organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o408-o409

Trichodermaerin: a diterpene lactone from Trichoderma asperellum

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bSchool of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 1 January 2014; accepted 28 February 2014; online 8 March 2014)

The title compound, C20H28O3, known as `trichodermaerin' [systematic name: (4E)-4,9,15,16,16-penta­methyl-6-oxa­tetra­cyclo­[10.3.1.01,10.05,9]hexa­dec-4-ene-7,13-dione], is a diterpene lactone which was isolated from Trichoderma asperellum. The structure has a tetra­cycic 6–5–7–5 ring system, with the cyclo­hexa­none ring adopting a twisted half-chair conformation and the cyclo­pentane ring adopting a half-chair conformation, whereas the cyclo­heptene and tetra­hydro­furan­anone rings are in chair and envelope (with the methyl-substituted C atom as the flap) conformations, respectively. The three-dimensional architecture is stabilized by C—H⋯O inter­actions.

Related literature

For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For background to Trichoderma and diterpene lactones, see, for example: De los Santos-Villalobos et al. (2011[De los Santos-Villalobos, S., Guzmán-Ortiz, D. A., De-Folter, S., Gómez-Lim, M. A., Délano-Frier, J. P., De-Folter, S., Sánchez-García, P. & Peña-Cabriales, J. J. (2011). Biol. Control. 2, 221-234.]); Evidente et al. (2006[Evidente, A., Cabras, A., Maddau, L., Marras, L., Andolfi, A., Melck, D. & Motta, A. (2006). J. Agric. Food Chem. 54, 6588-6592.]); Hajieghrari et al. (2008[Hajieghrari, B., Torabi-Giglou, M., Mohammadi, M. R. & Davari, M. (2008). Afr. J. Biotechnol. 7, 967-972.]); Kumar et al. (2012[Kumar, P., Misra, A. K., Modi, D. R. & Gupta, V. K. (2012). Arch Phytopathol. Plant Prot. 45, 1237-1245.]); Vinale (2009[Vinale, F., Flematti, G., Sivasithamparam, K., Lorito, M., Marra, R., Skelton, B. W. & Ghisalberti, E. L. (2009). J. Nat. Prod. 72, 2032-2035.]); Xie et al. (2013[Xie, Z.-L., Li, H.-J., Wang, L.-Y., Liang, W.-L., Liu, W. & Lan, W.-J. (2013). Nat. Prod. Commun. 8, 67-68.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H28O3

  • Mr = 316.42

  • Monoclinic, P 21

  • a = 9.1703 (4) Å

  • b = 10.2234 (5) Å

  • c = 9.2681 (4) Å

  • β = 108.539 (1)°

  • V = 823.81 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.47 × 0.28 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.986

  • 17364 measured reflections

  • 2517 independent reflections

  • 2492 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.06

  • 2517 reflections

  • 213 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O3i 0.99 2.60 3.5649 (14) 165
C16—H16B⋯O2ii 0.98 2.41 3.2810 (16) 148
C20—H20C⋯O3iii 0.98 2.56 3.5292 (15) 173
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Trichoderma genus is accepted as a superior biocontrol agent of plant pathogens (Hajieghrari et al., 2008; Kumar et al., 2012). Secondary metabolites from Trichoderma fungi have been reported to inhibit the phytopathogenic growth against Colletotrichum gloeosporioides (De los Santos-Villalobos et al., 2011), Pythium irregular, Sclerotinia sclerotiorum, Rhizoctonia solani (Vinale, 2009) and Sclerotium rolfsii (Evidente et al., 2006). Our study on the chemical constituents and bioactive compounds from Trichoderma asperellum stain F009, collected from soils in Suphan Buri province (Thailand), has led us to the isolation of the title diterpene lactone (I) which is known as "Trichodermaerin". The title compound was briefly reported together with Trichoderma erinaceum (Xie et al., 2013). Our antifungal assay revealed that at 200 ppm of the extract had 76.5% growth inhibition against Colletotrichum gloeosporioides. Herein we report the crystal structure of (I).

The molecule of the title compound has a tetracyclic 6-5-7-5 ring system (Fig. 1). The cyclohexanone ring adopts a twisted half-chair conformation with the puckered C8 and C12 atoms having the maximum deviation of -0.003 (1) and 0.440 (1) Å, respectively from the best plane of the remaining four atoms (C6/C7/C9/C10) and with the puckering parameters Q = 0.6548 (12) Å, θ = 143.53 (10)° and ϕ = 107.15 (18)°. The cyclopentane ring is in a half-chair conformation with the puckered C6 and C12 atoms having the maximum deviation of 0.309 (1) and -0.301 (1) Å, respectively from the mean plane of C5/C10/C11 atoms and with the puckering parameters Q = 0.5030 (12) Å and ϕ = 52.10 (13)°. The cycloheptene ring adopts a standard chair conformation with the puckering parameter Q = 0.6792 (12) Å whereas the tetrahydrofuranone ring is in an envelope conformation with the puckered C4 atom having a deviation of 0.149 (1) Å and the puckering parameters Q = 0.2519 (12) Å and θ = 267.5 (2)° (Cremer & Pople 1975). The bond distances are of normal values (Allen et al., 1987).

In the crystal structure (Fig. 2), the molecules are linked into screw chains through weak C16—H16B···O2 and C20—H20C···O3 interactions (Table 1) and the adjacent chains are further interconnected by weak C3—H3B···O3 interactions (Fig. 3 and Table 1). The crystal of (I) is consolidated by these intermolecular C—H···O weak interactions.

Related literature top

For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For background to Trichoderma and diterpene lactones, see, for example: De los Santos-Villalobos et al. (2011); Evidente et al. (2006); Hajieghrari et al. (2008); Kumar et al. (2012); Vinale (20093); Xie et al. (2013). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

Trichoderma asperellum stain F009 was inoculated in potato dextrose broth (PDB) for 27 days at room temperature. The broth culture (18 L) was extracted with ethyl acetate to obtain a crude ethyl acetate extract (1.956 g) as a brown viscous liquid. The crude extract was submitted to purification by column chromatography on silica gel with solvent mixtures of increasing polarity (hexane to CH3OH) to give fourteen fractions (F1-F14). Further separation of the subfraction F4 (122.4 mg) on silica gel column chromatography eluted with 20% ethyl acetate–hexane afforded compound (I) (5.6 mg). Colorless block-shaped single crystals of (I) suitable for X-ray structure determination were recrystallized from ethyl acetate by the slow evaporation of the solvent at room temperature after several days, Mp. 484.05–484.95 K.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 1.00 Å for CH, 0.99 Å for CH2 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. A total of 2218 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing screw chains. Only H atoms involved in hydrogen bonds were shown for clarity. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Showing the connection of the adjacent screw chains by C—H···O weak interactions. Only H atoms involved in hydrogen bonds were shown for clarity. Hydrogen bonds are shown as dashed lines.
(4E)-4,9,15,16,16-Pentamethyl-6-oxatetracyclo[10.3.1.01,10.05,9]hexadec-4-ene-7,13-dione top
Crystal data top
C20H28O3F(000) = 344
Mr = 316.42Dx = 1.276 Mg m3
Monoclinic, P21Melting point = 484.05–484.95 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.1703 (4) ÅCell parameters from 2517 reflections
b = 10.2234 (5) Åθ = 2.3–30.0°
c = 9.2681 (4) ŵ = 0.08 mm1
β = 108.539 (1)°T = 100 K
V = 823.81 (6) Å3Block, colorless
Z = 20.47 × 0.28 × 0.17 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2517 independent reflections
Radiation source: sealed tube2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.962, Tmax = 0.986k = 1414
17364 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.0833P]
where P = (Fo2 + 2Fc2)/3
2517 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C20H28O3V = 823.81 (6) Å3
Mr = 316.42Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1703 (4) ŵ = 0.08 mm1
b = 10.2234 (5) ÅT = 100 K
c = 9.2681 (4) Å0.47 × 0.28 × 0.17 mm
β = 108.539 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2517 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2492 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.986Rint = 0.022
17364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
2517 reflectionsΔρmin = 0.16 e Å3
213 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56994 (9)0.42031 (8)0.42963 (9)0.01666 (16)
O20.36991 (11)0.48960 (10)0.49811 (11)0.0247 (2)
O30.76108 (11)1.06399 (9)0.03459 (10)0.02325 (19)
C10.67439 (12)0.47448 (10)0.36106 (11)0.01291 (18)
C20.46151 (13)0.51131 (11)0.43292 (12)0.01624 (19)
C30.47893 (11)0.63000 (11)0.34415 (12)0.01470 (19)
H3A0.46340.71120.39550.018*
H3B0.40430.62810.24000.018*
C40.64611 (11)0.62098 (10)0.33997 (11)0.01189 (17)
C50.64570 (11)0.66703 (10)0.18078 (11)0.01136 (17)
H5A0.57610.60330.10950.014*
C60.79247 (11)0.66867 (11)0.13020 (11)0.01212 (17)
C70.92305 (11)0.75723 (11)0.23495 (11)0.01437 (19)
H7A0.93110.73100.34120.017*
C80.88414 (13)0.90599 (12)0.22599 (13)0.0189 (2)
H8A0.85150.92880.31490.023*
H8B0.97980.95520.23590.023*
C90.76116 (13)0.95343 (12)0.08374 (12)0.0166 (2)
C100.63987 (12)0.85336 (11)0.01091 (11)0.01396 (19)
H10A0.55980.88980.08050.017*
C110.56749 (12)0.80094 (11)0.12984 (12)0.01427 (19)
H11A0.58800.86150.21740.017*
H11B0.45490.79040.08370.017*
C120.72306 (12)0.73384 (11)0.03161 (11)0.01303 (18)
C130.84953 (12)0.52859 (11)0.12202 (12)0.0158 (2)
H13A0.93570.53200.07930.019*
H13B0.76530.47810.05010.019*
C140.90411 (12)0.45392 (12)0.27425 (13)0.0176 (2)
H14A0.97070.38090.26330.021*
H14B0.96860.51380.35280.021*
C150.77981 (11)0.39824 (11)0.33248 (11)0.01390 (19)
C160.75106 (12)0.69002 (12)0.48303 (12)0.0160 (2)
H16A0.71780.66790.57060.024*
H16B0.74460.78490.46720.024*
H16C0.85750.66120.50230.024*
C171.08590 (12)0.73508 (14)0.22352 (14)0.0221 (2)
H17A1.15880.79430.29380.033*
H17B1.08480.75260.11920.033*
H17C1.11730.64430.25030.033*
C180.84033 (13)0.77677 (12)0.10901 (12)0.0170 (2)
H18A0.78660.81950.20600.026*
H18B0.89580.70000.12770.026*
H18C0.91360.83820.04280.026*
C190.60412 (13)0.64867 (12)0.14867 (12)0.0176 (2)
H19A0.56000.69850.24290.026*
H19B0.52210.62340.10740.026*
H19C0.65460.56990.17020.026*
C200.78631 (13)0.25306 (11)0.36025 (13)0.0175 (2)
H20A0.70420.22770.40120.026*
H20B0.88630.23000.43340.026*
H20C0.77270.20690.26420.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0190 (3)0.0147 (4)0.0198 (4)0.0004 (3)0.0111 (3)0.0019 (3)
O20.0280 (4)0.0209 (4)0.0337 (5)0.0020 (4)0.0217 (4)0.0015 (4)
O30.0322 (5)0.0150 (4)0.0242 (4)0.0030 (3)0.0112 (3)0.0008 (3)
C10.0145 (4)0.0132 (4)0.0119 (4)0.0001 (3)0.0052 (3)0.0008 (3)
C20.0177 (4)0.0148 (5)0.0181 (4)0.0008 (4)0.0084 (4)0.0013 (4)
C30.0138 (4)0.0154 (5)0.0172 (4)0.0013 (4)0.0082 (3)0.0015 (4)
C40.0125 (4)0.0122 (4)0.0123 (4)0.0010 (3)0.0058 (3)0.0003 (3)
C50.0112 (4)0.0117 (4)0.0120 (4)0.0013 (3)0.0049 (3)0.0006 (3)
C60.0116 (4)0.0140 (4)0.0119 (4)0.0012 (3)0.0053 (3)0.0002 (3)
C70.0114 (4)0.0176 (5)0.0136 (4)0.0012 (4)0.0033 (3)0.0001 (4)
C80.0185 (5)0.0187 (5)0.0180 (5)0.0035 (4)0.0035 (4)0.0027 (4)
C90.0203 (5)0.0154 (5)0.0164 (4)0.0006 (4)0.0088 (4)0.0014 (4)
C100.0146 (4)0.0135 (5)0.0141 (4)0.0009 (3)0.0050 (3)0.0018 (4)
C110.0145 (4)0.0137 (5)0.0160 (4)0.0036 (3)0.0068 (3)0.0028 (4)
C120.0143 (4)0.0135 (4)0.0115 (4)0.0010 (3)0.0045 (3)0.0000 (3)
C130.0182 (4)0.0152 (5)0.0168 (4)0.0040 (4)0.0096 (4)0.0010 (4)
C140.0156 (4)0.0182 (5)0.0211 (5)0.0057 (4)0.0088 (4)0.0051 (4)
C150.0149 (4)0.0138 (4)0.0128 (4)0.0023 (4)0.0041 (3)0.0012 (4)
C160.0183 (4)0.0171 (5)0.0128 (4)0.0020 (4)0.0053 (3)0.0029 (4)
C170.0122 (4)0.0313 (6)0.0234 (5)0.0006 (4)0.0066 (4)0.0023 (5)
C180.0192 (4)0.0198 (5)0.0144 (4)0.0029 (4)0.0085 (3)0.0001 (4)
C190.0197 (4)0.0190 (5)0.0131 (4)0.0043 (4)0.0038 (3)0.0013 (4)
C200.0191 (5)0.0131 (5)0.0184 (5)0.0033 (4)0.0033 (4)0.0005 (4)
Geometric parameters (Å, º) top
O1—C21.3691 (14)C10—H10A1.0000
O1—C11.4195 (12)C11—H11A0.9900
O2—C21.2012 (14)C11—H11B0.9900
O3—C91.2186 (15)C12—C181.5343 (14)
C1—C151.3323 (14)C12—C191.5403 (15)
C1—C41.5220 (15)C13—C141.5410 (15)
C2—C31.5027 (16)C13—H13A0.9900
C3—C41.5486 (14)C13—H13B0.9900
C3—H3A0.9900C14—C151.5185 (15)
C3—H3B0.9900C14—H14A0.9900
C4—C161.5398 (14)C14—H14B0.9900
C4—C51.5476 (14)C15—C201.5043 (16)
C5—C111.5480 (14)C16—H16A0.9800
C5—C61.5597 (13)C16—H16B0.9800
C5—H5A1.0000C16—H16C0.9800
C6—C131.5349 (15)C17—H17A0.9800
C6—C71.5674 (14)C17—H17B0.9800
C6—C121.5783 (14)C17—H17C0.9800
C7—C171.5470 (15)C18—H18A0.9800
C7—C81.5582 (17)C18—H18B0.9800
C7—H7A1.0000C18—H18C0.9800
C8—C91.5165 (16)C19—H19A0.9800
C8—H8A0.9900C19—H19B0.9800
C8—H8B0.9900C19—H19C0.9800
C9—C101.5040 (15)C20—H20A0.9800
C10—C111.5517 (14)C20—H20B0.9800
C10—C121.5561 (15)C20—H20C0.9800
C2—O1—C1110.06 (9)C5—C11—H11B110.7
C15—C1—O1119.76 (10)C10—C11—H11B110.7
C15—C1—C4130.91 (10)H11A—C11—H11B108.8
O1—C1—C4109.25 (9)C18—C12—C19106.08 (8)
O2—C2—O1120.97 (11)C18—C12—C10111.51 (9)
O2—C2—C3129.62 (11)C19—C12—C10109.14 (8)
O1—C2—C3109.40 (9)C18—C12—C6115.73 (8)
C2—C3—C4104.12 (9)C19—C12—C6114.33 (9)
C2—C3—H3A110.9C10—C12—C699.96 (8)
C4—C3—H3A110.9C6—C13—C14115.69 (9)
C2—C3—H3B110.9C6—C13—H13A108.4
C4—C3—H3B110.9C14—C13—H13A108.4
H3A—C3—H3B109.0C6—C13—H13B108.4
C1—C4—C16107.83 (9)C14—C13—H13B108.4
C1—C4—C5111.74 (8)H13A—C13—H13B107.4
C16—C4—C5119.53 (9)C15—C14—C13116.69 (9)
C1—C4—C3100.66 (8)C15—C14—H14A108.1
C16—C4—C3107.69 (8)C13—C14—H14A108.1
C5—C4—C3107.66 (8)C15—C14—H14B108.1
C4—C5—C11114.85 (8)C13—C14—H14B108.1
C4—C5—C6123.30 (8)H14A—C14—H14B107.3
C11—C5—C6105.02 (8)C1—C15—C20122.34 (10)
C4—C5—H5A103.8C1—C15—C14121.70 (10)
C11—C5—H5A103.8C20—C15—C14115.93 (9)
C6—C5—H5A103.8C4—C16—H16A109.5
C13—C6—C5110.19 (8)C4—C16—H16B109.5
C13—C6—C7111.36 (8)H16A—C16—H16B109.5
C5—C6—C7112.48 (8)C4—C16—H16C109.5
C13—C6—C12112.81 (8)H16A—C16—H16C109.5
C5—C6—C1299.45 (8)H16B—C16—H16C109.5
C7—C6—C12110.03 (8)C7—C17—H17A109.5
C17—C7—C8110.42 (9)C7—C17—H17B109.5
C17—C7—C6115.91 (9)H17A—C17—H17B109.5
C8—C7—C6114.45 (8)C7—C17—H17C109.5
C17—C7—H7A104.9H17A—C17—H17C109.5
C8—C7—H7A104.9H17B—C17—H17C109.5
C6—C7—H7A104.9C12—C18—H18A109.5
C9—C8—C7116.93 (9)C12—C18—H18B109.5
C9—C8—H8A108.1H18A—C18—H18B109.5
C7—C8—H8A108.1C12—C18—H18C109.5
C9—C8—H8B108.1H18A—C18—H18C109.5
C7—C8—H8B108.1H18B—C18—H18C109.5
H8A—C8—H8B107.3C12—C19—H19A109.5
O3—C9—C10123.42 (10)C12—C19—H19B109.5
O3—C9—C8122.25 (11)H19A—C19—H19B109.5
C10—C9—C8114.33 (10)C12—C19—H19C109.5
C9—C10—C11109.78 (9)H19A—C19—H19C109.5
C9—C10—C12107.20 (8)H19B—C19—H19C109.5
C11—C10—C12105.28 (8)C15—C20—H20A109.5
C9—C10—H10A111.4C15—C20—H20B109.5
C11—C10—H10A111.4H20A—C20—H20B109.5
C12—C10—H10A111.4C15—C20—H20C109.5
C5—C11—C10105.11 (8)H20A—C20—H20C109.5
C5—C11—H11A110.7H20B—C20—H20C109.5
C10—C11—H11A110.7
C2—O1—C1—C15173.20 (10)C7—C8—C9—O3150.53 (11)
C2—O1—C1—C49.64 (11)C7—C8—C9—C1030.16 (14)
C1—O1—C2—O2173.44 (10)O3—C9—C10—C11124.95 (11)
C1—O1—C2—C37.53 (12)C8—C9—C10—C1154.36 (12)
O2—C2—C3—C4160.06 (12)O3—C9—C10—C12121.19 (12)
O1—C2—C3—C421.02 (11)C8—C9—C10—C1259.51 (11)
C15—C1—C4—C1685.57 (13)C4—C5—C11—C10156.08 (8)
O1—C1—C4—C1691.17 (9)C6—C5—C11—C1017.42 (10)
C15—C1—C4—C547.72 (15)C9—C10—C11—C5100.89 (10)
O1—C1—C4—C5135.54 (8)C12—C10—C11—C514.19 (10)
C15—C1—C4—C3161.77 (11)C9—C10—C12—C1845.64 (11)
O1—C1—C4—C321.50 (10)C11—C10—C12—C18162.50 (8)
C2—C3—C4—C124.59 (10)C9—C10—C12—C19162.51 (9)
C2—C3—C4—C1688.18 (10)C11—C10—C12—C1980.63 (10)
C2—C3—C4—C5141.69 (9)C9—C10—C12—C677.25 (9)
C1—C4—C5—C11161.08 (8)C11—C10—C12—C639.61 (9)
C16—C4—C5—C1171.71 (12)C13—C6—C12—C1874.27 (11)
C3—C4—C5—C1151.45 (11)C5—C6—C12—C18169.02 (9)
C1—C4—C5—C668.68 (12)C7—C6—C12—C1850.76 (12)
C16—C4—C5—C658.53 (13)C13—C6—C12—C1949.47 (11)
C3—C4—C5—C6178.31 (9)C5—C6—C12—C1967.25 (10)
C4—C5—C6—C1365.63 (12)C7—C6—C12—C19174.50 (8)
C11—C5—C6—C13160.19 (8)C13—C6—C12—C10165.87 (8)
C4—C5—C6—C759.28 (13)C5—C6—C12—C1049.15 (9)
C11—C5—C6—C774.90 (10)C7—C6—C12—C1069.10 (9)
C4—C5—C6—C12175.68 (9)C5—C6—C13—C1464.06 (11)
C11—C5—C6—C1241.51 (9)C7—C6—C13—C1461.49 (11)
C13—C6—C7—C1739.01 (12)C12—C6—C13—C14174.21 (9)
C5—C6—C7—C17163.27 (9)C6—C13—C14—C1577.90 (13)
C12—C6—C7—C1786.84 (11)O1—C1—C15—C204.36 (15)
C13—C6—C7—C8169.33 (9)C4—C1—C15—C20179.19 (10)
C5—C6—C7—C866.41 (11)O1—C1—C15—C14173.71 (9)
C12—C6—C7—C843.47 (11)C4—C1—C15—C142.75 (17)
C17—C7—C8—C9110.78 (10)C13—C14—C15—C159.24 (14)
C6—C7—C8—C922.18 (13)C13—C14—C15—C20122.58 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O3i0.992.603.5649 (14)165
C16—H16B···O2ii0.982.413.2810 (16)148
C20—H20C···O3iii0.982.563.5292 (15)173
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z+1; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O3i0.992.603.5649 (14)165
C16—H16B···O2ii0.982.413.2810 (16)148
C20—H20C···O3iii0.982.563.5292 (15)173
Symmetry codes: (i) x+1, y1/2, z; (ii) x+1, y+1/2, z+1; (iii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

CJ and WP thank the Utilization of Natural Products Research Unit, Walailak University, for a wide range of facility support. The authors extend their appreciation to the Prince of Songkla University and the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDe los Santos-Villalobos, S., Guzmán-Ortiz, D. A., De-Folter, S., Gómez-Lim, M. A., Délano-Frier, J. P., De-Folter, S., Sánchez-García, P. & Peña-Cabriales, J. J. (2011). Biol. Control. 2, 221–234.  Google Scholar
First citationEvidente, A., Cabras, A., Maddau, L., Marras, L., Andolfi, A., Melck, D. & Motta, A. (2006). J. Agric. Food Chem. 54, 6588–6592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHajieghrari, B., Torabi-Giglou, M., Mohammadi, M. R. & Davari, M. (2008). Afr. J. Biotechnol. 7, 967–972.  Google Scholar
First citationKumar, P., Misra, A. K., Modi, D. R. & Gupta, V. K. (2012). Arch Phytopathol. Plant Prot. 45, 1237–1245.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinale, F., Flematti, G., Sivasithamparam, K., Lorito, M., Marra, R., Skelton, B. W. & Ghisalberti, E. L. (2009). J. Nat. Prod. 72, 2032–2035.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Z.-L., Li, H.-J., Wang, L.-Y., Liang, W.-L., Liu, W. & Lan, W.-J. (2013). Nat. Prod. Commun. 8, 67–68.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o408-o409
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds