metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl­piperazine-1,4-diium tetra­chlorido­cobalt(II)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bDepartment of Chemistry and Biochemistry, St Catherine University, 2004 Randolph Avenue, #4282, St Paul, MN 55105, USA
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 12 March 2014; accepted 14 March 2014; online 22 March 2014)

In the title mol­ecular salt, (C10H16N2)[CoCl4], the piperazine ring of the phenyl­piperazine dication adopts a chair conformation and the phenyl ring occupies an equatorial orientation. In the tetra­chlorido­cobaltate(II) dianion, the Co—Cl bond lengths for the chloride ions not accepting hydrogen bonds are significantly shorter than those for the chloride ions accepting such bonds. In the crystal, the components are linked by N—H⋯Cl hydrogen bonds, generating [001] chains.

Related literature

For background to organic-inorganic hybrid materials, see: Bringley & Rajeswaran (2006[Bringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304-m1305.]); Brammer et al. (2002)[Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc Natl Acad Sci USA, 99, 4956-4961.]. For phenyl­piperazinium cations, see: Ben Garbia et al. (2005[Ben Garbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333-334.]). For related structures, see: Mghandef & Boughzala (2014[Mghandef, M. & Boughzala, H. (2014). Acta Cryst. E70, m75.]); Wang et al. (2012[Wang, W.-Z., Ismayilov, R. H., Lee, G.-H., Wen, Y.-S. & Peng, S.-M. (2012). Acta Cryst. E68, m51.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H16N2)[CoCl4]

  • Mr = 365.00

  • Monoclinic, P 21 /c

  • a = 7.7400 (9) Å

  • b = 20.278 (3) Å

  • c = 9.6257 (12) Å

  • β = 105.121 (8)°

  • V = 1458.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 173 K

  • 0.46 × 0.32 × 0.28 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.465, Tmax = 0.589

  • 15030 measured reflections

  • 3335 independent reflections

  • 3034 reflections with F2 > 2σ(F2)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.054

  • S = 1.14

  • 3335 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl1 2.3182 (5)
Co1—Cl2 2.2431 (5)
Co1—Cl3 2.2738 (5)
Co1—Cl4 2.2811 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl4 0.90 (3) 2.21 (3) 3.1043 (14) 173 (3)
N1—H1B⋯Cl1i 0.85 (2) 2.66 (3) 3.2963 (14) 132.2 (18)
N2—H2⋯Cl1ii 0.89 (3) 2.36 (2) 3.2262 (13) 164.6 (17)
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y, z-1.

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Organic-inorganic hybrid materials have received extensive attention in recent years owing to their great fundamental and practical interest such as second-order nonlinear optical (NLO) responses, magnetism, luminescence, photography and drug delivery (Bringley & Rajeswaran, 2006). However, the energetics of NH····Cl—M (M = metal) hydrogen bonds and their possible roles in supramolecular chemistry have only been recently described in detail (Brammer et al., 2002). It is therefore vital to design and synthesize new organic inorganic hybrid compound to explore their various properties.

The title inorganic-organic hybrid compound contains two basic components, the one [CoCl4]2– anion and one (C10H16N2)2+ organic dication (Fig.1). The structure can be described by tetrachloridocobalt(II) units which form a hydrogen-bonded one-dimensional network with the phenylpiperazinium (N–H···Cl: 3.1043 (14) Å, 3.2963 (14) Å, 3.2262 (13) Å of infinite ribbons located at y = 0 and y = 1/2 that translate along the c direction (Fig. 2). The vander Waals contacts between these ribbons give rise to a three-dimensional network in the structure and add stability to this structure. In the [CoCl4] tetrahedra, the Co—Cl bond lengths and Cl–Co–Cl angles, ranging from 2.2431 (5) to 2.3182 (5) Å and from 103.983 (1) to 116.304 (19)° respectively, are in agreement with those found in 1-(4-hydroxyphenyl)piperazine-1,4-diium tetrachloridocobalt(II) monohydrate (Mghandef & Boughzala, 2014). The nearest Co···Co intra-chain distance is 6.044 Å, while that between adjacent chains is 7.441 Å. The organic cation, (C10H16N2)2+, contains a piperazindium ring in a chair conformation and a planar aromatic ring (atoms C5—C10 r.m.s. deviation = 0.003 Å). In this dication, the bond lengths of C5—C6, C5—C10, C6—C7, C7—C8, C8—C9 and C9—C10 are between single bonds and double bonds and are similar to those of benzene (Ben Garbia et al., 2005). Furthermore, the distances N1—C4, N1—C1, N2—C5, N2—C2, N2—C3, C1—C2 and C3—C4 indicate single bonds.

In this compound, H1A and H2A attached to the N1 nitrogen atom and H2 attached to N2 nitrogen atom play an important role in forming the molecular association through hydrogen bonding. Here two chlorine atoms, Cl1 and Cl4, act as acceptors of N–H···Cl H-bonds. The chlorine atoms Cl2 and Cl3 do not participate in the hydrogen bonding network. The deviation from the perfect tetrahedral arrangement around Co(II) in the title compound can be explained by involvment of the chlorine ions in hydrogen bonding. Three different [CoCl4]2– anions are act as hydrogen-bonding acceptors to each phenylpiperazinium dication forming two different hydrogen-bonding ring motifs, R24(14) and R44(12) (Fig.3). As Cl2 and Cl3 do not act as hydrogen-bond acceptors, the bond angles Cl2–Co–Cl3 and Cl2–Co–Cl4 (116.304 (19)° and 112.971 (19)°, respectively) display comparatively large deviations from the expected tetrahedral arrangement around Co(II). Similar features have been also observed in the structure of dimorpholinium tetrachloridocobaltate(II) (Wang et al., 2012), where three chlorine atoms are engaged in the hydrogen-bonding network and distortions from tetrahedral predictions are present in the Cl–Co–Cl angles. The structure of dimorpholinium tetrachloridocobaltate(II) also displays a R44(12) hydrogen bonding motif, but does not possess a second unique R24(14) motif that the title compound does exhibit.

Related literature top

For background to organic-inorganic hybrid materials, see: Bringley & Rajeswaran (2006); Brammer et al. (2002). For phenylpiperazinium cations, see: Ben Garbia et al. (2005). For related structures, see: Mghandef & Boughzala (2014); Wang et al. (2012).

Experimental top

A mixture of CoCl2·H2O and phenylpiperazine was dissolved in an aqueous solution of hydrochloric acid (molar ratio 1:1:1). The obtained solution was stirred for 2 h and then kept at room temperature. Blue prisms of the title compound were obtained two weeks later.

Refinement top

Many hydrogen atoms were treated in calculated positions and refined in the model as riding with distances of C—H = 0.95 and 0.99 Å for the phenyl and methylene groups, respectively, and with Uiso(H) = k×Ueq(C), k = 1.2. Hydrogen atoms H1A, H1B, and H2 were located in the electron density map, and their positions were refined with Uiso(H) = k×Ueq(C), k =1.2.

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP-3 view of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the atomic arrangement of the title compound along the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Graph-set description of ring types hydrogen bonding. Hydrogen bonds are shown as dashed lines.
1-Phenylpiperazine-1,4-diium tetrachloridocobalt(II) top
Crystal data top
(C10H16N2)[CoCl4]F(000) = 740.00
Mr = 365.00Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 14000 reflections
a = 7.7400 (9) Åθ = 3.0–27.6°
b = 20.278 (3) ŵ = 1.89 mm1
c = 9.6257 (12) ÅT = 173 K
β = 105.121 (8)°Prism, blue
V = 1458.5 (3) Å30.46 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku XtaLAB mini
diffractometer
3034 reflections with F2 > 2σ(F2)
Detector resolution: 6.849 pixels mm-1Rint = 0.023
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1010
Tmin = 0.465, Tmax = 0.589k = 2626
15030 measured reflectionsl = 1212
3335 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.6924P]
where P = (Fo2 + 2Fc2)/3
3335 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.36 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
(C10H16N2)[CoCl4]V = 1458.5 (3) Å3
Mr = 365.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7400 (9) ŵ = 1.89 mm1
b = 20.278 (3) ÅT = 173 K
c = 9.6257 (12) Å0.46 × 0.32 × 0.28 mm
β = 105.121 (8)°
Data collection top
Rigaku XtaLAB mini
diffractometer
3335 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
3034 reflections with F2 > 2σ(F2)
Tmin = 0.465, Tmax = 0.589Rint = 0.023
15030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.26 e Å3
3335 reflectionsΔρmin = 0.36 e Å3
166 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.14256 (3)0.110059 (11)0.71031 (2)0.01829 (7)
Cl10.17830 (5)0.025120 (19)0.87659 (4)0.02225 (9)
Cl20.12699 (6)0.20091 (2)0.83944 (4)0.02466 (10)
Cl30.10305 (5)0.08669 (2)0.52831 (4)0.02264 (9)
Cl40.38614 (5)0.10918 (2)0.61855 (4)0.02585 (10)
N10.16483 (19)0.05757 (7)0.32178 (15)0.0196 (3)
N20.36753 (17)0.11889 (6)0.14374 (14)0.0156 (3)
C10.0927 (3)0.11496 (8)0.22774 (18)0.0212 (4)
C20.2443 (2)0.15844 (8)0.20870 (18)0.0195 (4)
C30.4446 (2)0.06256 (8)0.24379 (18)0.0207 (4)
C40.2953 (3)0.01865 (8)0.26558 (18)0.0213 (4)
C50.5097 (2)0.15791 (8)0.10288 (16)0.0171 (3)
C60.5541 (3)0.22071 (9)0.15569 (19)0.0255 (4)
C70.6844 (3)0.25474 (9)0.1091 (2)0.0291 (4)
C80.7669 (3)0.22656 (9)0.01261 (19)0.0261 (4)
C90.7195 (3)0.16350 (9)0.03960 (18)0.0234 (4)
C100.5899 (3)0.12865 (8)0.00517 (18)0.0204 (4)
H1C0.01210.14090.27140.0255*
H1D0.02220.09900.13260.0255*
H1A0.221 (3)0.0719 (12)0.411 (3)0.040 (7)*
H1B0.076 (3)0.0334 (11)0.326 (3)0.027 (6)*
H2A0.19510.19610.14510.0234*
H2B0.31150.17620.30320.0234*
H20.305 (3)0.1003 (10)0.063 (3)0.025 (5)*
H3A0.51360.08030.33770.0248*
H3B0.52710.03640.20240.0248*
H4A0.23290.00200.17290.0256*
H4B0.34650.01690.33440.0256*
H60.49720.24010.22200.0306*
H70.71720.29800.14410.0349*
H80.85610.25030.01810.0313*
H90.77610.14420.10620.0281*
H100.55650.08550.03030.0245*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01922 (12)0.02023 (12)0.01622 (11)0.00007 (8)0.00605 (9)0.00011 (8)
Cl10.0271 (2)0.01947 (19)0.01833 (18)0.00352 (15)0.00258 (15)0.00167 (15)
Cl20.0297 (3)0.0210 (2)0.0247 (2)0.00116 (16)0.00976 (17)0.00198 (16)
Cl30.01909 (19)0.0276 (2)0.02077 (19)0.00029 (15)0.00430 (15)0.00099 (16)
Cl40.0190 (2)0.0383 (3)0.0214 (2)0.00280 (16)0.00730 (16)0.00424 (17)
N10.0193 (7)0.0222 (8)0.0189 (7)0.0024 (6)0.0078 (6)0.0004 (6)
N20.0167 (7)0.0167 (7)0.0139 (7)0.0018 (5)0.0048 (5)0.0016 (5)
C10.0188 (8)0.0235 (9)0.0228 (9)0.0029 (7)0.0079 (7)0.0035 (7)
C20.0208 (8)0.0184 (8)0.0217 (8)0.0023 (6)0.0095 (7)0.0008 (7)
C30.0192 (8)0.0211 (9)0.0232 (8)0.0038 (7)0.0080 (7)0.0050 (7)
C40.0243 (9)0.0180 (8)0.0243 (8)0.0009 (7)0.0111 (7)0.0019 (7)
C50.0160 (8)0.0194 (8)0.0155 (8)0.0018 (6)0.0033 (6)0.0018 (6)
C60.0285 (9)0.0239 (9)0.0267 (9)0.0053 (7)0.0118 (8)0.0064 (8)
C70.0293 (10)0.0231 (9)0.0360 (10)0.0087 (7)0.0106 (8)0.0050 (8)
C80.0204 (9)0.0296 (10)0.0285 (9)0.0056 (7)0.0066 (7)0.0064 (8)
C90.0208 (8)0.0307 (10)0.0204 (8)0.0016 (7)0.0082 (7)0.0019 (7)
C100.0209 (8)0.0208 (8)0.0201 (8)0.0007 (7)0.0062 (7)0.0011 (7)
Geometric parameters (Å, º) top
Co1—Cl12.3182 (5)N1—H1A0.90 (3)
Co1—Cl22.2431 (5)N1—H1B0.86 (3)
Co1—Cl32.2738 (5)N2—H20.89 (2)
Co1—Cl42.2811 (6)C1—H1C0.990
N1—C11.491 (2)C1—H1D0.990
N1—C41.490 (3)C2—H2A0.990
N2—C21.502 (3)C2—H2B0.990
N2—C31.513 (2)C3—H3A0.990
N2—C51.489 (3)C3—H3B0.990
C1—C21.517 (3)C4—H4A0.990
C3—C41.516 (3)C4—H4B0.990
C5—C61.381 (3)C6—H60.950
C5—C101.388 (3)C7—H70.950
C6—C71.389 (3)C8—H80.950
C7—C81.381 (3)C9—H90.950
C8—C91.388 (3)C10—H100.950
C9—C101.385 (3)
Cl1—Co1—Cl2103.983 (19)N1—C1—H1C109.580
Cl1—Co1—Cl3107.597 (18)N1—C1—H1D109.572
Cl1—Co1—Cl4107.440 (18)C2—C1—H1C109.578
Cl2—Co1—Cl3116.304 (19)C2—C1—H1D109.582
Cl2—Co1—Cl4112.971 (19)H1C—C1—H1D108.117
Cl3—Co1—Cl4108.021 (19)N2—C2—H2A109.754
C1—N1—C4112.03 (14)N2—C2—H2B109.749
C2—N2—C3109.03 (13)C1—C2—H2A109.748
C2—N2—C5114.81 (12)C1—C2—H2B109.747
C3—N2—C5111.93 (12)H2A—C2—H2B108.227
N1—C1—C2110.37 (13)N2—C3—H3A109.634
N2—C2—C1109.60 (13)N2—C3—H3B109.651
N2—C3—C4110.07 (12)C4—C3—H3A109.646
N1—C4—C3110.63 (14)C4—C3—H3B109.646
N2—C5—C6121.53 (16)H3A—C3—H3B108.161
N2—C5—C10116.34 (14)N1—C4—H4A109.525
C6—C5—C10122.09 (17)N1—C4—H4B109.519
C5—C6—C7118.12 (18)C3—C4—H4A109.521
C6—C7—C8120.89 (17)C3—C4—H4B109.518
C7—C8—C9120.01 (18)H4A—C4—H4B108.083
C8—C9—C10120.14 (18)C5—C6—H6120.943
C5—C10—C9118.76 (16)C7—C6—H6120.939
C1—N1—H1A109.7 (15)C6—C7—H7119.555
C1—N1—H1B107.3 (13)C8—C7—H7119.550
C4—N1—H1A108.0 (16)C7—C8—H8119.998
C4—N1—H1B110.1 (15)C9—C8—H8119.996
H1A—N1—H1B110 (3)C8—C9—H9119.930
C2—N2—H2109.3 (15)C10—C9—H9119.935
C3—N2—H2105.8 (13)C5—C10—H10120.626
C5—N2—H2105.5 (15)C9—C10—H10120.617
C1—N1—C4—C355.10 (15)N1—C1—C2—N258.69 (16)
C4—N1—C1—C256.04 (16)N2—C3—C4—N156.76 (16)
C2—N2—C3—C459.86 (14)N2—C5—C6—C7178.07 (11)
C3—N2—C2—C160.67 (13)N2—C5—C10—C9178.25 (11)
C2—N2—C5—C616.73 (17)C6—C5—C10—C90.5 (3)
C2—N2—C5—C10161.00 (11)C10—C5—C6—C70.5 (3)
C5—N2—C2—C1172.84 (10)C5—C6—C7—C80.1 (3)
C3—N2—C5—C6108.25 (14)C6—C7—C8—C90.2 (3)
C3—N2—C5—C1074.02 (15)C7—C8—C9—C100.2 (3)
C5—N2—C3—C4172.01 (11)C8—C9—C10—C50.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.90 (3)2.21 (3)3.1043 (14)173 (3)
N1—H1B···Cl1i0.85 (2)2.66 (3)3.2963 (14)132.2 (18)
N2—H2···Cl1ii0.89 (3)2.36 (2)3.2262 (13)164.6 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
Selected bond lengths (Å) top
Co1—Cl12.3182 (5)Co1—Cl32.2738 (5)
Co1—Cl22.2431 (5)Co1—Cl42.2811 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl40.90 (3)2.21 (3)3.1043 (14)173 (3)
N1—H1B···Cl1i0.85 (2)2.66 (3)3.2963 (14)132.2 (18)
N2—H2···Cl1ii0.89 (3)2.36 (2)3.2262 (13)164.6 (17)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

We acknowledge the NSF–MRI grant No. 1125975 "MRI Consortium Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility".

References

First citationBen Garbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333–334.  CAS Google Scholar
First citationBrammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc Natl Acad Sci USA, 99, 4956–4961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBringley, J. F. & Rajeswaran, M. (2006). Acta Cryst. E62, m1304–m1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMghandef, M. & Boughzala, H. (2014). Acta Cryst. E70, m75.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W.-Z., Ismayilov, R. H., Lee, G.-H., Wen, Y.-S. & Peng, S.-M. (2012). Acta Cryst. E68, m51.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds