solution at room temperature.The following characterizations were performed on the unsolvated material: Mp 334–336 K. 1H NMR (CDCl3, 500 MHz): δ 7.37–7.26 (m, 9H), 4.69–4.73 (m, 1H), 4.65 (d, J = 11 Hz, 1H), 4.54 (d, J = 12 Hz, 1H), 4.18 (s, 1H), 3.67–3.57 (m, 2H), 1.31 (s, 9H), 1.23 (s, 9H) p.p.m.. 13C{1H} NMR (CDCl3, 125 MHz): δ 150.90, 137.70, 135.37, 128.47, 128.36, 127.83, 127.54, 125.39, 74.19, 72.67, 56.89, 55.49, 34.55, 31.35, 22.64 p.p.m.. IR (neat): 3306, 1061 cm-1.
Crystal data for the highly disordered unsolvated compound: Orthorhombic, P212121; Cell constants (Å, °): a = 5.6753 (7), b = 17.305 (2), c = 22.188 (3); V = 2179.2 (5) Å3; Z = 4; T = 100.0 (5) K; 12121 reflections (9622 for [I > 2σ(I)]).
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title material, showing the atom numbering. The two organic molecules are related by a crystallographic twofold axis (1 - x, y, -z) that includes the water molecule. Intermolecular O–H···O hydrogen bonding is represented with dashed lines. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Reaction scheme. |
2C23H33NO2S·H2O | F(000) = 860 |
Mr = 793.14 | Dx = 1.172 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
a = 21.5717 (17) Å | Cell parameters from 4053 reflections |
b = 6.1097 (5) Å | θ = 2.2–37.9° |
c = 17.0838 (14) Å | µ = 0.16 mm−1 |
β = 93.2220 (17)° | T = 100 K |
V = 2248.0 (3) Å3 | Needle, colorless |
Z = 2 | 0.40 × 0.18 × 0.16 mm |
Bruker SMART APEXII CCD platform diffractometer | 9359 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
ω scans | θmax = 38.7°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2012) | h = −37→37 |
Tmin = 0.662, Tmax = 0.748 | k = −10→10 |
34281 measured reflections | l = −29→29 |
12280 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | All H-atom parameters refined |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0513P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
12280 reflections | Δρmax = 0.46 e Å−3 |
385 parameters | Δρmin = −0.25 e Å−3 |
1 restraint | Absolute structure: Flack parameter determined using 3436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (3) |
2C23H33NO2S·H2O | V = 2248.0 (3) Å3 |
Mr = 793.14 | Z = 2 |
Monoclinic, C2 | Mo Kα radiation |
a = 21.5717 (17) Å | µ = 0.16 mm−1 |
b = 6.1097 (5) Å | T = 100 K |
c = 17.0838 (14) Å | 0.40 × 0.18 × 0.16 mm |
β = 93.2220 (17)° |
Bruker SMART APEXII CCD platform diffractometer | 12280 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2012) | 9359 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 0.748 | Rint = 0.049 |
34281 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | All H-atom parameters refined |
wR(F2) = 0.110 | Δρmax = 0.46 e Å−3 |
S = 1.01 | Δρmin = −0.25 e Å−3 |
12280 reflections | Absolute structure: Flack parameter determined using 3436 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004) |
385 parameters | Absolute structure parameter: −0.01 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. All hydrogen atoms were found from the difference Fourier map and refined freely. The absolute configuration was deterimined using 3436 quotients, which gave a Flack parameter of -0.01 (3) (Parsons and Flack, 2004, Parson et al., 2013). This is essentially the same value obtained without Dobs(h) as a restraint, which resulted in a Flack parameter of -0.01 (4), calculated from 5617 Friedel pairs (Flack, 1983). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.42226 (2) | 0.46312 (7) | 0.15482 (2) | 0.01727 (8) | |
O1 | 0.58554 (6) | 0.8370 (2) | 0.16151 (7) | 0.0209 (2) | |
O2 | 0.46240 (7) | 0.2778 (2) | 0.13077 (8) | 0.0285 (3) | |
N1 | 0.46287 (6) | 0.6943 (2) | 0.16175 (8) | 0.0163 (2) | |
H1N | 0.4839 (11) | 0.719 (4) | 0.1199 (14) | 0.030 (6)* | |
C1 | 0.50207 (7) | 0.7109 (3) | 0.23545 (9) | 0.0161 (3) | |
H1 | 0.5262 (10) | 0.574 (4) | 0.2460 (12) | 0.016 (5)* | |
C2 | 0.54948 (7) | 0.8923 (3) | 0.22575 (9) | 0.0178 (3) | |
H2A | 0.5281 (10) | 1.029 (4) | 0.2189 (14) | 0.023 (6)* | |
H2B | 0.5749 (9) | 0.904 (3) | 0.2734 (12) | 0.012 (5)* | |
C3 | 0.62305 (8) | 1.0173 (3) | 0.13942 (10) | 0.0227 (3) | |
H3A | 0.5959 (11) | 1.147 (4) | 0.1336 (13) | 0.022 (6)* | |
H3B | 0.6351 (9) | 0.979 (4) | 0.0868 (13) | 0.022 (5)* | |
C4 | 0.67655 (8) | 1.0589 (3) | 0.19842 (9) | 0.0197 (3) | |
C5 | 0.68504 (9) | 1.2612 (3) | 0.23440 (11) | 0.0255 (4) | |
H5 | 0.6574 (12) | 1.379 (5) | 0.2226 (15) | 0.037 (7)* | |
C6 | 0.73526 (11) | 1.2977 (4) | 0.28735 (12) | 0.0341 (5) | |
H6 | 0.7411 (11) | 1.431 (5) | 0.3100 (15) | 0.036 (7)* | |
C7 | 0.77729 (10) | 1.1315 (4) | 0.30506 (13) | 0.0349 (5) | |
H7 | 0.8120 (12) | 1.157 (5) | 0.3420 (15) | 0.041 (7)* | |
C8 | 0.76889 (9) | 0.9273 (4) | 0.27026 (12) | 0.0314 (5) | |
H8 | 0.7981 (13) | 0.816 (5) | 0.2848 (16) | 0.046 (8)* | |
C9 | 0.71873 (8) | 0.8916 (3) | 0.21733 (11) | 0.0242 (3) | |
H9 | 0.7099 (12) | 0.759 (5) | 0.1917 (14) | 0.033 (7)* | |
C10 | 0.46395 (7) | 0.7656 (3) | 0.30471 (8) | 0.0154 (3) | |
C11 | 0.46392 (7) | 0.6297 (3) | 0.36989 (10) | 0.0177 (3) | |
H11 | 0.4859 (10) | 0.499 (4) | 0.3673 (13) | 0.024 (6)* | |
C12 | 0.43313 (8) | 0.6904 (3) | 0.43609 (9) | 0.0181 (3) | |
H12 | 0.4333 (10) | 0.594 (4) | 0.4788 (13) | 0.025 (6)* | |
C13 | 0.40197 (7) | 0.8894 (3) | 0.44018 (9) | 0.0161 (3) | |
C14 | 0.40172 (7) | 1.0238 (3) | 0.37349 (10) | 0.0184 (3) | |
H14 | 0.3801 (11) | 1.162 (4) | 0.3734 (13) | 0.024 (6)* | |
C15 | 0.43132 (7) | 0.9623 (3) | 0.30689 (9) | 0.0185 (3) | |
H15 | 0.4295 (10) | 1.052 (4) | 0.2600 (13) | 0.024 (6)* | |
C16 | 0.37205 (7) | 0.9653 (4) | 0.51461 (9) | 0.0192 (3) | |
C17 | 0.35710 (9) | 0.7726 (4) | 0.56789 (11) | 0.0248 (4) | |
H17A | 0.3367 (10) | 0.810 (4) | 0.6113 (13) | 0.025 (6)* | |
H17B | 0.3945 (12) | 0.696 (5) | 0.5893 (14) | 0.034 (7)* | |
H17C | 0.3302 (12) | 0.670 (5) | 0.5370 (15) | 0.039 (7)* | |
C18 | 0.31087 (10) | 1.0872 (5) | 0.49419 (13) | 0.0340 (5) | |
H18A | 0.2904 (12) | 1.139 (5) | 0.5422 (15) | 0.038 (7)* | |
H18B | 0.2843 (13) | 1.004 (5) | 0.4603 (18) | 0.051 (8)* | |
H18C | 0.3177 (11) | 1.213 (5) | 0.4672 (15) | 0.032 (7)* | |
C19 | 0.41775 (9) | 1.1181 (3) | 0.55980 (11) | 0.0249 (3) | |
H19A | 0.4012 (10) | 1.170 (4) | 0.6085 (13) | 0.020 (5)* | |
H19B | 0.4268 (10) | 1.243 (4) | 0.5268 (12) | 0.018 (5)* | |
H19C | 0.4586 (9) | 1.037 (4) | 0.5743 (12) | 0.017 (5)* | |
C20 | 0.37165 (7) | 0.5317 (3) | 0.06805 (10) | 0.0182 (3) | |
C21 | 0.40958 (8) | 0.5784 (3) | −0.00242 (10) | 0.0215 (3) | |
H21A | 0.3833 (11) | 0.591 (4) | −0.0478 (14) | 0.026 (6)* | |
H21B | 0.4409 (10) | 0.450 (5) | −0.0104 (14) | 0.030 (6)* | |
H21C | 0.4312 (11) | 0.717 (4) | 0.0028 (13) | 0.023 (6)* | |
C22 | 0.33246 (10) | 0.3261 (4) | 0.05314 (12) | 0.0293 (4) | |
H22A | 0.3027 (14) | 0.348 (6) | 0.0101 (18) | 0.052 (8)* | |
H22B | 0.3099 (12) | 0.280 (5) | 0.0976 (15) | 0.030 (6)* | |
H22C | 0.3551 (13) | 0.198 (5) | 0.0423 (16) | 0.049 (8)* | |
C23 | 0.33169 (9) | 0.7248 (4) | 0.09006 (12) | 0.0269 (4) | |
H23A | 0.2998 (13) | 0.757 (5) | 0.0466 (16) | 0.047 (8)* | |
H23B | 0.3557 (11) | 0.851 (4) | 0.0981 (14) | 0.029 (6)* | |
H23C | 0.3068 (11) | 0.692 (4) | 0.1352 (14) | 0.028 (6)* | |
O3 | 0.5000 | 0.0337 (4) | 0.0000 | 0.0323 (4) | |
H3O | 0.4903 (13) | 0.116 (5) | 0.0355 (16) | 0.047 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01922 (16) | 0.01591 (15) | 0.01623 (15) | −0.00308 (15) | −0.00284 (12) | 0.00315 (15) |
O1 | 0.0192 (5) | 0.0285 (6) | 0.0150 (5) | −0.0090 (5) | 0.0021 (4) | −0.0026 (4) |
O2 | 0.0358 (7) | 0.0181 (6) | 0.0304 (7) | 0.0067 (5) | −0.0080 (6) | 0.0006 (5) |
N1 | 0.0162 (6) | 0.0182 (6) | 0.0140 (5) | −0.0052 (5) | −0.0017 (4) | 0.0013 (5) |
C1 | 0.0150 (6) | 0.0194 (7) | 0.0137 (6) | 0.0000 (5) | −0.0018 (5) | 0.0007 (5) |
C2 | 0.0153 (6) | 0.0233 (7) | 0.0146 (6) | −0.0031 (6) | −0.0005 (5) | −0.0011 (6) |
C3 | 0.0225 (7) | 0.0301 (9) | 0.0152 (7) | −0.0099 (6) | −0.0015 (6) | 0.0035 (6) |
C4 | 0.0181 (7) | 0.0251 (8) | 0.0157 (6) | −0.0066 (6) | 0.0011 (5) | 0.0007 (6) |
C5 | 0.0281 (9) | 0.0244 (9) | 0.0241 (8) | −0.0056 (7) | 0.0014 (7) | −0.0009 (7) |
C6 | 0.0412 (11) | 0.0354 (11) | 0.0253 (9) | −0.0187 (9) | −0.0020 (8) | −0.0050 (8) |
C7 | 0.0265 (9) | 0.0502 (13) | 0.0267 (9) | −0.0176 (9) | −0.0092 (7) | 0.0087 (9) |
C8 | 0.0203 (7) | 0.0418 (13) | 0.0316 (9) | −0.0043 (8) | −0.0033 (7) | 0.0136 (9) |
C9 | 0.0235 (8) | 0.0252 (8) | 0.0241 (8) | −0.0047 (7) | 0.0024 (6) | 0.0027 (7) |
C10 | 0.0139 (6) | 0.0184 (7) | 0.0134 (6) | −0.0015 (5) | −0.0025 (5) | 0.0013 (5) |
C11 | 0.0189 (7) | 0.0162 (7) | 0.0178 (7) | 0.0006 (6) | 0.0005 (5) | 0.0022 (5) |
C12 | 0.0192 (7) | 0.0194 (7) | 0.0156 (6) | 0.0007 (6) | 0.0002 (5) | 0.0033 (5) |
C13 | 0.0132 (6) | 0.0198 (7) | 0.0149 (6) | −0.0014 (5) | −0.0023 (5) | 0.0000 (5) |
C14 | 0.0168 (6) | 0.0184 (7) | 0.0197 (7) | 0.0030 (5) | −0.0004 (5) | 0.0029 (5) |
C15 | 0.0179 (6) | 0.0210 (6) | 0.0166 (6) | 0.0020 (7) | 0.0001 (5) | 0.0050 (7) |
C16 | 0.0175 (6) | 0.0245 (7) | 0.0156 (6) | 0.0022 (7) | −0.0007 (5) | −0.0018 (7) |
C17 | 0.0237 (8) | 0.0308 (9) | 0.0205 (8) | −0.0048 (7) | 0.0062 (6) | −0.0014 (7) |
C18 | 0.0269 (9) | 0.0531 (15) | 0.0220 (9) | 0.0182 (9) | 0.0004 (7) | −0.0013 (9) |
C19 | 0.0328 (9) | 0.0221 (8) | 0.0195 (8) | −0.0039 (7) | −0.0018 (7) | −0.0022 (6) |
C20 | 0.0157 (6) | 0.0195 (7) | 0.0189 (7) | −0.0039 (5) | −0.0030 (5) | 0.0023 (5) |
C21 | 0.0233 (7) | 0.0233 (8) | 0.0174 (7) | −0.0027 (6) | −0.0024 (6) | 0.0046 (6) |
C22 | 0.0283 (9) | 0.0320 (10) | 0.0270 (9) | −0.0142 (8) | −0.0033 (7) | −0.0004 (8) |
C23 | 0.0206 (8) | 0.0292 (10) | 0.0307 (9) | 0.0044 (7) | −0.0012 (7) | 0.0029 (8) |
O3 | 0.0374 (11) | 0.0194 (9) | 0.0399 (12) | 0.000 | 0.0008 (10) | 0.000 |
S1—O2 | 1.4967 (14) | C12—H12 | 0.94 (2) |
S1—N1 | 1.6628 (14) | C13—C14 | 1.404 (2) |
S1—C20 | 1.8394 (16) | C13—C16 | 1.530 (2) |
O1—C2 | 1.421 (2) | C14—C15 | 1.387 (2) |
O1—C3 | 1.430 (2) | C14—H14 | 0.96 (2) |
N1—C1 | 1.480 (2) | C15—H15 | 0.97 (2) |
N1—H1N | 0.88 (2) | C16—C17 | 1.533 (3) |
C1—C10 | 1.516 (2) | C16—C19 | 1.534 (3) |
C1—C2 | 1.523 (2) | C16—C18 | 1.538 (3) |
C1—H1 | 1.00 (2) | C17—H17A | 0.91 (2) |
C2—H2A | 0.96 (2) | C17—H17B | 0.99 (3) |
C2—H2B | 0.96 (2) | C17—H17C | 0.99 (3) |
C3—C4 | 1.511 (2) | C18—H18A | 1.00 (3) |
C3—H3A | 0.99 (2) | C18—H18B | 0.94 (3) |
C3—H3B | 0.98 (2) | C18—H18C | 0.91 (3) |
C4—C5 | 1.388 (3) | C19—H19A | 0.98 (2) |
C4—C9 | 1.394 (3) | C19—H19B | 0.97 (2) |
C5—C6 | 1.390 (3) | C19—H19C | 1.03 (2) |
C5—H5 | 0.95 (3) | C20—C21 | 1.520 (2) |
C6—C7 | 1.383 (4) | C20—C23 | 1.521 (3) |
C6—H6 | 0.91 (3) | C20—C22 | 1.527 (3) |
C7—C8 | 1.390 (4) | C21—H21A | 0.94 (2) |
C7—H7 | 0.96 (3) | C21—H21B | 1.05 (3) |
C8—C9 | 1.388 (3) | C21—H21C | 0.97 (2) |
C8—H8 | 0.95 (3) | C22—H22A | 0.96 (3) |
C9—H9 | 0.94 (3) | C22—H22B | 0.97 (3) |
C10—C11 | 1.389 (2) | C22—H22C | 0.94 (3) |
C10—C15 | 1.394 (2) | C23—H23A | 1.00 (3) |
C11—C12 | 1.394 (2) | C23—H23B | 0.94 (3) |
C11—H11 | 0.93 (2) | C23—H23C | 0.99 (2) |
C12—C13 | 1.393 (2) | O3—H3O | 0.82 (3) |
O2—S1—N1 | 110.59 (8) | C15—C14—C13 | 121.74 (16) |
O2—S1—C20 | 106.10 (8) | C15—C14—H14 | 118.7 (14) |
N1—S1—C20 | 98.65 (7) | C13—C14—H14 | 119.5 (14) |
C2—O1—C3 | 111.30 (14) | C14—C15—C10 | 120.77 (15) |
C1—N1—S1 | 113.10 (11) | C14—C15—H15 | 121.8 (13) |
C1—N1—H1N | 112.5 (16) | C10—C15—H15 | 117.4 (13) |
S1—N1—H1N | 112.5 (17) | C13—C16—C17 | 111.92 (16) |
N1—C1—C10 | 111.72 (12) | C13—C16—C19 | 108.26 (13) |
N1—C1—C2 | 108.20 (13) | C17—C16—C19 | 108.61 (14) |
C10—C1—C2 | 108.77 (13) | C13—C16—C18 | 110.78 (13) |
N1—C1—H1 | 111.3 (12) | C17—C16—C18 | 107.46 (16) |
C10—C1—H1 | 110.2 (12) | C19—C16—C18 | 109.78 (18) |
C2—C1—H1 | 106.4 (12) | C16—C17—H17A | 114.7 (15) |
O1—C2—C1 | 108.14 (13) | C16—C17—H17B | 113.0 (15) |
O1—C2—H2A | 113.2 (14) | H17A—C17—H17B | 103.8 (19) |
C1—C2—H2A | 109.1 (13) | C16—C17—H17C | 107.9 (16) |
O1—C2—H2B | 111.2 (11) | H17A—C17—H17C | 107 (2) |
C1—C2—H2B | 108.4 (12) | H17B—C17—H17C | 110 (2) |
H2A—C2—H2B | 106.8 (19) | C16—C18—H18A | 112.2 (15) |
O1—C3—C4 | 112.08 (14) | C16—C18—H18B | 111.4 (19) |
O1—C3—H3A | 107.7 (13) | H18A—C18—H18B | 113 (2) |
C4—C3—H3A | 111.0 (14) | C16—C18—H18C | 111.1 (16) |
O1—C3—H3B | 103.9 (14) | H18A—C18—H18C | 104 (2) |
C4—C3—H3B | 114.9 (12) | H18B—C18—H18C | 105 (2) |
H3A—C3—H3B | 106.7 (18) | C16—C19—H19A | 111.7 (13) |
C5—C4—C9 | 118.82 (17) | C16—C19—H19B | 109.2 (13) |
C5—C4—C3 | 121.48 (17) | H19A—C19—H19B | 109.6 (18) |
C9—C4—C3 | 119.70 (17) | C16—C19—H19C | 110.3 (12) |
C4—C5—C6 | 120.6 (2) | H19A—C19—H19C | 107.4 (18) |
C4—C5—H5 | 121.0 (16) | H19B—C19—H19C | 108.5 (17) |
C6—C5—H5 | 118.3 (17) | C21—C20—C23 | 112.84 (15) |
C7—C6—C5 | 120.1 (2) | C21—C20—C22 | 109.86 (15) |
C7—C6—H6 | 119.5 (16) | C23—C20—C22 | 111.29 (15) |
C5—C6—H6 | 120.3 (16) | C21—C20—S1 | 111.06 (11) |
C6—C7—C8 | 119.82 (19) | C23—C20—S1 | 107.24 (12) |
C6—C7—H7 | 120.2 (17) | C22—C20—S1 | 104.18 (12) |
C8—C7—H7 | 120.0 (17) | C20—C21—H21A | 110.1 (14) |
C9—C8—C7 | 119.9 (2) | C20—C21—H21B | 110.0 (13) |
C9—C8—H8 | 122.6 (18) | H21A—C21—H21B | 109 (2) |
C7—C8—H8 | 117.6 (18) | C20—C21—H21C | 111.6 (13) |
C8—C9—C4 | 120.71 (19) | H21A—C21—H21C | 106 (2) |
C8—C9—H9 | 124.8 (16) | H21B—C21—H21C | 110.8 (19) |
C4—C9—H9 | 114.5 (16) | C20—C22—H22A | 111 (2) |
C11—C10—C15 | 118.08 (14) | C20—C22—H22B | 114.0 (16) |
C11—C10—C1 | 121.25 (15) | H22A—C22—H22B | 107 (2) |
C15—C10—C1 | 120.51 (13) | C20—C22—H22C | 115.1 (18) |
C10—C11—C12 | 120.89 (15) | H22A—C22—H22C | 107 (3) |
C10—C11—H11 | 116.9 (14) | H22B—C22—H22C | 102 (2) |
C12—C11—H11 | 122.2 (14) | C20—C23—H23A | 110.2 (17) |
C13—C12—C11 | 121.75 (15) | C20—C23—H23B | 111.1 (15) |
C13—C12—H12 | 119.3 (14) | H23A—C23—H23B | 107 (2) |
C11—C12—H12 | 118.9 (14) | C20—C23—H23C | 112.1 (15) |
C12—C13—C14 | 116.72 (14) | H23A—C23—H23C | 104 (2) |
C12—C13—C16 | 122.24 (15) | H23B—C23—H23C | 112 (2) |
C14—C13—C16 | 120.98 (15) | ||
O2—S1—N1—C1 | −79.01 (13) | C15—C10—C11—C12 | −1.2 (2) |
C20—S1—N1—C1 | 170.09 (11) | C1—C10—C11—C12 | 174.35 (15) |
S1—N1—C1—C10 | −75.83 (16) | C10—C11—C12—C13 | −0.8 (3) |
S1—N1—C1—C2 | 164.47 (11) | C11—C12—C13—C14 | 1.6 (2) |
C3—O1—C2—C1 | 169.06 (13) | C11—C12—C13—C16 | −175.44 (15) |
N1—C1—C2—O1 | −59.44 (17) | C12—C13—C14—C15 | −0.4 (2) |
C10—C1—C2—O1 | 179.02 (13) | C16—C13—C14—C15 | 176.72 (15) |
C2—O1—C3—C4 | 72.42 (18) | C13—C14—C15—C10 | −1.7 (3) |
O1—C3—C4—C5 | −123.42 (18) | C11—C10—C15—C14 | 2.4 (2) |
O1—C3—C4—C9 | 56.8 (2) | C1—C10—C15—C14 | −173.17 (15) |
C9—C4—C5—C6 | 1.1 (3) | C12—C13—C16—C17 | −23.2 (2) |
C3—C4—C5—C6 | −178.68 (17) | C14—C13—C16—C17 | 159.92 (15) |
C4—C5—C6—C7 | −0.3 (3) | C12—C13—C16—C19 | 96.5 (2) |
C5—C6—C7—C8 | −0.5 (3) | C14—C13—C16—C19 | −80.41 (19) |
C6—C7—C8—C9 | 0.6 (3) | C12—C13—C16—C18 | −143.07 (19) |
C7—C8—C9—C4 | 0.1 (3) | C14—C13—C16—C18 | 40.0 (2) |
C5—C4—C9—C8 | −1.0 (3) | O2—S1—C20—C21 | −54.50 (14) |
C3—C4—C9—C8 | 178.79 (16) | N1—S1—C20—C21 | 59.96 (13) |
N1—C1—C10—C11 | 122.18 (16) | O2—S1—C20—C23 | −178.21 (12) |
C2—C1—C10—C11 | −118.45 (17) | N1—S1—C20—C23 | −63.75 (13) |
N1—C1—C10—C15 | −62.37 (19) | O2—S1—C20—C22 | 63.72 (14) |
C2—C1—C10—C15 | 56.99 (18) | N1—S1—C20—C22 | 178.18 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2 | 0.82 (3) | 2.02 (3) | 2.8420 (19) | 171 (3) |
C2—H2A···O2i | 0.96 (2) | 2.52 (2) | 3.372 (2) | 148.1 (19) |
C21—H21C···O3i | 0.97 (2) | 2.44 (2) | 3.397 (3) | 169.0 (19) |
Symmetry code: (i) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O2 | 0.82 (3) | 2.02 (3) | 2.8420 (19) | 171 (3) |
C2—H2A···O2i | 0.96 (2) | 2.52 (2) | 3.372 (2) | 148.1 (19) |
C21—H21C···O3i | 0.97 (2) | 2.44 (2) | 3.397 (3) | 169.0 (19) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The authors thank Jill Caputo and Malik Al-Afyouni for guiding the synthetic work of CLH and TJB, and the University of Rochester Chemistry Department (CHM 234) for financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bergmeier, S. C. (2000). Tetrahedron, 56, 2561–2576. Web of Science CrossRef CAS Google Scholar
Bruker (2013). APEX2 and SAINT. Bruker AXS, Inc., Madison, WI, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Evans, D. A., Kvaernø, L., Dunn, T. B., Beauchemin, A., Raymer, B., Mulder, J. A., Olhava, E. J., Juhl, M., Kagechika, K. & Favor, D. A. (2008). J. Am. Chem. Soc. 130, 16295–16309. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61. CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2012). SADABS. University of Göttingen, Germany. Google Scholar
Tang, T. P., Volkman, S. K. & Ellman, J. A. (2001). J. Org. Chem. 66, 8772–8778. Web of Science CrossRef PubMed CAS Google Scholar
Tilstam, U. & Weinmann, H. (2002). Org. Process Res. Dev. 6, 906–910. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We report the synthesis, isolation, and characterization of the protected 1,2-aminoalcohol (R)-N-((R)-2-(benzyloxy)- 1-(4-(tert-butyl)phenyl)ethyl)-2-methylpropane-2-sulfinamide (Fig. 1) from the addition of 4-tert-butylphenylmagnesium bromide to an N-tert-butanesulfinyl imine (Fig. 2) according to the procedure of Ellman (Tang et al., 2001). 1,2-Aminoalcohols are found in a variety of pharmaceutically active compounds and are an important component of the chiral pool (Bergmeier, 2000). The method of Ellman and Tang is one of the most direct to monosubstituted aminoalcohols and relies upon the chiral ammonia equivalent, 2-methyl-2-propanesulfinamide (tert-butanesulfinamide). In the original report, the absolute configuration of the products was determined by comparison of optical rotations and no structures of the products of these reactions have been reported in the database. This structure is consistent with the sense of induction reported by Ellman and Tang (Tang et al., 2001). There are 21 structures of N-sulfinyl-protected 1,2-aminoalcohols in the Cambridge Stuctural Database, but only two of these structures have no substitution at the 1 position and have substitution at the 2 position (Allen, 2002, refcodes FOKDUF, YEQBOM). Neither of these two structures was made by the method we used and neither has an aryl group at the 2 position.