metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m125-m126

Bis[tris­­(phenanthroline-κ2N,N′)cobalt(II)] undeca­tungsto(VI)vanado(V)phosphate dihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bLaboratoire CEISAM, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 26 February 2014; accepted 3 March 2014; online 8 March 2014)

In the title hydrated salt, [Co(C12H8N2)3]2[PVW11O40]·2H2O, the complete Kegggin ion is generated by crystallographic inversion symmetry, which imposes statistical disorder on the O atoms of its central PO4 group. The V atom is statistically disordered over all the metal sites of the anion. In the cation, the Co2+ ion is coordinated by three bidentate 1,10-phenanthroline (phen) ligands, generating a distorted CoN6 octa­hedron. Possible very weak intra­molecular C—H⋯π inter­actions occur in the cation. In the crystal, the components are linked by O—H⋯O and C—H⋯O inter­actions, building a three-dimensional network featuring one-dimensional voids along the c-axis direction.

Related literature

For related vanadium-substituted Keggin-ion structures, see: Glinskaya et al. (1989[Glinskaya, L. A., Yurchenko, É. N., Klevtsova, R. F., Derkach, L. V., Rios, A. M. & Lazarenko, T. P. (1989). J. Struct. Chem. 30, 427-432.]); Klevtsova et al. (1990[Klevtsova, R. F., Glinskaya, L. A., Yurchenko, E. N., Derkach, L. V., Rios, A. M. & Lazarenko, T. P. (1990). J. Struc. Chem. 31, 285-291.], 1991[Klevtsova, R. F., Glinskaya, L. A., Yurchenko, É. N. & Gutsul, T. D. (1991). J. Struct. Chem. 32, 687-692.]); Li et al. (2008[Li, C., Cao, R., O'Halloran, K. P., Ma, H. & Wu, L. (2008). Electrochim. Acta, 54, 484-489.]); Radkov & Beer (1995[Radkov, E. & Beer, R. H. (1995). Polyhedron, 14, 2139-2143.]). For IR spectroscopy investigations of Keggin ions, see: Lee & Misono (1997[Lee, K. Y. & Misono, M. (1997). Heteropoly compounds, in Handbook of Heterogeneous Catalysis, edited by G. Ertl, H. Knozinger & J. Weitkamp, pp. 118-131. Berlin: VCH.]); Deltcheff et al. (1983[Deltcheff, C. R., Fournier, M., Franck, R. & Thouvenot, R. (1983). Inorg. Chem. 22, 207-216.]); Watras & Teplyakov (2005[Watras, M. J. & Teplyakov, A. V. (2005). J. Phys. Chem. B, 109, 8928-8934.]). For bond-valence calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For background to polyoxidometalate chemistry, see: Pope & Müller (1991[Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34-38.], 1994[Pope, M. T. & Müller, A. (1994). In Polyoxometalates: from platonic solids to anti-retroviral activity. Dordrecht: Kluwer Academic Publishers.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H8N2)3][PVW11O40]·2H2O

  • Mr = 3979.38

  • Monoclinic, C 2/c

  • a = 19.487 (2) Å

  • b = 18.049 (3) Å

  • c = 25.216 (2) Å

  • β = 100.22 (3)°

  • V = 8728.4 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.02 mm−1

  • T = 295 K

  • 0.13 × 0.08 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.202, Tmax = 0.421

  • 62427 measured reflections

  • 11235 independent reflections

  • 8172 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.095

  • S = 1.16

  • 11235 reflections

  • 688 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.39 e Å−3

  • Δρmin = −1.51 e Å−3

Table 1
Selected bond lengths (Å)

Co—N3 2.053 (9)
Co—N6 2.060 (8)
Co—N1 2.066 (10)
Co—N4 2.066 (11)
Co—N2 2.078 (10)
Co—N5 2.085 (8)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C1–C4/C12 and N3/C13–C16/C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1E 0.85 (1) 2.17 (11) 2.928 (14) 149 (20)
O1W—H2W1⋯O3Ei 0.85 (1) 1.99 (3) 2.836 (13) 173 (17)
C9—H9⋯O5Eii 0.93 2.55 3.208 (15) 128
C26—H26⋯O12iii 0.93 2.46 2.973 (15) 114
C33—H33⋯O5iv 0.93 2.53 3.345 (13) 147
C34—H34⋯O8 0.93 2.43 3.114 (13) 130
C34—H34⋯Cg1 0.93 3.04 3.811 (12) 142
C25—H25⋯Cg2 0.93 2.99 3.777 (13) 143
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

A bibliographic survey shows only a few examples of substituted vanadium keggin-type [XV1W11O40]p- clusters associated to organometallic or organic moieties: such as (C2N2H10)2[VV1W11O40]·6H2O (Glinskaya et al., 1989), [N(CH3)4]4[VV1W11O40]·4.5H2O (Klevtsova et al., 1991),[(CH3)2NCHO]4H4[VV1W11O40].2[(CH3)2NCHO]·2H2O (Klevtsova et al., 1990), [Cu(phen)2]2[PVW11O40] (phen = phenanthroline)(Li et al., 2008),(n-Bu4N)4[PMW11O40] (n-Bu = n-Butyl and M = V, Nb, Ta) (Radkov & Beer, 1995). Here, we report a new monosubstituted vanadium tungstophosphate Keggin-type cluster decorated by mononuclear metal-organic complex [Co(phen)3]2[PVW11O40]·2H2O (phen = phenanthroline) (I).

The asymmetric unit of of I consists of a mononuclear complex [Co(phen)3]2+ cation and a half of Keggin-type [PVW11O40]4- anion and one water molecule. As P atom is located on centre of inversion symmetry, the whole [PVW11O40]4- polyoxidoanion is generated by this element and so is composed of a disordered PO4 tetrahedron surrounded by four vertex-sharing M3O13 (with M = W/V) subunits which result from the association of three edge-sharing MO6 octahedra enwrapping a PO8 cube with oxygen atom site occupancy of 0.5. In the MO6 (with M = W/V) octahedra, the position of metal atom is crystallographically disordered and constrained as 11/12 W and 1/12 V, with occupancies of 0.083 and 0.917 for W and V respectively.

The contents of W and V revealed by X-ray analysis are consistent with the results from elemental analyses and scanning electronic microscopy (Fig. 2) as well as the IR spectroscopy wich shows that the streching vibration of (P—O) splits into two absoption bands at 1095 cm-1 and 1068 cm-1 because of the lower symmetry so as well confirm the presence of monosubstituted vanadium keggin-type clusters in I (Lee et al., 1997; Deltcheff et al., 1983; Watras et al., 2005).

The assignment of oxidation states for the tungsten and vanadium atoms is confirmed by bond valence sum calculations (Brown & Altermatt, 1985)) which show that vanadium atom has +V oxidation state (average 4.98 valence units) while tungsten atoms have +VI oxidation state (average 6.23 valence units). These oxidation states are identical with the charge balance considerations and so consistent with the expected [PV+VW+VI11O40]4- subunits.

The P—O bond distances range 1.481 (11)—1.582 (11) Å and O—P—O bond angles interval 105.5 (6)—112.6 (6) °. Commonly, the M—O bond distances are grouped into three sets: M—Ot, M—Ob and M—Oc (with Ot: terminal oxygen atoms, Oc: central oxygen atoms, Ob: bridging oxygen atoms) which are respectively ranged between 1.667 (8)—1.677 (7) Å, 2.396 (11)—2.526 (12) Å and 1.750 (18)—2.085 (14) Å. With regard to the mononuclear complex,the Co2+ metal is also coordinated by six nitrogen atoms from three chelating 1,10-phenanthroline ligands to form a slightly distorted MN6 octahedron with bond lenghts around Co, are 2.053 (9)—2.085 (8) Å (Co—N) and 80.0 (4)—173.9 (4)° (N—Co—N) (Table 1).

The crystal packing of I shows that the discrete polyoxidoanion subunits are interconnected through water molecules via O—H···O hydrogen bonding interactions with O···O separation ranging from 2.836 (13) to 2.928 (14) Å (Table 2), to perform alternating [PVW11O40(H2O)2]4n- ribbons extending along [110] and [110] crystallographic directions. The so-obtained one-dimensional-subnetworks stack together by the metal-organic moieties thanks to weak C–H···O (mean C···O = 3.144 Å) (Table 1) and electrostatic interactions so as to build three-dimensional-supramolecular network generating vacant one-dimensional-channels along c axis as can be seen in Fig. 3. Very weak intramolecular C—H···π interactions of phen rings (Fig. 4) with mean distances of 3 Å (Table 2) are also observed.

Related literature top

For related vanadium-substituted Keggin-ion structures, see: Glinskaya et al. (1989); Klevtsova et al. (1990, 1991); Li et al. (2008); Radkov & Beer (1995). For IR spectroscopy investigations of Keggin ions, see: Lee & Misono (1997); Deltcheff et al. (1983); Watras & Teplyakov (2005). For bond-valence calculations, see: Brown & Altermatt (1985). For [please specify], see: Pope & Müller (1991, 1994).

Experimental top

A reaction mixture of Na2WO4·2H2O (2 g, 6.064 mmol), NaH2PO4·2H2O (0.1034 g, 0.6628 mmol), CoCl2·6H2O (0.1951 g, 0.8196 mmol), V2O5 (0,0455 g; 0.25 mmol) and phen·H2O (0.3196 g, 1.7758 mmol) were added to water (10 ml). The mixture was adjusted to pH = 5.5 by the addition of 4M HCl aqueous solution then stirred for 30 min in air. The mixture solution was transferred into a 23 ml Teflon-lined autoclave and crystallized at 180°C for 4 days. Then the autoclave was cooled at 10°C.h-1 to room temperature. The resulting dark yellow block crystals of I were filtered off, washed with water, and dried at ambient temperature to give yields of 68% based on W. Anal. Calc. For C72H52N12Co2O42PVW11 (%): C 21.79, H 1.27, N 4.20, W 50.92, V 1.28, P 0.78, Co 2.96; Found C 21.71, H 1.31, N 4.25, W 50.80, V 1.31, P 3/4, Co 2.98; IR (KBr, cm-1): 966 ν(M=Ot), 887 ν(M—Ob—M), 799 ν(M—Oc—M) with M=W/V and 1095 and 1068 ν(P—O).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were refined using restraints [O—H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Many trials of crystal growing are unsuccessful and despite the good quality of selected crystal for experimental X-Ray,the largest isolated one has a relatively small size (crystal size: 0.04 × 0.08 × 0.013 mm), which lead to the poor diffraction at higher angles.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z]
[Figure 2] Fig. 2. EDAX pattern of I
[Figure 3] Fig. 3. Packing diagram of I viewed along c axis showing a three-dimensional-supramolecular structure featuring the voids represented as large yellow ball. The H-atoms not included in H-bond scheme are omitted.
[Figure 4] Fig. 4. View of intramolecular C—H···π interaction in (I). The H-atoms not included in H-bond scheme are omitted.
Bis[tris(phenanthroline-κ2N,N')cobalt(II)] undecatungsto(VI)vanado(V)phosphate dihydrate top
Crystal data top
[Co(C12H8N2)3][PVW11O40]·2H2OF(000) = 7240
Mr = 3979.38Dx = 3.028 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.487 (2) ÅCell parameters from 25 reflections
b = 18.049 (3) Åθ = 9–11°
c = 25.216 (2) ŵ = 15.02 mm1
β = 100.22 (3)°T = 295 K
V = 8728.4 (18) Å3PRISM, yellow
Z = 40.13 × 0.08 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
11235 independent reflections
Radiation source: fine-focus sealed tube8172 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.070
Detector resolution: 9 pixels mm-1θmax = 28.8°, θmin = 6.4°
CCD rotation images, thick slices scansh = 2625
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2424
Tmin = 0.202, Tmax = 0.421l = 3432
62427 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + 250.0304P]
where P = (Fo2 + 2Fc2)/3
11235 reflections(Δ/σ)max = 0.002
688 parametersΔρmax = 1.39 e Å3
3 restraintsΔρmin = 1.51 e Å3
Crystal data top
[Co(C12H8N2)3][PVW11O40]·2H2OV = 8728.4 (18) Å3
Mr = 3979.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.487 (2) ŵ = 15.02 mm1
b = 18.049 (3) ÅT = 295 K
c = 25.216 (2) Å0.13 × 0.08 × 0.04 mm
β = 100.22 (3)°
Data collection top
Nonius KappaCCD
diffractometer
11235 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
8172 reflections with I > 2σ(I)
Tmin = 0.202, Tmax = 0.421Rint = 0.070
62427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + 250.0304P]
where P = (Fo2 + 2Fc2)/3
11235 reflectionsΔρmax = 1.39 e Å3
688 parametersΔρmin = 1.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.90431 (2)0.16939 (2)0.468951 (18)0.03506 (10)0.91
V10.90431 (2)0.16939 (2)0.468951 (18)0.03506 (10)0.09
W20.91248 (2)0.27877 (3)0.587700 (17)0.03574 (11)0.91
V20.91248 (2)0.27877 (3)0.587700 (17)0.03574 (11)0.09
W30.83223 (2)0.10207 (3)0.579002 (19)0.04092 (12)0.92
V30.83223 (2)0.10207 (3)0.579002 (19)0.04092 (12)0.08
W40.82438 (2)0.32068 (3)0.391898 (18)0.04283 (12)0.92
V40.82438 (2)0.32068 (3)0.391898 (18)0.04283 (12)0.08
W50.67180 (3)0.07254 (3)0.48920 (2)0.04756 (13)0.92
V50.67180 (3)0.07254 (3)0.48920 (2)0.04756 (13)0.08
W60.74373 (3)0.14331 (3)0.380723 (19)0.04799 (13)0.92
V60.74373 (3)0.14331 (3)0.380723 (19)0.04799 (13)0.08
O1E0.9773 (4)0.1310 (5)0.4547 (4)0.072 (3)
O2E0.9883 (4)0.2925 (5)0.6293 (3)0.064 (2)
O3E0.8718 (5)0.0319 (5)0.6152 (3)0.066 (2)
O4E0.8576 (4)0.3557 (5)0.3403 (3)0.057 (2)
O5E0.6360 (4)0.0117 (4)0.4862 (3)0.052 (2)
O6E0.7424 (5)0.0939 (5)0.3244 (3)0.069 (3)
O10.9412 (4)0.2330 (4)0.5277 (3)0.051 (2)
O20.8823 (4)0.1027 (4)0.5215 (3)0.053 (2)
O30.8945 (5)0.2558 (5)0.4245 (3)0.073 (3)
O40.8351 (5)0.1247 (5)0.4175 (4)0.079 (3)
O50.8869 (4)0.1821 (4)0.6090 (3)0.053 (2)
O6A0.8877 (8)0.3591 (10)0.5382 (7)0.038 (4)0.50
O6B0.9132 (8)0.3772 (9)0.5575 (6)0.030 (3)0.50
O70.8556 (4)0.3900 (6)0.4469 (4)0.081 (3)
O80.7761 (5)0.2355 (5)0.3599 (3)0.072 (3)
O9A0.8604 (7)0.3245 (9)0.6394 (6)0.032 (3)0.50
O9B0.8340 (7)0.3084 (10)0.6198 (6)0.035 (4)0.50
O100.7634 (4)0.1309 (7)0.6194 (4)0.086 (4)
O11A0.7035 (10)0.0633 (11)0.4178 (7)0.041 (4)0.50
O11B0.7226 (10)0.0845 (10)0.4384 (7)0.038 (4)0.50
O120.7599 (4)0.0525 (6)0.5323 (4)0.081 (3)
P0.75000.25000.50000.0229 (6)
O1C0.7595 (6)0.3206 (7)0.4667 (4)0.028 (3)0.50
O3C0.7921 (6)0.2294 (7)0.4564 (5)0.028 (3)0.50
O4C0.8176 (6)0.2148 (7)0.5224 (4)0.027 (3)0.50
O2C0.7968 (6)0.3041 (7)0.5406 (4)0.028 (3)0.50
O1W1.0714 (7)0.1131 (6)0.3771 (6)0.098 (4)
H1W11.033 (6)0.115 (9)0.388 (8)0.147*
H2W11.092 (8)0.071 (5)0.380 (9)0.147*
Co0.80233 (7)0.31178 (8)0.15603 (5)0.0367 (3)
N10.8600 (5)0.2468 (6)0.2151 (4)0.051 (2)
N20.7596 (5)0.2088 (5)0.1326 (4)0.047 (2)
N30.8759 (5)0.3135 (5)0.1070 (3)0.041 (2)
N40.8545 (6)0.4082 (6)0.1827 (4)0.054 (3)
N50.7316 (4)0.3680 (5)0.0981 (3)0.0375 (19)
N60.7208 (4)0.3243 (5)0.1973 (3)0.0365 (19)
C10.9090 (6)0.2668 (9)0.2556 (5)0.064 (4)
H10.92400.31580.25730.077*
C20.9398 (8)0.2178 (13)0.2961 (6)0.083 (5)
H20.97430.23400.32390.099*
C30.9184 (9)0.1468 (12)0.2937 (6)0.085 (5)
H30.93790.11350.32030.102*
C40.8660 (7)0.1226 (8)0.2505 (5)0.061 (3)
C50.8418 (9)0.0467 (8)0.2431 (6)0.075 (4)
H50.86200.01040.26710.089*
C60.7912 (9)0.0282 (8)0.2025 (6)0.073 (4)
H60.77550.02050.19950.088*
C70.7601 (7)0.0823 (7)0.1630 (5)0.060 (3)
C80.7059 (8)0.0667 (8)0.1192 (6)0.070 (4)
H80.68810.01900.11360.084*
C90.6808 (8)0.1224 (9)0.0859 (6)0.072 (4)
H90.64440.11350.05740.086*
C100.7080 (7)0.1908 (8)0.0936 (5)0.060 (3)
H100.68910.22790.06980.072*
C110.7863 (6)0.1554 (6)0.1681 (4)0.046 (3)
C120.8393 (6)0.1741 (8)0.2123 (5)0.054 (3)
C130.8843 (6)0.2656 (7)0.0680 (5)0.052 (3)
H130.85760.22260.06390.062*
C140.9317 (6)0.2776 (8)0.0331 (5)0.059 (3)
H140.93510.24400.00570.071*
C150.9731 (6)0.3399 (7)0.0398 (5)0.058 (3)
H151.00550.34780.01740.069*
C160.9669 (6)0.3917 (7)0.0805 (5)0.051 (3)
C171.0060 (6)0.4588 (7)0.0903 (6)0.060 (3)
H171.03970.47000.06960.072*
C180.9948 (6)0.5058 (7)0.1291 (6)0.064 (4)
H181.02100.54910.13470.077*
C190.9437 (6)0.4915 (7)0.1621 (5)0.057 (3)
C200.9284 (8)0.5398 (8)0.2027 (6)0.066 (4)
H200.95120.58510.20890.079*
C210.8798 (9)0.5191 (8)0.2324 (6)0.073 (4)
H210.87150.54880.26070.087*
C220.8431 (8)0.4549 (7)0.2207 (5)0.063 (4)
H220.80840.44350.24030.076*
C230.9041 (6)0.4266 (6)0.1535 (4)0.046 (3)
C240.9158 (5)0.3752 (6)0.1129 (4)0.043 (2)
C250.7358 (7)0.3868 (7)0.0480 (5)0.057 (3)
H250.77750.37770.03610.068*
C260.6827 (7)0.4185 (7)0.0127 (5)0.058 (3)
H260.68830.42980.02220.069*
C270.6220 (7)0.4333 (7)0.0292 (5)0.059 (3)
H270.58600.45610.00580.071*
C280.6129 (6)0.4147 (6)0.0813 (4)0.044 (3)
C290.5491 (6)0.4251 (8)0.1015 (5)0.063 (4)
H290.51090.44720.08000.076*
C300.5453 (6)0.4023 (9)0.1519 (6)0.069 (4)
H300.50360.40960.16430.083*
C310.6020 (5)0.3676 (8)0.1873 (5)0.054 (3)
C320.6007 (6)0.3421 (9)0.2395 (5)0.067 (4)
H320.56050.34790.25410.080*
C330.6570 (6)0.3094 (8)0.2688 (5)0.060 (3)
H330.65590.29340.30370.072*
C340.7170 (6)0.2996 (7)0.2464 (4)0.049 (3)
H340.75520.27530.26620.058*
C350.6646 (5)0.3573 (6)0.1679 (4)0.036 (2)
C360.6705 (5)0.3812 (6)0.1147 (4)0.036 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0286 (2)0.0352 (2)0.0414 (2)0.00378 (18)0.00621 (17)0.00271 (19)
V10.0286 (2)0.0352 (2)0.0414 (2)0.00378 (18)0.00621 (17)0.00271 (19)
W20.0295 (2)0.0391 (2)0.0366 (2)0.00004 (18)0.00030 (17)0.00294 (18)
V20.0295 (2)0.0391 (2)0.0366 (2)0.00004 (18)0.00030 (17)0.00294 (18)
W30.0345 (2)0.0374 (3)0.0478 (3)0.00344 (19)0.00085 (19)0.0026 (2)
V30.0345 (2)0.0374 (3)0.0478 (3)0.00344 (19)0.00085 (19)0.0026 (2)
W40.0409 (3)0.0558 (3)0.0327 (2)0.0115 (2)0.00890 (19)0.0005 (2)
V40.0409 (3)0.0558 (3)0.0327 (2)0.0115 (2)0.00890 (19)0.0005 (2)
W50.0452 (3)0.0292 (2)0.0711 (3)0.0081 (2)0.0181 (2)0.0074 (2)
V50.0452 (3)0.0292 (2)0.0711 (3)0.0081 (2)0.0181 (2)0.0074 (2)
W60.0643 (3)0.0444 (3)0.0366 (2)0.0025 (2)0.0124 (2)0.0138 (2)
V60.0643 (3)0.0444 (3)0.0366 (2)0.0025 (2)0.0124 (2)0.0138 (2)
O1E0.042 (5)0.056 (5)0.129 (8)0.000 (4)0.046 (5)0.017 (5)
O2E0.047 (5)0.093 (7)0.044 (4)0.032 (5)0.013 (4)0.003 (4)
O3E0.094 (7)0.044 (5)0.062 (5)0.022 (5)0.021 (5)0.014 (4)
O4E0.046 (4)0.082 (6)0.042 (4)0.008 (4)0.010 (4)0.019 (4)
O5E0.042 (4)0.029 (4)0.079 (6)0.007 (3)0.003 (4)0.001 (4)
O6E0.071 (6)0.080 (7)0.055 (5)0.003 (5)0.005 (4)0.041 (5)
O10.077 (5)0.044 (4)0.034 (4)0.018 (4)0.017 (4)0.006 (3)
O20.079 (6)0.042 (4)0.041 (4)0.023 (4)0.021 (4)0.011 (3)
O30.084 (6)0.053 (5)0.062 (5)0.022 (5)0.038 (5)0.019 (4)
O40.097 (7)0.047 (5)0.072 (6)0.027 (5)0.045 (5)0.011 (4)
O50.077 (6)0.043 (4)0.043 (4)0.024 (4)0.021 (4)0.004 (3)
O6A0.024 (9)0.051 (11)0.039 (10)0.005 (7)0.003 (7)0.003 (8)
O6B0.028 (9)0.032 (9)0.028 (9)0.005 (7)0.002 (6)0.006 (6)
O70.029 (4)0.124 (9)0.091 (7)0.010 (5)0.010 (4)0.070 (6)
O80.081 (6)0.050 (5)0.066 (5)0.024 (5)0.039 (5)0.019 (4)
O9A0.019 (8)0.043 (9)0.031 (8)0.003 (7)0.006 (6)0.003 (7)
O9B0.009 (7)0.063 (11)0.028 (8)0.004 (7)0.007 (5)0.003 (7)
O100.027 (4)0.137 (9)0.092 (7)0.007 (5)0.008 (4)0.070 (7)
O11A0.041 (10)0.039 (11)0.044 (12)0.000 (8)0.009 (8)0.012 (8)
O11B0.044 (11)0.045 (11)0.029 (9)0.006 (8)0.019 (8)0.010 (7)
O120.033 (4)0.112 (8)0.095 (7)0.008 (5)0.004 (4)0.068 (6)
P0.0258 (15)0.0167 (14)0.0257 (15)0.0004 (12)0.0030 (12)0.0015 (12)
O1C0.027 (6)0.031 (7)0.022 (6)0.001 (5)0.003 (5)0.005 (5)
O3C0.026 (6)0.030 (7)0.030 (6)0.005 (5)0.010 (5)0.004 (5)
O4C0.020 (6)0.038 (7)0.025 (6)0.000 (5)0.008 (5)0.001 (5)
O2C0.025 (6)0.031 (7)0.022 (6)0.009 (5)0.010 (5)0.006 (5)
O1W0.109 (10)0.069 (7)0.129 (10)0.024 (7)0.057 (8)0.007 (7)
Co0.0363 (7)0.0382 (8)0.0355 (7)0.0024 (6)0.0067 (6)0.0015 (6)
N10.036 (5)0.074 (7)0.045 (5)0.006 (5)0.013 (4)0.004 (5)
N20.047 (5)0.048 (6)0.048 (5)0.002 (4)0.014 (4)0.000 (4)
N30.047 (5)0.034 (5)0.041 (5)0.007 (4)0.002 (4)0.000 (4)
N40.070 (7)0.051 (6)0.039 (5)0.017 (5)0.009 (5)0.001 (4)
N50.041 (5)0.036 (5)0.035 (4)0.004 (4)0.005 (4)0.006 (4)
N60.035 (4)0.043 (5)0.030 (4)0.006 (4)0.000 (3)0.005 (4)
C10.048 (7)0.091 (11)0.056 (8)0.008 (7)0.017 (6)0.000 (7)
C20.051 (8)0.139 (17)0.058 (9)0.012 (10)0.007 (7)0.007 (10)
C30.076 (11)0.114 (15)0.067 (10)0.040 (11)0.020 (8)0.025 (10)
C40.070 (9)0.067 (9)0.048 (7)0.029 (7)0.017 (6)0.013 (6)
C50.103 (12)0.060 (9)0.069 (9)0.040 (9)0.040 (9)0.019 (7)
C60.099 (12)0.052 (8)0.078 (10)0.022 (8)0.042 (9)0.000 (7)
C70.077 (9)0.049 (7)0.064 (8)0.008 (7)0.038 (7)0.007 (6)
C80.082 (10)0.057 (9)0.079 (10)0.015 (8)0.037 (8)0.028 (8)
C90.080 (10)0.081 (11)0.053 (8)0.001 (8)0.006 (7)0.028 (8)
C100.060 (8)0.069 (9)0.050 (7)0.020 (7)0.007 (6)0.018 (6)
C110.054 (7)0.045 (7)0.044 (6)0.008 (5)0.023 (5)0.002 (5)
C120.049 (7)0.068 (9)0.049 (7)0.010 (6)0.020 (6)0.007 (6)
C130.053 (7)0.041 (7)0.062 (7)0.007 (5)0.013 (6)0.005 (6)
C140.044 (7)0.064 (8)0.068 (8)0.020 (6)0.005 (6)0.017 (7)
C150.041 (6)0.064 (8)0.066 (8)0.017 (6)0.007 (6)0.010 (7)
C160.040 (6)0.054 (7)0.058 (7)0.018 (6)0.005 (5)0.012 (6)
C170.038 (6)0.048 (7)0.093 (10)0.011 (6)0.009 (6)0.003 (7)
C180.040 (7)0.043 (7)0.102 (11)0.006 (6)0.006 (7)0.015 (7)
C190.048 (7)0.044 (7)0.070 (8)0.012 (6)0.014 (6)0.004 (6)
C200.065 (9)0.054 (8)0.068 (9)0.010 (7)0.022 (7)0.000 (7)
C210.097 (12)0.055 (9)0.057 (8)0.024 (8)0.012 (8)0.012 (7)
C220.085 (10)0.049 (8)0.055 (7)0.017 (7)0.009 (7)0.006 (6)
C230.044 (6)0.045 (6)0.043 (6)0.011 (5)0.005 (5)0.005 (5)
C240.032 (5)0.040 (6)0.053 (6)0.007 (5)0.005 (5)0.006 (5)
C250.068 (8)0.059 (8)0.044 (6)0.004 (7)0.014 (6)0.007 (6)
C260.068 (8)0.057 (8)0.046 (7)0.004 (6)0.005 (6)0.029 (6)
C270.058 (8)0.049 (7)0.060 (8)0.010 (6)0.014 (6)0.024 (6)
C280.044 (6)0.038 (6)0.044 (6)0.010 (5)0.010 (5)0.001 (5)
C290.032 (6)0.083 (10)0.068 (8)0.004 (6)0.010 (6)0.013 (7)
C300.030 (6)0.104 (12)0.069 (9)0.016 (7)0.001 (6)0.006 (8)
C310.030 (5)0.085 (9)0.047 (6)0.006 (6)0.010 (5)0.012 (6)
C320.037 (6)0.116 (12)0.050 (7)0.001 (7)0.015 (6)0.005 (7)
C330.052 (7)0.093 (10)0.036 (6)0.010 (7)0.010 (5)0.006 (6)
C340.044 (6)0.069 (8)0.031 (5)0.001 (6)0.005 (5)0.001 (5)
C350.032 (5)0.037 (5)0.038 (5)0.002 (4)0.002 (4)0.002 (4)
C360.030 (5)0.035 (5)0.041 (5)0.010 (4)0.004 (4)0.002 (4)
Geometric parameters (Å, º) top
W1—O1E1.677 (7)N2—C111.355 (14)
W1—O41.880 (8)N3—C131.342 (13)
W1—O21.895 (7)N3—C241.350 (13)
W1—O31.909 (8)N4—C221.325 (14)
W1—O11.912 (7)N4—C231.357 (15)
W1—O4C2.481 (11)N5—C251.323 (13)
W2—O2E1.672 (7)N5—C361.352 (12)
W2—O11.893 (7)N6—C341.328 (13)
W2—O51.917 (7)N6—C351.348 (12)
W2—O6A1.917 (18)C1—C21.40 (2)
W2—O9A1.971 (15)C1—H10.9300
W2—O4C2.526 (12)C2—C31.35 (2)
W3—O3E1.667 (8)C2—H20.9300
W3—O51.873 (7)C3—C41.42 (2)
W3—O21.886 (7)C3—H30.9300
W3—O121.893 (8)C4—C121.373 (17)
W3—O101.896 (8)C4—C51.45 (2)
W3—O1Ci2.396 (11)C5—C61.33 (2)
W3—O4C2.473 (12)C5—H50.9300
W4—O4E1.676 (7)C6—C71.45 (2)
W4—O31.875 (9)C6—H60.9300
W4—O71.887 (8)C7—C111.412 (17)
W4—O10i1.897 (9)C7—C81.41 (2)
W4—O81.905 (8)C8—C91.35 (2)
W4—O1C2.451 (12)C8—H80.9300
W5—O5E1.669 (7)C9—C101.344 (19)
W5—O6Ai1.750 (18)C9—H90.9300
W5—O121.897 (9)C10—H100.9300
W5—O7i1.908 (8)C11—C121.421 (17)
W5—O11A2.012 (19)C13—C141.401 (17)
W5—O1Ci2.494 (12)C13—H130.9300
W6—O6E1.673 (7)C14—C151.376 (18)
W6—O41.885 (9)C14—H140.9300
W6—O81.887 (8)C15—C161.410 (17)
W6—O11A1.96 (2)C15—H150.9300
W6—O9Ai2.085 (14)C16—C241.426 (16)
O6A—W5i1.750 (18)C16—C171.429 (17)
O6B—V5i2.064 (15)C17—C181.342 (18)
O7—V5i1.908 (8)C17—H170.9300
O7—W5i1.908 (8)C18—C191.429 (19)
O9A—W6i2.085 (14)C18—H180.9300
O9B—V6i1.746 (15)C19—C231.397 (17)
O10—V4i1.897 (9)C19—C201.417 (19)
O10—W4i1.897 (9)C20—C211.36 (2)
P—O4C1.481 (11)C20—H200.9300
P—O4Ci1.481 (11)C21—C221.37 (2)
P—O3C1.530 (11)C21—H210.9300
P—O3Ci1.530 (11)C22—H220.9300
P—O1Ci1.554 (12)C23—C241.430 (15)
P—O1C1.554 (12)C25—C261.366 (16)
P—O2C1.582 (11)C25—H250.9300
P—O2Ci1.582 (11)C26—C271.347 (18)
O1C—O4Ci1.698 (16)C26—H260.9300
O1C—W3i2.396 (11)C27—C281.399 (16)
O1C—W5i2.494 (12)C27—H270.9300
O4C—O1Ci1.698 (16)C28—C361.413 (14)
O2C—V6i2.453 (12)C28—C291.436 (17)
O2C—V5i2.462 (12)C29—C301.351 (18)
O1W—H1W10.851 (10)C29—H290.9300
O1W—H2W10.851 (10)C30—C311.436 (17)
Co—N32.053 (9)C30—H300.9300
Co—N62.060 (8)C31—C321.398 (17)
Co—N12.066 (10)C31—C351.406 (14)
Co—N42.066 (11)C32—C331.346 (17)
Co—N22.078 (10)C32—H320.9300
Co—N52.085 (8)C33—C341.398 (16)
N1—C11.318 (16)C33—H330.9300
N1—C121.369 (16)C34—H340.9300
N2—C101.318 (14)C35—C361.432 (14)
O1E—W1—O4102.0 (5)W3—O4C—W191.2 (4)
O1E—W1—O2101.1 (4)P—O4C—W2123.5 (7)
O4—W1—O289.3 (4)O1Ci—O4C—W2129.3 (7)
O1E—W1—O3102.3 (5)W3—O4C—W290.2 (4)
O4—W1—O387.7 (3)W1—O4C—W290.8 (4)
O2—W1—O3156.6 (4)P—O2C—V6i122.1 (6)
O1E—W1—O1101.4 (4)P—O2C—V5i120.4 (6)
O4—W1—O1156.7 (4)V6i—O2C—V5i91.7 (4)
O2—W1—O186.5 (3)H1W1—O1W—H2W1116 (2)
O3—W1—O187.1 (3)N3—Co—N6170.4 (3)
O1E—W1—O4C159.7 (5)N3—Co—N195.4 (3)
O4—W1—O4C92.4 (5)N6—Co—N193.8 (3)
O2—W1—O4C64.5 (4)N3—Co—N480.0 (4)
O3—W1—O4C92.4 (4)N6—Co—N497.0 (4)
O1—W1—O4C65.1 (4)N1—Co—N494.0 (4)
O2E—W2—O1102.2 (4)N3—Co—N297.5 (3)
O2E—W2—O5101.8 (4)N6—Co—N286.3 (3)
O1—W2—O587.4 (3)N1—Co—N280.6 (4)
O2E—W2—O6A112.9 (6)N4—Co—N2173.9 (4)
O1—W2—O6A83.5 (6)N3—Co—N590.9 (3)
O5—W2—O6A145.3 (6)N6—Co—N580.1 (3)
O2E—W2—O9A91.4 (5)N1—Co—N5171.6 (4)
O1—W2—O9A166.4 (5)N4—Co—N592.5 (4)
O5—W2—O9A90.3 (5)N2—Co—N593.1 (4)
O6A—W2—O9A90.8 (7)C1—N1—C12117.9 (12)
O2E—W2—O4C160.0 (4)C1—N1—Co129.0 (10)
O1—W2—O4C64.3 (3)C12—N1—Co112.9 (8)
O5—W2—O4C64.5 (4)C10—N2—C11118.0 (11)
O6A—W2—O4C81.4 (6)C10—N2—Co130.3 (9)
O9A—W2—O4C102.7 (5)C11—N2—Co111.2 (8)
O3E—W3—O5100.9 (4)C13—N3—C24118.0 (10)
O3E—W3—O2100.0 (4)C13—N3—Co128.4 (8)
O5—W3—O288.3 (3)C24—N3—Co113.4 (7)
O3E—W3—O12101.7 (5)C22—N4—C23117.6 (12)
O5—W3—O12157.3 (4)C22—N4—Co129.5 (10)
O2—W3—O1287.4 (4)C23—N4—Co112.8 (7)
O3E—W3—O10102.5 (5)C25—N5—C36117.2 (9)
O5—W3—O1088.7 (4)C25—N5—Co130.4 (8)
O2—W3—O10157.5 (5)C36—N5—Co112.2 (6)
O12—W3—O1086.8 (4)C34—N6—C35119.1 (9)
O3E—W3—O1Ci159.8 (4)C34—N6—Co127.5 (7)
O5—W3—O1Ci93.8 (4)C35—N6—Co113.2 (6)
O2—W3—O1Ci94.0 (4)N1—C1—C2123.2 (15)
O12—W3—O1Ci64.3 (4)N1—C1—H1118.4
O10—W3—O1Ci63.9 (5)C2—C1—H1118.4
O3E—W3—O4C159.3 (4)C3—C2—C1118.6 (15)
O5—W3—O4C66.2 (4)C3—C2—H2120.7
O2—W3—O4C64.8 (4)C1—C2—H2120.7
O12—W3—O4C91.9 (5)C2—C3—C4120.0 (15)
O10—W3—O4C93.7 (5)C2—C3—H3120.0
O1Ci—W3—O4C40.8 (4)C4—C3—H3120.0
O4E—W4—O3103.0 (4)C12—C4—C3117.4 (14)
O4E—W4—O7101.6 (5)C12—C4—C5118.4 (13)
O3—W4—O788.7 (4)C3—C4—C5124.1 (14)
O4E—W4—O10i99.9 (5)C6—C5—C4121.0 (13)
O3—W4—O10i157.1 (5)C6—C5—H5119.5
O7—W4—O10i88.2 (4)C4—C5—H5119.5
O4E—W4—O8101.9 (4)C5—C6—C7121.5 (15)
O3—W4—O887.0 (4)C5—C6—H6119.3
O7—W4—O8156.5 (4)C7—C6—H6119.3
O10i—W4—O886.8 (4)C11—C7—C8117.7 (13)
O4E—W4—O1C157.0 (4)C11—C7—C6117.8 (14)
O3—W4—O1C95.6 (4)C8—C7—C6124.5 (14)
O7—W4—O1C65.0 (4)C9—C8—C7118.6 (13)
O10i—W4—O1C62.7 (4)C9—C8—H8120.7
O8—W4—O1C92.4 (4)C7—C8—H8120.7
O5E—W5—O6Ai112.5 (6)C10—C9—C8120.3 (14)
O5E—W5—O12100.4 (4)C10—C9—H9119.9
O6Ai—W5—O12146.1 (6)C8—C9—H9119.9
O5E—W5—O7i100.6 (4)N2—C10—C9124.4 (14)
O6Ai—W5—O7i79.6 (7)N2—C10—H10117.8
O12—W5—O7i86.8 (4)C9—C10—H10117.8
O5E—W5—O11A94.4 (6)N2—C11—C7121.0 (11)
O6Ai—W5—O11A89.5 (8)N2—C11—C12119.3 (11)
O12—W5—O11A96.1 (6)C7—C11—C12119.7 (12)
O7i—W5—O11A164.0 (7)N1—C12—C4122.8 (12)
O5E—W5—O1Ci155.8 (4)N1—C12—C11115.7 (11)
O6Ai—W5—O1Ci84.0 (6)C4—C12—C11121.4 (13)
O12—W5—O1Ci62.1 (4)N3—C13—C14122.7 (11)
O7i—W5—O1Ci63.8 (4)N3—C13—H13118.6
O11A—W5—O1Ci103.7 (6)C14—C13—H13118.6
O6E—W6—O4101.1 (5)C15—C14—C13119.1 (12)
O6E—W6—O8100.9 (5)C15—C14—H14120.4
O4—W6—O887.8 (4)C13—C14—H14120.4
O6E—W6—O11A93.7 (6)C14—C15—C16120.5 (12)
O4—W6—O11A93.3 (6)C14—C15—H15119.8
O8—W6—O11A164.8 (6)C16—C15—H15119.8
O6E—W6—O9Ai94.2 (5)C15—C16—C24115.9 (11)
O4—W6—O9Ai164.3 (5)C15—C16—C17125.1 (12)
O8—W6—O9Ai92.6 (5)C24—C16—C17119.0 (11)
O11A—W6—O9Ai82.3 (7)C18—C17—C16120.7 (12)
W2—O1—W1139.3 (4)C18—C17—H17119.7
W3—O2—W1138.9 (5)C16—C17—H17119.7
W4—O3—W1139.2 (6)C17—C18—C19122.0 (13)
W1—O4—W6139.7 (6)C17—C18—H18119.0
W3—O5—W2138.3 (4)C19—C18—H18119.0
W5i—O6A—W2149.7 (10)C23—C19—C20116.5 (13)
W4—O7—V5i138.9 (5)C23—C19—C18118.9 (12)
W4—O7—W5i138.9 (5)C20—C19—C18124.5 (13)
V5i—O7—W5i0.00 (3)C21—C20—C19119.0 (14)
W6—O8—W4139.3 (5)C21—C20—H20120.5
W2—O9A—W6i123.3 (7)C19—C20—H20120.5
W3—O10—V4i138.7 (6)C20—C21—C22120.2 (14)
W3—O10—W4i138.7 (6)C20—C21—H21119.9
V4i—O10—W4i0.00 (3)C22—C21—H21119.9
W6—O11A—W5125.4 (9)N4—C22—C21123.2 (14)
W3—O12—W5139.9 (6)N4—C22—H22118.4
O4C—P—O4Ci180.0 (8)C21—C22—H22118.4
O4C—P—O3C67.4 (6)N4—C23—C19123.3 (11)
O4Ci—P—O3C112.6 (6)N4—C23—C24116.6 (11)
O4C—P—O3Ci112.6 (6)C19—C23—C24120.1 (11)
O4Ci—P—O3Ci67.4 (6)N3—C24—C16123.8 (10)
O3C—P—O3Ci180.000 (3)N3—C24—C23116.9 (10)
O4C—P—O1Ci68.0 (6)C16—C24—C23119.3 (11)
O4Ci—P—O1Ci112.0 (6)N5—C25—C26124.1 (12)
O3C—P—O1Ci108.6 (6)N5—C25—H25117.9
O3Ci—P—O1Ci71.4 (6)C26—C25—H25117.9
O4C—P—O1C112.0 (6)C27—C26—C25119.2 (11)
O4Ci—P—O1C68.0 (6)C27—C26—H26120.4
O3C—P—O1C71.4 (6)C25—C26—H26120.4
O3Ci—P—O1C108.6 (6)C26—C27—C28120.5 (11)
O1Ci—P—O1C180.0 (7)C26—C27—H27119.8
O4C—P—O2C69.2 (6)C28—C27—H27119.8
O4Ci—P—O2C110.8 (6)C27—C28—C36116.3 (11)
O3C—P—O2C107.1 (6)C27—C28—C29124.3 (11)
O3Ci—P—O2C72.9 (6)C36—C28—C29119.4 (10)
O1Ci—P—O2C105.5 (6)C30—C29—C28119.3 (11)
O1C—P—O2C74.5 (6)C30—C29—H29120.4
O4C—P—O2Ci110.8 (6)C28—C29—H29120.4
O4Ci—P—O2Ci69.2 (6)C29—C30—C31123.6 (11)
O3C—P—O2Ci72.9 (6)C29—C30—H30118.2
O3Ci—P—O2Ci107.1 (6)C31—C30—H30118.2
O1Ci—P—O2Ci74.5 (6)C32—C31—C35116.5 (11)
O1C—P—O2Ci105.5 (6)C32—C31—C30126.1 (11)
O2C—P—O2Ci180.0 (7)C35—C31—C30117.4 (11)
P—O1C—O4Ci54.0 (6)C33—C32—C31120.8 (11)
P—O1C—W3i126.0 (6)C33—C32—H32119.6
O4Ci—O1C—W3i72.0 (6)C31—C32—H32119.6
P—O1C—W4122.9 (7)C32—C33—C34119.5 (11)
O4Ci—O1C—W4135.7 (7)C32—C33—H33120.2
W3i—O1C—W494.1 (4)C34—C33—H33120.2
P—O1C—W5i120.0 (6)N6—C34—C33121.5 (11)
O4Ci—O1C—W5i129.8 (7)N6—C34—H34119.2
W3i—O1C—W5i93.4 (4)C33—C34—H34119.2
W4—O1C—W5i91.9 (4)N6—C35—C31122.5 (9)
P—O4C—O1Ci58.0 (5)N6—C35—C36117.2 (9)
P—O4C—W3125.2 (6)C31—C35—C36120.3 (9)
O1Ci—O4C—W367.2 (5)N5—C36—C28122.7 (9)
P—O4C—W1125.4 (6)N5—C36—C35117.3 (9)
O1Ci—O4C—W1132.1 (7)C28—C36—C35119.9 (9)
N3—Co—N1—C183.6 (10)Co—N1—C12—C4173.8 (9)
N6—Co—N1—C194.0 (10)C1—N1—C12—C11179.9 (10)
N4—Co—N1—C13.3 (10)Co—N1—C12—C114.1 (12)
N2—Co—N1—C1179.7 (10)C3—C4—C12—N11.5 (18)
N5—Co—N1—C1138 (2)C5—C4—C12—N1178.5 (11)
N3—Co—N1—C12101.2 (7)C3—C4—C12—C11179.3 (11)
N6—Co—N1—C1281.2 (7)C5—C4—C12—C113.8 (17)
N4—Co—N1—C12178.5 (7)N2—C11—C12—N10.5 (15)
N2—Co—N1—C124.5 (7)C7—C11—C12—N1177.9 (10)
N5—Co—N1—C1237 (3)N2—C11—C12—C4177.4 (10)
N3—Co—N2—C1089.4 (10)C7—C11—C12—C40.0 (16)
N6—Co—N2—C1081.8 (10)C24—N3—C13—C141.0 (16)
N1—Co—N2—C10176.3 (10)Co—N3—C13—C14172.4 (9)
N4—Co—N2—C10155 (3)N3—C13—C14—C152.1 (18)
N5—Co—N2—C101.9 (10)C13—C14—C15—C161.4 (18)
N3—Co—N2—C1198.4 (7)C14—C15—C16—C240.2 (16)
N6—Co—N2—C1190.4 (7)C14—C15—C16—C17178.5 (11)
N1—Co—N2—C114.1 (7)C15—C16—C17—C18177.9 (11)
N4—Co—N2—C1133 (4)C24—C16—C17—C180.3 (17)
N5—Co—N2—C11170.3 (7)C16—C17—C18—C190.1 (19)
N6—Co—N3—C13105 (2)C17—C18—C19—C230.3 (18)
N1—Co—N3—C1388.7 (10)C17—C18—C19—C20178.3 (12)
N4—Co—N3—C13178.2 (10)C23—C19—C20—C213.5 (17)
N2—Co—N3—C137.5 (10)C18—C19—C20—C21178.4 (12)
N5—Co—N3—C1385.8 (9)C19—C20—C21—C224.4 (19)
N6—Co—N3—C2468 (2)C23—N4—C22—C211.6 (18)
N1—Co—N3—C2497.7 (7)Co—N4—C22—C21176.6 (10)
N4—Co—N3—C244.5 (7)C20—C21—C22—N44 (2)
N2—Co—N3—C24178.8 (7)C22—N4—C23—C190.8 (16)
N5—Co—N3—C2487.9 (7)Co—N4—C23—C19176.6 (8)
N3—Co—N4—C22180.0 (11)C22—N4—C23—C24179.7 (10)
N6—Co—N4—C229.2 (11)Co—N4—C23—C244.5 (12)
N1—Co—N4—C2285.2 (10)C20—C19—C23—N41.8 (16)
N2—Co—N4—C22113 (3)C18—C19—C23—N4179.9 (10)
N5—Co—N4—C2289.5 (10)C20—C19—C23—C24179.3 (10)
N3—Co—N4—C234.8 (7)C18—C19—C23—C241.1 (16)
N6—Co—N4—C23166.0 (7)C13—N3—C24—C160.8 (15)
N1—Co—N4—C2399.7 (8)Co—N3—C24—C16175.2 (8)
N2—Co—N4—C2371 (4)C13—N3—C24—C23177.9 (9)
N5—Co—N4—C2385.6 (8)Co—N3—C24—C233.5 (11)
N3—Co—N5—C256.6 (10)C15—C16—C24—N31.4 (16)
N6—Co—N5—C25176.6 (10)C17—C16—C24—N3179.8 (10)
N1—Co—N5—C25132 (2)C15—C16—C24—C23177.3 (10)
N4—Co—N5—C2586.7 (10)C17—C16—C24—C231.1 (15)
N2—Co—N5—C2590.9 (10)N4—C23—C24—N30.7 (14)
N3—Co—N5—C36179.0 (7)C19—C23—C24—N3179.7 (9)
N6—Co—N5—C362.3 (7)N4—C23—C24—C16179.5 (9)
N1—Co—N5—C3642 (3)C19—C23—C24—C161.5 (15)
N4—Co—N5—C3698.9 (7)C36—N5—C25—C260.2 (17)
N2—Co—N5—C3683.5 (7)Co—N5—C25—C26174.4 (9)
N3—Co—N6—C34162.2 (18)N5—C25—C26—C271 (2)
N1—Co—N6—C343.7 (10)C25—C26—C27—C281.6 (19)
N4—Co—N6—C3490.8 (9)C26—C27—C28—C360.9 (17)
N2—Co—N6—C3484.0 (10)C26—C27—C28—C29176.9 (13)
N5—Co—N6—C34177.8 (10)C27—C28—C29—C30177.4 (13)
N3—Co—N6—C3523 (2)C36—C28—C29—C300.4 (19)
N1—Co—N6—C35171.4 (7)C28—C29—C30—C310 (2)
N4—Co—N6—C3594.0 (7)C29—C30—C31—C32179.1 (15)
N2—Co—N6—C3591.2 (7)C29—C30—C31—C350 (2)
N5—Co—N6—C352.7 (7)C35—C31—C32—C330 (2)
C12—N1—C1—C21.2 (17)C30—C31—C32—C33179.1 (14)
Co—N1—C1—C2173.8 (9)C31—C32—C33—C341 (2)
N1—C1—C2—C30 (2)C35—N6—C34—C332.3 (17)
C1—C2—C3—C40 (2)Co—N6—C34—C33177.2 (9)
C2—C3—C4—C120 (2)C32—C33—C34—N62 (2)
C2—C3—C4—C5177.0 (14)C34—N6—C35—C310.8 (16)
C12—C4—C5—C65.0 (19)Co—N6—C35—C31176.4 (9)
C3—C4—C5—C6178.3 (13)C34—N6—C35—C36178.3 (9)
C4—C5—C6—C72 (2)Co—N6—C35—C362.7 (11)
C5—C6—C7—C111.5 (18)C32—C31—C35—N60.5 (17)
C5—C6—C7—C8179.5 (13)C30—C31—C35—N6178.9 (11)
C11—C7—C8—C92.1 (18)C32—C31—C35—C36179.6 (11)
C6—C7—C8—C9178.9 (12)C30—C31—C35—C360.1 (17)
C7—C8—C9—C102 (2)C25—N5—C36—C281.0 (15)
C11—N2—C10—C91.5 (18)Co—N5—C36—C28176.1 (8)
Co—N2—C10—C9173.2 (10)C25—N5—C36—C35176.7 (10)
C8—C9—C10—N20 (2)Co—N5—C36—C351.5 (11)
C10—N2—C11—C70.8 (15)C27—C28—C36—N50.4 (15)
Co—N2—C11—C7174.1 (8)C29—C28—C36—N5178.4 (10)
C10—N2—C11—C12176.5 (10)C27—C28—C36—C35177.2 (10)
Co—N2—C11—C123.3 (12)C29—C28—C36—C350.7 (15)
C8—C7—C11—N20.9 (16)N6—C35—C36—N50.8 (13)
C6—C7—C11—N2180.0 (10)C31—C35—C36—N5178.4 (10)
C8—C7—C11—C12178.3 (10)N6—C35—C36—C28178.5 (9)
C6—C7—C11—C122.7 (16)C31—C35—C36—C280.6 (15)
C1—N1—C12—C42.0 (16)
Symmetry code: (i) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C4/C12 and N3/C13–C16/C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1E0.85 (1)2.17 (11)2.928 (14)149 (20)
O1W—H2W1···O3Eii0.85 (1)1.99 (3)2.836 (13)173 (17)
C9—H9···O5Eiii0.932.553.208 (15)128
C26—H26···O12iv0.932.462.973 (15)114
C33—H33···O5i0.932.533.345 (13)147
C34—H34···O80.932.433.114 (13)130
C34—H34···Cg10.933.043.811 (12)142
C25—H25···Cg20.932.993.777 (13)143
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+2, y, z+1; (iii) x, y, z1/2; (iv) x+3/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
Co—N32.053 (9)Co—N42.066 (11)
Co—N62.060 (8)Co—N22.078 (10)
Co—N12.066 (10)Co—N52.085 (8)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C1–C4/C12 and N3/C13–C16/C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O1E0.851 (10)2.17 (11)2.928 (14)149 (20)
O1W—H2W1···O3Ei0.851 (10)1.99 (3)2.836 (13)173 (17)
C9—H9···O5Eii0.932.553.208 (15)128
C26—H26···O12iii0.932.462.973 (15)114
C33—H33···O5iv0.932.533.345 (13)147
C34—H34···O80.932.433.114 (13)130
C34—H34···Cg10.933.043.811 (12)142
C25—H25···Cg20.932.993.777 (13)143
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y+1/2, z+1.
 

Acknowledgements

The authors express their appreciation to the CNRS 6230 UFR Sciences and Techniques of Nantes in France for supporting this work.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDeltcheff, C. R., Fournier, M., Franck, R. & Thouvenot, R. (1983). Inorg. Chem. 22, 207–216.  Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlinskaya, L. A., Yurchenko, É. N., Klevtsova, R. F., Derkach, L. V., Rios, A. M. & Lazarenko, T. P. (1989). J. Struct. Chem. 30, 427–432.  CrossRef Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKlevtsova, R. F., Glinskaya, L. A., Yurchenko, E. N., Derkach, L. V., Rios, A. M. & Lazarenko, T. P. (1990). J. Struc. Chem. 31, 285–291.  CrossRef Web of Science Google Scholar
First citationKlevtsova, R. F., Glinskaya, L. A., Yurchenko, É. N. & Gutsul, T. D. (1991). J. Struct. Chem. 32, 687–692.  CrossRef Google Scholar
First citationLee, K. Y. & Misono, M. (1997). Heteropoly compounds, in Handbook of Heterogeneous Catalysis, edited by G. Ertl, H. Knozinger & J. Weitkamp, pp. 118–131. Berlin: VCH.  Google Scholar
First citationLi, C., Cao, R., O'Halloran, K. P., Ma, H. & Wu, L. (2008). Electrochim. Acta, 54, 484–489.  Web of Science CSD CrossRef CAS Google Scholar
First citationPope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.  CrossRef Web of Science Google Scholar
First citationPope, M. T. & Müller, A. (1994). In Polyoxometalates: from platonic solids to anti-retroviral activity. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationRadkov, E. & Beer, R. H. (1995). Polyhedron, 14, 2139–2143.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatras, M. J. & Teplyakov, A. V. (2005). J. Phys. Chem. B, 109, 8928–8934.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m125-m126
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds