organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o385-o386

7-Chloro-4-(2-hy­dr­oxy­ethyl­amino)­quinolin-1-ium chloride

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, bChemistry Department, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 February 2014; accepted 27 February 2014; online 5 March 2014)

In the title salt, C11H12ClN2O+·Cl, the ten non-H atoms comprising the quinolinium residue are coplanar (r.m.s. deviation = 0.041 Å) and the hy­droxy­ethyl group is approximately perpendicular to this plane [Cring—N—Cmethyl­ene—C torsion angle = −74.61 (18)°]. A supra­molecular chain aligned along [101] mediated by charge-assisted O/N—H⋯Cl hydrogen bonds features in the crystal packing. Chains are connected into a three-dimensional architecture by C—H⋯O(hy­droxy) inter­actions.

Related literature

For the wide range of pharmacological activities of synthetic and natural products containing the quinoline nucleus, see: Andrade et al. (2007[Andrade, A. A., Varotti, M. F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194-196.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); Font et al. (1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259-272.]); Kaminsky & Meltzer (1968[Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160-163.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Nakamura et al. (1999[Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618-624.]); Sloboda et al., (1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]); de Souza et al. (2014[Souza, M. V. N. de, Goncalves, R. S. B., Rodrigues, F. A. R., Cavalcanti, B. C., Bomfim, I. S., Pessoa, C. O., Wardell, J. L. & Wardell, S. M. S. V. (2014). Chem. Biol. Drug Des. 83, 126-131.]); Tanenbaum & Tuffanelli (1980[Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587-591.]); Warshakoon et al. (2006[Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207-5211.]). For the crystal structures of related 4-RN(H)-7-chloro­quinolines, see: Kaiser et al., (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN2O+·Cl

  • Mr = 259.13

  • Monoclinic, P 21 /c

  • a = 8.2438 (13) Å

  • b = 16.405 (2) Å

  • c = 8.8561 (14) Å

  • β = 110.705 (2)°

  • V = 1120.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 100 K

  • 0.20 × 0.07 × 0.04 mm

Data collection
  • Rigaku R-AXIS conversion diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2013[Rigaku (2013). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.831, Tmax = 1.000

  • 7784 measured reflections

  • 2581 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.07

  • 2581 reflections

  • 154 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯Cl2 0.84 (2) 2.30 (2) 3.1338 (14) 179 (2)
N1—H1n⋯Cl2i 0.88 (1) 2.29 (1) 3.1602 (15) 168 (1)
N2—H2n⋯Cl2ii 0.87 (1) 2.49 (2) 3.2949 (14) 154 (2)
C2—H2⋯O1iii 0.95 2.60 3.545 (2) 173
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2013[Rigaku (2013). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

A solution of 7-chloro-4-(2-hy­droxy­ethyl­amino)­quinoline (1 mmol) and FeCl3.6H2O (1 mmol) in EtOH (25 ml) was refluxed for 30 min. On leaving the reaction mixture at room temperature, crystals of the title compound were formed, M.pt: 538–541 K (dec.).

Refinement top

Intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O- and N-bound H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N), respectively.

Results and discussion top

The quinoline nucleus is found in many synthetic and natural products having a wide range of pharmacological activities, such as anti-viral (Font et al., 1997), anti-cancer (Nakamura et al., 1999; de Souza et al., 2014), anti-bacterial (Kaminsky & Meltzer, 1968), anti-malarial (Tanenbaum & Tuffanelli, 1980; Cunico et al., 2006; Andrade et al., 2007), anti-fungal (Musiol et al., 2006), anti-obesity (Warshakoon et al., 2006) and anti-inflammatory (Sloboda et al., 1991) activities. The crystal structures of a series of 4-RN(H)-7-chloro-quinolines was recently reported (Kaiser et al., 2009). We now wish to report the crystal structure of the HCl salt of 4-(HOCH2CH2NH-7-chloro-quinoline, (I), obtained serendipiously from an attempted reaction to generate an iron complex.

The components of salt (I) are illustrated in Fig. 1. The 10 non-hydrogen atoms comprising the quinolinium residue are co-planar with a r.m.s. deviation of 0.041 Å. The hy­droxy­ethyl group is almost perpendicular to this plane as seen in the C3—N2—C10—C11 torsion angle of -74.61 (18)°.

In the crystal structure, charge-assisted O, N—H···Cl- hydrogen bonds, Table 1, lead to a supra­molecular chain aligned along [1 0 1], Fig. 2. These are connected into a three-dimensional architecture by methyl­ene-C—H···O(hydroxyl) inter­actions, Fig. 3 & Table 1.

Related literature top

For a wide range of pharmacological activities of synthetic and natural products containing the quinoline nucleus, see: Andrade et al. (2007); Cunico et al. (2006); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Sloboda et al., (1991); de Souza et al. (2014); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For the crystal structures of related 4-RN(H)-7-chloroquinolines, see: Kaiser et al., (2009).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2013); cell refinement: CrystalClear-SM Expert (Rigaku, 2013); data reduction: CrystalClear-SM Expert (Rigaku, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the ions in (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along [1 0 1] in (I) showing O—H···Cl- and N—H···Cl- hydrogen bonds as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down [1 0 1], the direction of the chain shown in Fig. 2, of the unit-cell contents of (I). The O—H···Cl-, N—H···Cl- and C—H···O interactions are shown as orange, blue and green dashed lines, respectively.
7-Chloro-4-(2-hydroxyethylamino)quinolin-1-ium chloride top
Crystal data top
C11H12ClN2O+·ClF(000) = 536
Mr = 259.13Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 14670 reflections
a = 8.2438 (13) Åθ = 3.0–27.5°
b = 16.405 (2) ŵ = 0.56 mm1
c = 8.8561 (14) ÅT = 100 K
β = 110.705 (2)°Prism, colourless
V = 1120.3 (3) Å30.20 × 0.07 × 0.04 mm
Z = 4
Data collection top
Rigaku R-AXIS conversion
diffractometer
2581 independent reflections
Radiation source: Sealed Tube2162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 2.5°
profile data from ω–scansh = 109
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
k = 2021
Tmin = 0.831, Tmax = 1.000l = 1111
7784 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.170P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.37 e Å3
3 restraintsΔρmin = 0.24 e Å3
Crystal data top
C11H12ClN2O+·ClV = 1120.3 (3) Å3
Mr = 259.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2438 (13) ŵ = 0.56 mm1
b = 16.405 (2) ÅT = 100 K
c = 8.8561 (14) Å0.20 × 0.07 × 0.04 mm
β = 110.705 (2)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2013)
2162 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 1.000Rint = 0.036
7784 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.37 e Å3
2581 reflectionsΔρmin = 0.24 e Å3
154 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.02274 (5)0.76756 (2)0.47284 (4)0.01888 (11)
O10.53371 (15)0.30013 (7)0.03702 (13)0.0206 (3)
H1O0.595 (2)0.3400 (9)0.033 (2)0.031*
N10.90024 (17)0.49718 (8)0.69236 (15)0.0153 (3)
H1N0.9879 (17)0.5083 (11)0.7812 (14)0.018*
N20.50113 (17)0.43490 (8)0.27207 (15)0.0153 (3)
H2N0.466 (2)0.4713 (9)0.1961 (17)0.018*
C10.8212 (2)0.42491 (10)0.67877 (18)0.0162 (3)
H10.85710.38860.76810.019*
C20.6904 (2)0.40138 (9)0.54089 (18)0.0152 (3)
H20.63870.34920.53540.018*
C30.63187 (19)0.45441 (9)0.40638 (17)0.0131 (3)
C40.72227 (19)0.53172 (9)0.41947 (18)0.0135 (3)
C50.68800 (19)0.58698 (9)0.28956 (17)0.0145 (3)
H50.59920.57470.18950.017*
C60.7804 (2)0.65795 (9)0.30511 (18)0.0157 (3)
H60.75810.69400.21600.019*
C70.90831 (19)0.67665 (9)0.45450 (18)0.0154 (3)
C80.94774 (19)0.62514 (9)0.58444 (18)0.0153 (3)
H81.03490.63890.68450.018*
C90.85580 (19)0.55131 (9)0.56571 (17)0.0133 (3)
C100.4232 (2)0.35374 (9)0.24153 (19)0.0172 (3)
H10A0.31010.35690.15170.021*
H10B0.40140.33480.33880.021*
C110.5388 (2)0.29206 (10)0.19883 (18)0.0177 (3)
H11A0.65980.29920.27360.021*
H11B0.50140.23630.21440.021*
Cl20.75804 (5)0.45204 (2)0.02211 (4)0.01726 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0192 (2)0.01435 (19)0.02016 (19)0.00294 (15)0.00339 (15)0.00041 (15)
O10.0244 (6)0.0209 (6)0.0164 (5)0.0031 (5)0.0071 (5)0.0019 (5)
N10.0159 (6)0.0175 (7)0.0112 (6)0.0010 (5)0.0030 (5)0.0010 (5)
N20.0163 (6)0.0137 (7)0.0140 (6)0.0000 (5)0.0029 (5)0.0005 (5)
C10.0194 (8)0.0160 (7)0.0146 (7)0.0032 (6)0.0079 (6)0.0021 (6)
C20.0175 (7)0.0133 (7)0.0162 (7)0.0000 (6)0.0077 (6)0.0008 (6)
C30.0130 (7)0.0139 (7)0.0138 (7)0.0031 (6)0.0064 (6)0.0010 (6)
C40.0133 (7)0.0139 (7)0.0141 (7)0.0014 (6)0.0058 (6)0.0016 (6)
C50.0143 (7)0.0151 (7)0.0120 (7)0.0021 (6)0.0021 (6)0.0012 (6)
C60.0160 (7)0.0148 (7)0.0158 (7)0.0029 (6)0.0050 (6)0.0025 (6)
C70.0152 (7)0.0126 (7)0.0196 (7)0.0003 (6)0.0078 (6)0.0016 (6)
C80.0133 (7)0.0173 (8)0.0143 (7)0.0011 (6)0.0035 (6)0.0021 (6)
C90.0144 (7)0.0133 (7)0.0131 (7)0.0035 (6)0.0060 (6)0.0000 (6)
C100.0177 (8)0.0156 (8)0.0177 (7)0.0043 (6)0.0053 (6)0.0034 (6)
C110.0209 (8)0.0159 (8)0.0164 (7)0.0023 (6)0.0066 (6)0.0002 (6)
Cl20.01711 (19)0.0195 (2)0.01341 (17)0.00029 (15)0.00320 (14)0.00020 (14)
Geometric parameters (Å, º) top
Cl1—C71.7413 (16)C4—C91.409 (2)
O1—C111.4250 (18)C4—C51.413 (2)
O1—H1O0.838 (9)C5—C61.371 (2)
N1—C11.338 (2)C5—H50.9500
N1—C91.3749 (19)C6—C71.404 (2)
N1—H1N0.879 (9)C6—H60.9500
N2—C31.331 (2)C7—C81.371 (2)
N2—C101.4615 (19)C8—C91.407 (2)
N2—H2N0.869 (9)C8—H80.9500
C1—C21.368 (2)C10—C111.526 (2)
C1—H10.9500C10—H10A0.9900
C2—C31.415 (2)C10—H10B0.9900
C2—H20.9500C11—H11A0.9900
C3—C41.455 (2)C11—H11B0.9900
C11—O1—H1O108.4 (14)C5—C6—H6120.5
C1—N1—C9121.21 (13)C7—C6—H6120.5
C1—N1—H1N119.0 (12)C8—C7—C6122.19 (14)
C9—N1—H1N119.6 (12)C8—C7—Cl1119.32 (12)
C3—N2—C10123.26 (13)C6—C7—Cl1118.48 (12)
C3—N2—H2N117.9 (12)C7—C8—C9118.27 (14)
C10—N2—H2N118.6 (12)C7—C8—H8120.9
N1—C1—C2122.38 (14)C9—C8—H8120.9
N1—C1—H1118.8N1—C9—C8118.87 (13)
C2—C1—H1118.8N1—C9—C4119.93 (14)
C1—C2—C3120.30 (14)C8—C9—C4121.20 (14)
C1—C2—H2119.8N2—C10—C11112.19 (13)
C3—C2—H2119.8N2—C10—H10A109.2
N2—C3—C2122.13 (14)C11—C10—H10A109.2
N2—C3—C4120.72 (13)N2—C10—H10B109.2
C2—C3—C4117.15 (13)C11—C10—H10B109.2
C9—C4—C5117.95 (14)H10A—C10—H10B107.9
C9—C4—C3118.95 (13)O1—C11—C10112.87 (13)
C5—C4—C3123.05 (14)O1—C11—H11A109.0
C6—C5—C4121.27 (14)C10—C11—H11A109.0
C6—C5—H5119.4O1—C11—H11B109.0
C4—C5—H5119.4C10—C11—H11B109.0
C5—C6—C7119.06 (14)H11A—C11—H11B107.8
C9—N1—C1—C21.4 (2)C5—C6—C7—Cl1179.28 (11)
N1—C1—C2—C30.9 (2)C6—C7—C8—C90.0 (2)
C10—N2—C3—C29.1 (2)Cl1—C7—C8—C9178.78 (11)
C10—N2—C3—C4170.11 (13)C1—N1—C9—C8177.54 (14)
C1—C2—C3—N2177.69 (14)C1—N1—C9—C41.4 (2)
C1—C2—C3—C43.0 (2)C7—C8—C9—N1176.63 (13)
N2—C3—C4—C9177.74 (13)C7—C8—C9—C42.3 (2)
C2—C3—C4—C93.0 (2)C5—C4—C9—N1176.31 (13)
N2—C3—C4—C55.2 (2)C3—C4—C9—N10.9 (2)
C2—C3—C4—C5174.04 (13)C5—C4—C9—C82.6 (2)
C9—C4—C5—C60.6 (2)C3—C4—C9—C8179.74 (13)
C3—C4—C5—C6177.64 (14)C3—N2—C10—C1174.61 (18)
C4—C5—C6—C71.6 (2)N2—C10—C11—O177.07 (16)
C5—C6—C7—C82.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···Cl20.84 (2)2.30 (2)3.1338 (14)179 (2)
N1—H1n···Cl2i0.88 (1)2.29 (1)3.1602 (15)168 (1)
N2—H2n···Cl2ii0.87 (1)2.49 (2)3.2949 (14)154 (2)
C2—H2···O1iii0.952.603.545 (2)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···Cl20.835 (16)2.299 (16)3.1338 (14)178.5 (17)
N1—H1n···Cl2i0.879 (13)2.294 (14)3.1602 (15)168.4 (12)
N2—H2n···Cl2ii0.869 (14)2.491 (15)3.2949 (14)154.2 (15)
C2—H2···O1iii0.952.603.545 (2)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]), and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Structural studies are supported by the Ministry of Higher Education (Malaysia) and the University of Malaya through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/3).

References

First citationAndrade, A. A., Varotti, M. F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–196.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259–272.  CAS Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2013). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSouza, M. V. N. de, Goncalves, R. S. B., Rodrigues, F. A. R., Cavalcanti, B. C., Bomfim, I. S., Pessoa, C. O., Wardell, J. L. & Wardell, S. M. S. V. (2014). Chem. Biol. Drug Des. 83, 126–131.  Web of Science PubMed Google Scholar
First citationTanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWarshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o385-o386
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds