metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m127-m128

Bis[4-amino-N-(4-methyl­pyrimidin-2-yl-κN3)benzene­sulfonamidato-κN](2,2′-bi­pyridine-κ2N,N′)mercury(II)

aDepartment of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh, and bSchool of Chemistry, Cardiff University, Cardiff CF10 3AT, Wales
*Correspondence e-mail: acsbd@yahoo.com

(Received 24 February 2014; accepted 2 March 2014; online 8 March 2014)

The complete mol­ecule of the title complex, [Hg(C11H11N4O2S)2(C10H8N2)], is generated by crystallographic twofold symmetry, with the mercury cation lying on the rotation axis. The mercury coordination polyhedron can be described as tetra­hedral (from the N,N′-bidenate bi­pyridine mol­ecule and the sulfonamide N atoms of the sulfamerazine anions) or as squashed trigonal-prismatic, if two long (> 2.80 Å) Hg—N bonds to pyrimidine N atoms are included. The dihedral angle between the aromatic rings in the anion is 73.3 (2)°. In the crystal, N—H⋯(N,O) and N—H⋯N hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For related structures, see: Garcia-Raso et al. (1997[Garcia-Raso, A., Fiol, J. J., Martorell, G., Lopez-Zafra, A. & Quiros, M. (1997). Polyhedron, 16, 613-621.], 2000[Garcia-Raso, A., Fiol, J. J., Rigo, S., Lopez-Lopez, A., Molins, E., Espinosa, E., Borras, E., Alzuet, G., Borras, J. & Castineiras, A. (2000). Polyhedron, 19, 991-1004.]); Saladini et al. (2001[Saladini, M., Menabue, L., Ferrari, E. & Iacopino, D. (2001). J. Chem. Soc. Dalton Trans. pp. 1513-1519.]); Zamora et al. (1982[Zamora, F., Sabat, M. & Lippert, B. (1982). Inorg. Chim. Acta, 282, 237-242.]); Hergold-Brundić et al. (1989[Hergold-Brundić, A., Kamenar, B. & Jovanovski, G. (1989). Acta Cryst. C45, 556-558.]). For ligand conformations, see: Hossain & Amoroso (2007[Hossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759-m760.], 2012[Hossain, G. M. G. & Amoroso, A. J. (2012). Acta Cryst. E68, m276-m277.]); Hossain et al. (2007[Hossain, G. M. G., Amoroso, A. J., Banu, A. & Malik, K. M. A. (2007). Polyhedron, 23, 967-974.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(C11H11N4O2S)2(C10H8N2)]

  • Mr = 883.37

  • Monoclinic, C 2/c

  • a = 18.7483 (8) Å

  • b = 15.0824 (7) Å

  • c = 12.1143 (6) Å

  • β = 100.202 (2)°

  • V = 3371.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.74 mm−1

  • T = 150 K

  • 0.12 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])] Tmin = 0.600, Tmax = 0.648

  • 29910 measured reflections

  • 3874 independent reflections

  • 3408 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.074

  • S = 1.10

  • 3874 reflections

  • 231 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—N11 2.214 (4)
Hg1—N1 2.322 (3)
Hg1—N12 2.883 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14A⋯O11i 0.90 (1) 2.41 (3) 3.173 (5) 143 (4)
N14—H14A⋯N13i 0.90 (1) 2.42 (3) 3.125 (6) 135 (4)
N14—H14B⋯O11ii 0.90 (1) 2.13 (1) 2.997 (5) 163 (4)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The mercury complexes of some related ligands have been reported (Garcia-Raso et al., 1997; Hossain et al., 2007). In the title complex, sulfamerazine behaves as a bidentate anionic ligand and Hg(II) ion is coordinated via sulfonamidic N(11) and pyrimido N(12) atoms, the fifth and sixth coordination sites are occupied by bipyridine molecule. The geometry of the complex is trigonal prismatic with the Hg atom lying on a twofold axis as the bpy molecule lies on the one part and the two larger sulfamerazine molecules lie on the other part.

The Hg–N(11) bond distance of 2.216 (3) Å is slightly longer than the values of 2.087 (4) Å (Garcia-Raso et al., 1997), 2.071 (4) Å (Garcia-Raso et al., 2000) and 2.14 (2) Å (Saladini et al., 2001). The pyrimido nitrogen [N(12)] atom makes bond with longer interaction with the distance of 2.881 (3) Å. The C(18)—N(14) bond distance of 1.373 (5) Å is in good agreement with the corresponding bond in free sulfamerazine suggesting the terminal amino group is not coordinated with the Hg atoms. The Hg—N(1) bond distance of 2.323 (3) Å is longer than the corresponding bond lengths of 2.140 (3) and 2.124 (3) Å (Zamora et al., 1982) and 2.130 Å (Hergold-Brundić et al., 1989).

The bond angles around the S atom correspond to a distorted tetrahedral geometry. The bond distance C(18)—N(14) (Terminal amino group) of 1.371 (5) Å and the torsion angle C(15)—S(11)—N(11)—C(11) of 74.4 (4)° are larger than those observed in the related structures (Hossain & Amoroso, 2007; Hossain & Amoroso, 2012). The dihedral angle between the aromatic rings of the sulfamerazinate anion of 73.27 (13)° is larger than the value of 71.10 (14)° (Hossain & Amoroso, 2007) and smaller than the value of 76.60 (8)° (Hossain & Amoroso, 2012) in the sulfadiazinate anion.

The packing of the complex unit (Fig. 2) is governed by weak (intermolecular N—H···N, and N—H···O) hydrogen bonds (Table 2) between the amino (–NH2) group of one complex unit and the sulfonyl oxygen and the pyrimido nitrogen atoms of the next units.

Related literature top

For related structures, see: Garcia-Raso et al. (1997, 2000); Saladini et al. (2001); Zamora et al. (1982); Hergold-Brundić et al. (1989). For ligand conformations, see: Hossain & Amoroso (2007, 2012); Hossain et al. (2007).

Experimental top

The complex was obtained by dissolving (2.723 g, 2 mmol) sulfamerazine in 50 ml of methanol followed by drop-wise addition of Hg(CH3COO)2·4H2O (1.245 g, 1 mmol) in water with constant stirring on hot plate for 1 h. A white precipitate was formed, filtered and washed with methanol and dried in a desiccator over silica gel. The precipitate was dissolved in DMF, bipyri dine (0.235 g, 1 mmol) was added to this solution and stirred for 30 minutes. The solution was filtered and left for crystallization. A week later, colourless blocks were obtained.

Refinement top

The H atoms were positioned geometrically and refined using a riding model except that for terminal amino group N(14) which were located from the difference map and fixed to 0.900 (3) Å], with C—H = 0.95–0.98 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a-axis, showing one layer of molecules connected by N—H···N and N—H···O hydrogen bonds (dashed lines).
Bis[4-amino-N-(4-methylpyrimidin-2-yl-κN3)benzenesulfonamidato-κN](2,2'-bipyridine-κ2N,N')mercury(II) top
Crystal data top
[Hg(C11H11N4O2S)2(C10H8N2)]F(000) = 1744
Mr = 883.37Dx = 1.740 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.7483 (8) ÅCell parameters from 3874 reflections
b = 15.0824 (7) Åθ = 2.9–27.5°
c = 12.1143 (6) ŵ = 4.74 mm1
β = 100.202 (2)°T = 150 K
V = 3371.4 (3) Å3Block, colorless
Z = 40.12 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
3408 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)]
h = 2424
Tmin = 0.600, Tmax = 0.648k = 1919
29910 measured reflectionsl = 1515
3874 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0108P)2 + 13.7149P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3874 reflectionsΔρmax = 1.13 e Å3
231 parametersΔρmin = 0.75 e Å3
Crystal data top
[Hg(C11H11N4O2S)2(C10H8N2)]V = 3371.4 (3) Å3
Mr = 883.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.7483 (8) ŵ = 4.74 mm1
b = 15.0824 (7) ÅT = 150 K
c = 12.1143 (6) Å0.12 × 0.12 × 0.10 mm
β = 100.202 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3874 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)]
3408 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.648Rint = 0.072
29910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0108P)2 + 13.7149P]
where P = (Fo2 + 2Fc2)/3
3874 reflectionsΔρmax = 1.13 e Å3
231 parametersΔρmin = 0.75 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.00000.15586 (2)0.25000.02712 (9)
S110.14988 (6)0.26641 (7)0.20322 (9)0.0241 (2)
O110.19225 (16)0.26047 (19)0.1139 (2)0.0300 (7)
O120.17100 (16)0.20881 (18)0.2977 (2)0.0298 (7)
N110.0655 (2)0.2427 (2)0.1595 (3)0.0250 (8)
N120.0384 (2)0.2333 (2)0.0300 (3)0.0272 (8)
N130.0520 (2)0.3400 (2)0.0030 (3)0.0321 (9)
N140.1869 (2)0.6308 (2)0.3883 (3)0.0297 (9)
C110.0260 (2)0.2745 (3)0.0597 (3)0.0236 (9)
C120.0808 (2)0.2607 (3)0.0646 (4)0.0316 (10)
C130.0589 (3)0.3277 (3)0.1283 (4)0.0382 (12)
H130.08890.34740.19540.046*
C140.0076 (3)0.3648 (3)0.0915 (4)0.0390 (12)
H140.02330.41070.13530.047*
C150.1581 (2)0.3761 (3)0.2533 (3)0.0228 (9)
C160.1290 (3)0.3989 (3)0.3461 (4)0.0304 (10)
H160.10120.35660.37830.036*
C170.1398 (3)0.4825 (3)0.3930 (4)0.0292 (10)
H170.12040.49650.45810.035*
C180.1790 (2)0.5466 (3)0.3453 (3)0.0254 (9)
C190.2096 (2)0.5225 (3)0.2518 (4)0.0290 (10)
H190.23790.56440.21970.035*
C200.1989 (2)0.4381 (3)0.2058 (4)0.0289 (10)
H200.21930.42260.14210.035*
C210.1540 (3)0.2183 (4)0.0972 (5)0.0514 (15)
H21A0.14810.15540.11350.077*
H21B0.18070.24780.16410.077*
H21C0.18110.22410.03540.077*
N10.0594 (2)0.0298 (2)0.1713 (3)0.0302 (8)
C10.0330 (2)0.0493 (3)0.2060 (3)0.0275 (10)
C20.0665 (3)0.1265 (3)0.1612 (4)0.0381 (12)
H20.04740.18260.18720.046*
C30.1274 (3)0.1219 (3)0.0792 (4)0.0435 (13)
H30.15100.17440.04850.052*
C40.1535 (3)0.0397 (3)0.0424 (4)0.0423 (12)
H40.19440.03440.01600.051*
C50.1189 (3)0.0351 (3)0.0922 (4)0.0400 (12)
H50.13790.09190.06960.048*
H14A0.171 (2)0.644 (3)0.452 (2)0.038 (14)*
H14B0.2224 (18)0.666 (2)0.373 (4)0.040 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02493 (15)0.02381 (12)0.02946 (13)0.0000.00387 (9)0.000
S110.0190 (6)0.0238 (5)0.0276 (5)0.0009 (4)0.0009 (4)0.0021 (4)
O110.0231 (18)0.0329 (16)0.0338 (16)0.0007 (13)0.0046 (14)0.0080 (14)
O120.0218 (17)0.0271 (15)0.0366 (17)0.0026 (13)0.0053 (14)0.0021 (13)
N110.025 (2)0.0279 (18)0.0192 (16)0.0003 (15)0.0048 (15)0.0001 (15)
N120.017 (2)0.0334 (19)0.0283 (19)0.0025 (15)0.0028 (15)0.0003 (16)
N130.025 (2)0.039 (2)0.0312 (19)0.0006 (18)0.0009 (16)0.0055 (18)
N140.030 (2)0.0259 (19)0.033 (2)0.0040 (16)0.0056 (18)0.0031 (16)
C110.017 (2)0.028 (2)0.025 (2)0.0039 (17)0.0028 (17)0.0006 (18)
C120.018 (2)0.041 (3)0.033 (2)0.0021 (19)0.0034 (19)0.002 (2)
C130.027 (3)0.053 (3)0.032 (2)0.004 (2)0.004 (2)0.006 (2)
C140.031 (3)0.049 (3)0.034 (3)0.002 (2)0.002 (2)0.014 (2)
C150.018 (2)0.0217 (19)0.026 (2)0.0015 (16)0.0024 (17)0.0016 (17)
C160.028 (3)0.031 (2)0.034 (2)0.0052 (19)0.010 (2)0.002 (2)
C170.033 (3)0.031 (2)0.026 (2)0.0009 (19)0.011 (2)0.0022 (19)
C180.017 (2)0.030 (2)0.026 (2)0.0009 (17)0.0057 (17)0.0007 (18)
C190.026 (3)0.028 (2)0.033 (2)0.0038 (19)0.006 (2)0.0015 (19)
C200.026 (3)0.032 (2)0.029 (2)0.0007 (19)0.0073 (19)0.0029 (19)
C210.023 (3)0.076 (4)0.047 (3)0.005 (3)0.014 (2)0.020 (3)
N10.027 (2)0.0289 (18)0.0315 (19)0.0013 (16)0.0045 (17)0.0004 (16)
C10.025 (3)0.030 (2)0.028 (2)0.0036 (18)0.0033 (19)0.0007 (19)
C20.042 (3)0.025 (2)0.046 (3)0.001 (2)0.001 (2)0.007 (2)
C30.043 (3)0.036 (3)0.048 (3)0.009 (2)0.002 (3)0.015 (2)
C40.035 (3)0.046 (3)0.039 (3)0.008 (2)0.011 (2)0.010 (2)
C50.034 (3)0.037 (3)0.044 (3)0.002 (2)0.010 (2)0.001 (2)
Geometric parameters (Å, º) top
Hg1—N112.214 (4)C15—C201.394 (6)
Hg1—N11i2.214 (4)C16—C171.383 (6)
Hg1—N12.322 (3)C16—H160.9500
Hg1—N1i2.322 (3)C17—C181.400 (6)
Hg1—N12i2.883 (3)C17—H170.9500
Hg1—N122.883 (3)C18—C191.405 (6)
S11—O121.436 (3)C19—C201.390 (6)
S11—O111.454 (3)C19—H190.9500
S11—N111.616 (4)C20—H200.9500
S11—C151.760 (4)C21—H21A0.9800
N11—C111.387 (5)C21—H21B0.9800
N12—C121.339 (5)C21—H21C0.9800
N12—C111.349 (5)N1—C11.331 (5)
N13—C111.343 (6)N1—C51.337 (6)
N13—C141.344 (6)C1—C21.387 (6)
N14—C181.371 (5)C1—C1i1.483 (9)
N14—H14A0.900 (3)C2—C31.376 (7)
N14—H14B0.900 (3)C2—H20.9500
C12—C131.378 (7)C3—C41.378 (7)
C12—C211.503 (7)C3—H30.9500
C13—C141.367 (7)C4—C51.386 (6)
C13—H130.9500C4—H40.9500
C14—H140.9500C5—H50.9500
C15—C161.378 (6)
N11—Hg1—N11i107.50 (18)C16—C15—C20119.7 (4)
N11—Hg1—N1123.31 (12)C16—C15—S11119.5 (3)
N11i—Hg1—N1114.81 (13)C20—C15—S11120.6 (3)
N11—Hg1—N1i114.81 (13)C15—C16—C17120.8 (4)
N11i—Hg1—N1i123.31 (12)C15—C16—H16119.6
N1—Hg1—N1i70.00 (17)C17—C16—H16119.6
N11—Hg1—N12i98.53 (11)C16—C17—C18120.7 (4)
N11i—Hg1—N12i51.11 (11)C16—C17—H17119.7
N1—Hg1—N12i137.29 (11)C18—C17—H17119.7
N1i—Hg1—N12i85.95 (11)N14—C18—C17120.8 (4)
N11—Hg1—N1251.11 (11)N14—C18—C19120.9 (4)
N11i—Hg1—N1298.53 (11)C17—C18—C19118.3 (4)
N1—Hg1—N1285.95 (11)C20—C19—C18120.6 (4)
N1i—Hg1—N12137.29 (11)C20—C19—H19119.7
N12i—Hg1—N12132.17 (14)C18—C19—H19119.7
O12—S11—O11116.49 (18)C19—C20—C15120.0 (4)
O12—S11—N11104.05 (18)C19—C20—H20120.0
O11—S11—N11111.99 (18)C15—C20—H20120.0
O12—S11—C15107.41 (18)C12—C21—H21A109.5
O11—S11—C15106.76 (19)C12—C21—H21B109.5
N11—S11—C15110.01 (19)H21A—C21—H21B109.5
C11—N11—S11123.3 (3)C12—C21—H21C109.5
C11—N11—Hg1112.3 (3)H21A—C21—H21C109.5
S11—N11—Hg1124.42 (18)H21B—C21—H21C109.5
C12—N12—C11117.0 (4)C1—N1—C5119.8 (4)
C12—N12—Hg1158.4 (3)C1—N1—Hg1118.7 (3)
C11—N12—Hg182.8 (2)C5—N1—Hg1121.6 (3)
C11—N13—C14114.5 (4)N1—C1—C2120.7 (4)
C18—N14—H14A120 (3)N1—C1—C1i116.3 (2)
C18—N14—H14B120 (3)C2—C1—C1i122.9 (3)
H14A—N14—H14B115 (3)C3—C2—C1120.0 (4)
N13—C11—N12126.2 (4)C3—C2—H2120.0
N13—C11—N11121.0 (4)C1—C2—H2120.0
N12—C11—N11112.8 (4)C2—C3—C4118.8 (4)
N12—C12—C13121.0 (4)C2—C3—H3120.6
N12—C12—C21118.1 (4)C4—C3—H3120.6
C13—C12—C21120.9 (4)C3—C4—C5118.6 (4)
C14—C13—C12117.6 (4)C3—C4—H4120.7
C14—C13—H13121.2C5—C4—H4120.7
C12—C13—H13121.2N1—C5—C4122.0 (4)
N13—C14—C13123.8 (5)N1—C5—H5119.0
N13—C14—H14118.1C4—C5—H5119.0
C13—C14—H14118.1
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O11ii0.90 (1)2.41 (3)3.173 (5)143 (4)
N14—H14A···N13ii0.90 (1)2.42 (3)3.125 (6)135 (4)
N14—H14B···O11iii0.90 (1)2.13 (1)2.997 (5)163 (4)
Symmetry codes: (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Hg(C11H11N4O2S)2(C10H8N2)]
Mr883.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)18.7483 (8), 15.0824 (7), 12.1143 (6)
β (°) 100.202 (2)
V3)3371.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.74
Crystal size (mm)0.12 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)]
Tmin, Tmax0.600, 0.648
No. of measured, independent and
observed [I > 2σ(I)] reflections
29910, 3874, 3408
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.074, 1.10
No. of reflections3874
No. of parameters231
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0108P)2 + 13.7149P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.13, 0.75

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Selected bond lengths (Å) top
Hg1—N112.214 (4)Hg1—N122.883 (3)
Hg1—N12.322 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O11i0.900 (3)2.41 (3)3.173 (5)143 (4)
N14—H14A···N13i0.900 (3)2.42 (3)3.125 (6)135 (4)
N14—H14B···O11ii0.900 (3)2.125 (14)2.997 (5)163 (4)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

GMGH is grateful to the Ministry of Science and Technology, Bangladesh, for financial support and to School of Chemistry, Cardiff University, Wales, for the crystallographic services.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcia-Raso, A., Fiol, J. J., Martorell, G., Lopez-Zafra, A. & Quiros, M. (1997). Polyhedron, 16, 613–621.  CSD CrossRef CAS Web of Science Google Scholar
First citationGarcia-Raso, A., Fiol, J. J., Rigo, S., Lopez-Lopez, A., Molins, E., Espinosa, E., Borras, E., Alzuet, G., Borras, J. & Castineiras, A. (2000). Polyhedron, 19, 991–1004.  CAS Google Scholar
First citationHergold-Brundić, A., Kamenar, B. & Jovanovski, G. (1989). Acta Cryst. C45, 556–558.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHossain, G. M. G. & Amoroso, A. J. (2007). Acta Cryst. E63, m759–m760.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHossain, G. M. G. & Amoroso, A. J. (2012). Acta Cryst. E68, m276–m277.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHossain, G. M. G., Amoroso, A. J., Banu, A. & Malik, K. M. A. (2007). Polyhedron, 23, 967–974.  Web of Science CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSaladini, M., Menabue, L., Ferrari, E. & Iacopino, D. (2001). J. Chem. Soc. Dalton Trans. pp. 1513–1519.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZamora, F., Sabat, M. & Lippert, B. (1982). Inorg. Chim. Acta, 282, 237–242.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m127-m128
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds