organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-1H-1,2,4-triazol-5(4H)-one

aDepartment of Studies in Chemistry, Karnataka University, Dharwad 580 003, Karnataka, India, bDepartment of Physics, Moodlakatte Institute of Technology, Kundapura 576 217, Karnataka, India, and cDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: ravichem@kud.ac.in, devarajegowda@yahoo.com

(Received 18 March 2014; accepted 23 March 2014; online 29 March 2014)

In the title compound, C8H6ClN3O, the dihedral angle between the 1,2,4-triazole and benzene rings is 4.60 (9)° and an intra­molecular C—H⋯O inter­action closes an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops and C—H⋯O inter­actions link the dimers into [100] chains. Weak ππ stacking inter­actions [centroid–centroid distance = 3.644 (1) Å] are also observed.

Related literature

For a related structure and background to 1,2,4-triazoles, see: Devarajegowda et al.(2012[Devarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6ClN3O

  • Mr = 195.61

  • Triclinic, [P \overline 1]

  • a = 6.5791 (4) Å

  • b = 7.2663 (4) Å

  • c = 9.3342 (5) Å

  • α = 80.121 (4)°

  • β = 85.042 (4)°

  • γ = 70.235 (4)°

  • V = 413.52 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: ψ scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 1.000

  • 5938 measured reflections

  • 1438 independent reflections

  • 1270 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.06

  • 1438 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O2i 0.86 1.95 2.7924 (18) 166
C6—H6⋯O2ii 0.93 2.53 3.360 (3) 149
C9—H9⋯O2 0.93 2.29 2.933 (2) 126
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our onging studies of 1,2,4-triazoles (Devarajegowda et al., 2012), we now describe the synthesis and structure of the title compound.

The asymmetric unit of 2-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazol- 3-one is shown in Fig. 1. The dihedral angle between the 1,2,4-triazol ring (N3/N4/N5/C6/C7) and the benzene ring (C8–C13) is 4.60 (9)°. In the crystal, inversion related N5—H5···O2 interactions generate an R22(8) ring pattern and link pairs of independent molecules into dimers and C6—H6···O interactions generate R22(10) ring motifs. Cg(1)ππCg(2) interactions [centroid–centroid distance = 3.644 (1) Å] between 1,2,4 triazole (N3/N4/N5/C6/C7) and benzene (C8–C13) rings are also observed.

Related literature top

For a related structure and background to 1,2,4-triazoles, see: Devarajegowda et al.(2012).

Experimental top

2-(4-Chlorophenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one was refluxed with formamide at 453 K. After completion of the reaction, the reaction mixture was poured into ice cold water to recover the title compound, which was recrystallized from ethanol solution as colourless plates (m.p. 528 K).

Refinement top

All H atoms were positioned geometrically, with N—H = 0.86 Å, and C—H = 0.93 Å for aromatic H and refined using a riding model with Uiso(H) = 1.2Ueq(C, N) for aromatic and amide H.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title compound.
1-(4-Chlorophenyl)-1H-1,2,4-triazol-5(4H)-one top
Crystal data top
C8H6ClN3OZ = 2
Mr = 195.61F(000) = 200
Triclinic, P1Dx = 1.571 Mg m3
Hall symbol: -P 1Melting point: 528 K
a = 6.5791 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2663 (4) ÅCell parameters from 1438 reflections
c = 9.3342 (5) Åθ = 2.2–25.0°
α = 80.121 (4)°µ = 0.42 mm1
β = 85.042 (4)°T = 296 K
γ = 70.235 (4)°Plate, colourless
V = 413.52 (4) Å30.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
1438 independent reflections
Radiation source: fine-focus sealed tube1270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
h = 77
Tmin = 0.770, Tmax = 1.000k = 88
5938 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.1038P]
where P = (Fo2 + 2Fc2)/3
1438 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C8H6ClN3Oγ = 70.235 (4)°
Mr = 195.61V = 413.52 (4) Å3
Triclinic, P1Z = 2
a = 6.5791 (4) ÅMo Kα radiation
b = 7.2663 (4) ŵ = 0.42 mm1
c = 9.3342 (5) ÅT = 296 K
α = 80.121 (4)°0.24 × 0.20 × 0.12 mm
β = 85.042 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1438 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 2007)
1270 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.025
5938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
1438 reflectionsΔρmin = 0.15 e Å3
118 parameters
Special details top

Experimental. IR (KBr): 1686 (C=O), 3433 (NH); 1H-NMR (400 MHz, DMSO-D6, δ p.p.m.): 7.46–7.50 (d, 2H, ArH, J = 16 Hz), 7.90–7.94 (d, 2H, ArH, J = 16 Hz), 8.12 (s, 1H, C5H), 12.00 (s, 1H, NH); 13C-NMR (100 MHz, DMSO-D6, δ p.p.m.): 119.26, 128.77, 128.84, 136.66, 136.72, 152.17; MS (m/z, 70 eV): 197 (M2+), 195 (M+), 127, 125, 113, 111.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31296 (10)0.62029 (8)1.39673 (5)0.0705 (2)
O20.1420 (2)0.9297 (2)0.66886 (13)0.0595 (4)
N30.1322 (2)0.79679 (19)0.83947 (14)0.0385 (3)
N40.3528 (2)0.7607 (2)0.83651 (15)0.0488 (4)
N50.2213 (2)0.8940 (2)0.62018 (15)0.0457 (4)
H50.21960.94130.52910.055*
C110.1807 (3)0.6731 (2)1.23269 (18)0.0462 (4)
C100.2983 (3)0.7604 (3)1.1128 (2)0.0600 (5)
H100.44790.79271.11860.072*
C90.1960 (3)0.8017 (3)0.9812 (2)0.0557 (5)
H90.27670.86150.89860.067*
C80.0241 (2)0.7544 (2)0.97287 (16)0.0369 (3)
C70.0477 (3)0.8791 (2)0.70550 (17)0.0414 (4)
C120.0388 (3)0.6240 (3)1.2260 (2)0.0600 (5)
H120.11830.56451.30920.072*
C130.1426 (3)0.6632 (3)1.0949 (2)0.0563 (5)
H130.29240.62781.08940.068*
C60.3967 (3)0.8216 (3)0.70340 (19)0.0500 (4)
H60.53500.81620.66840.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0853 (4)0.0835 (4)0.0407 (3)0.0336 (3)0.0192 (2)0.0029 (2)
O20.0439 (7)0.0937 (10)0.0378 (6)0.0286 (7)0.0083 (5)0.0143 (6)
N30.0342 (7)0.0481 (7)0.0320 (7)0.0137 (5)0.0030 (5)0.0012 (5)
N40.0351 (8)0.0675 (9)0.0393 (8)0.0140 (6)0.0019 (6)0.0020 (6)
N50.0429 (8)0.0615 (8)0.0319 (7)0.0210 (6)0.0008 (6)0.0018 (6)
C110.0586 (11)0.0470 (9)0.0333 (8)0.0202 (8)0.0072 (7)0.0046 (7)
C100.0396 (9)0.0893 (14)0.0466 (10)0.0202 (9)0.0037 (8)0.0030 (9)
C90.0403 (9)0.0861 (13)0.0344 (9)0.0181 (9)0.0046 (7)0.0041 (8)
C80.0399 (8)0.0389 (8)0.0313 (8)0.0132 (6)0.0013 (6)0.0029 (6)
C70.0411 (9)0.0499 (9)0.0337 (8)0.0187 (7)0.0030 (7)0.0011 (6)
C120.0579 (12)0.0775 (13)0.0346 (9)0.0167 (10)0.0070 (8)0.0096 (8)
C130.0399 (9)0.0786 (12)0.0412 (10)0.0149 (8)0.0072 (8)0.0087 (8)
C60.0377 (9)0.0696 (11)0.0405 (9)0.0180 (8)0.0025 (7)0.0041 (8)
Geometric parameters (Å, º) top
Cl1—C111.7444 (16)C11—C121.364 (3)
O2—C71.237 (2)C10—C91.385 (3)
N3—C71.367 (2)C10—H100.9300
N3—N41.3833 (19)C9—C81.369 (2)
N3—C81.419 (2)C9—H90.9300
N4—C61.288 (2)C8—C131.375 (2)
N5—C61.348 (2)C12—C131.383 (3)
N5—C71.359 (2)C12—H120.9300
N5—H50.8600C13—H130.9300
C11—C101.352 (3)C6—H60.9300
C7—N3—N4111.34 (13)C9—C8—C13119.67 (15)
C7—N3—C8128.99 (13)C9—C8—N3120.90 (14)
N4—N3—C8119.63 (12)C13—C8—N3119.43 (15)
C6—N4—N3103.86 (13)O2—C7—N5127.42 (15)
C6—N5—C7107.98 (14)O2—C7—N3128.69 (15)
C6—N5—H5126.0N5—C7—N3103.89 (13)
C7—N5—H5126.0C11—C12—C13119.63 (17)
C10—C11—C12120.83 (16)C11—C12—H12120.2
C10—C11—Cl1119.12 (14)C13—C12—H12120.2
C12—C11—Cl1120.04 (14)C8—C13—C12119.95 (17)
C11—C10—C9119.95 (17)C8—C13—H13120.0
C11—C10—H10120.0C12—C13—H13120.0
C9—C10—H10120.0N4—C6—N5112.93 (15)
C8—C9—C10119.94 (17)N4—C6—H6123.5
C8—C9—H9120.0N5—C6—H6123.5
C10—C9—H9120.0
C7—N3—N4—C60.28 (18)C6—N5—C7—N30.31 (18)
C8—N3—N4—C6177.50 (14)N4—N3—C7—O2179.93 (18)
C12—C11—C10—C90.3 (3)C8—N3—C7—O22.6 (3)
Cl1—C11—C10—C9179.35 (16)N4—N3—C7—N50.37 (18)
C11—C10—C9—C80.1 (3)C8—N3—C7—N5177.14 (14)
C10—C9—C8—C131.1 (3)C10—C11—C12—C130.3 (3)
C10—C9—C8—N3179.50 (17)Cl1—C11—C12—C13178.82 (16)
C7—N3—C8—C92.1 (3)C9—C8—C13—C121.6 (3)
N4—N3—C8—C9175.26 (15)N3—C8—C13—C12178.97 (17)
C7—N3—C8—C13177.37 (16)C11—C12—C13—C81.2 (3)
N4—N3—C8—C135.3 (2)N3—N4—C6—N50.1 (2)
C6—N5—C7—O2179.98 (18)C7—N5—C6—N40.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O2i0.861.952.7924 (18)166
C6—H6···O2ii0.932.533.360 (3)149
C9—H9···O20.932.292.933 (2)126
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O2i0.861.952.7924 (18)166
C6—H6···O2ii0.932.533.360 (3)149
C9—H9···O20.932.292.933 (2)126
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the University Scientific Instrumentation Centre (USIC), Karnatak University, Dharwad, for providing the XRD data. PPK thanks the University Grants Commission (UGC), New Delhi, for financial assistance under the RFSMS scheme. The authors are grateful to the University Grants Commission, New Delhi [F. No. 14–3/2012 (NS/PE) Dated: 14–03-2012] for providing financial support under Anti­tumor activity an integrated approach, a focused area of the UPE programme.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDevarajegowda, H. C., Jeyaseelan, S., Sathishkumar, R., D'souza, A. S. & D'souza, A. (2012). Acta Cryst. E68, o1607.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds