organic compounds
7-Chloro-4-(2-hydroxyethylamino)quinolin-1-ium chloride
aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, bChemistry Department, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
In the title salt, C11H12ClN2O+·Cl−, the ten non-H atoms comprising the quinolinium residue are coplanar (r.m.s. deviation = 0.041 Å) and the hydroxyethyl group is approximately perpendicular to this plane [Cring—N—Cmethylene—C torsion angle = −74.61 (18)°]. A supramolecular chain aligned along [101] mediated by charge-assisted O/N—H⋯Cl− hydrogen bonds features in the crystal packing. Chains are connected into a three-dimensional architecture by C—H⋯O(hydroxy) interactions.
CCDC reference: 988939
Related literature
For the wide range of pharmacological activities of synthetic and natural products containing the quinoline nucleus, see: Andrade et al. (2007); Cunico et al. (2006); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Sloboda et al., (1991); de Souza et al. (2014); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For the crystal structures of related 4-RN(H)-7-chloroquinolines, see: Kaiser et al., (2009).
Experimental
Crystal data
|
Data collection: CrystalClear-SM Expert (Rigaku, 2013); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 988939
10.1107/S1600536814004565/hg5387sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814004565/hg5387Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814004565/hg5387Isup3.cml
A solution of 7-chloro-4-(2-hydroxyethylamino)quinoline (1 mmol) and FeCl3.6H2O (1 mmol) in EtOH (25 ml) was refluxed for 30 min. On leaving the reaction mixture at room temperature, crystals of the title compound were formed, M.pt: 538–541 K (dec.).
Intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O- and N-bound H atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N), respectively.
The quinoline nucleus is found in many synthetic and natural products having a wide range of pharmacological activities, such as anti-viral (Font et al., 1997), anti-cancer (Nakamura et al., 1999; de Souza et al., 2014), anti-bacterial (Kaminsky & Meltzer, 1968), anti-malarial (Tanenbaum & Tuffanelli, 1980; Cunico et al., 2006; Andrade et al., 2007), anti-fungal (Musiol et al., 2006), anti-obesity (Warshakoon et al., 2006) and anti-inflammatory (Sloboda et al., 1991) activities. The crystal structures of a series of 4-RN(H)-7-chloro-quinolines was recently reported (Kaiser et al., 2009). We now wish to report the
of the HCl salt of 4-(HOCH2CH2NH-7-chloro-quinoline, (I), obtained serendipiously from an attempted reaction to generate an iron complex.The components of salt (I) are illustrated in Fig. 1. The 10 non-hydrogen atoms comprising the quinolinium residue are co-planar with a r.m.s. deviation of 0.041 Å. The hydroxyethyl group is almost perpendicular to this plane as seen in the C3—N2—C10—C11 torsion angle of -74.61 (18)°.
In the
charge-assisted O, N—H···Cl- hydrogen bonds, Table 1, lead to a supramolecular chain aligned along [1 0 1], Fig. 2. These are connected into a three-dimensional architecture by methylene-C—H···O(hydroxyl) interactions, Fig. 3 & Table 1.Data collection: CrystalClear-SM Expert (Rigaku, 2013); cell
CrystalClear-SM Expert (Rigaku, 2013); data reduction: CrystalClear-SM Expert (Rigaku, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structures of the ions in (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. | |
Fig. 2. A view of the supramolecular chain along [1 0 1] in (I) showing O—H···Cl- and N—H···Cl- hydrogen bonds as orange and blue dashed lines, respectively. | |
Fig. 3. A view in projection down [1 0 1], the direction of the chain shown in Fig. 2, of the unit-cell contents of (I). The O—H···Cl-, N—H···Cl- and C—H···O interactions are shown as orange, blue and green dashed lines, respectively. |
C11H12ClN2O+·Cl− | F(000) = 536 |
Mr = 259.13 | Dx = 1.536 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 14670 reflections |
a = 8.2438 (13) Å | θ = 3.0–27.5° |
b = 16.405 (2) Å | µ = 0.56 mm−1 |
c = 8.8561 (14) Å | T = 100 K |
β = 110.705 (2)° | Prism, colourless |
V = 1120.3 (3) Å3 | 0.20 × 0.07 × 0.04 mm |
Z = 4 |
Rigaku R-AXIS conversion diffractometer | 2581 independent reflections |
Radiation source: Sealed Tube | 2162 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
profile data from ω–scans | h = −10→9 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2013) | k = −20→21 |
Tmin = 0.831, Tmax = 1.000 | l = −11→11 |
7784 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0353P)2 + 0.170P] where P = (Fo2 + 2Fc2)/3 |
2581 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.37 e Å−3 |
3 restraints | Δρmin = −0.24 e Å−3 |
C11H12ClN2O+·Cl− | V = 1120.3 (3) Å3 |
Mr = 259.13 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.2438 (13) Å | µ = 0.56 mm−1 |
b = 16.405 (2) Å | T = 100 K |
c = 8.8561 (14) Å | 0.20 × 0.07 × 0.04 mm |
β = 110.705 (2)° |
Rigaku R-AXIS conversion diffractometer | 2581 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2013) | 2162 reflections with I > 2σ(I) |
Tmin = 0.831, Tmax = 1.000 | Rint = 0.036 |
7784 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 3 restraints |
wR(F2) = 0.076 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.37 e Å−3 |
2581 reflections | Δρmin = −0.24 e Å−3 |
154 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.02274 (5) | 0.76756 (2) | 0.47284 (4) | 0.01888 (11) | |
O1 | 0.53371 (15) | 0.30013 (7) | 0.03702 (13) | 0.0206 (3) | |
H1O | 0.595 (2) | 0.3400 (9) | 0.033 (2) | 0.031* | |
N1 | 0.90024 (17) | 0.49718 (8) | 0.69236 (15) | 0.0153 (3) | |
H1N | 0.9879 (17) | 0.5083 (11) | 0.7812 (14) | 0.018* | |
N2 | 0.50113 (17) | 0.43490 (8) | 0.27207 (15) | 0.0153 (3) | |
H2N | 0.466 (2) | 0.4713 (9) | 0.1961 (17) | 0.018* | |
C1 | 0.8212 (2) | 0.42491 (10) | 0.67877 (18) | 0.0162 (3) | |
H1 | 0.8571 | 0.3886 | 0.7681 | 0.019* | |
C2 | 0.6904 (2) | 0.40138 (9) | 0.54089 (18) | 0.0152 (3) | |
H2 | 0.6387 | 0.3492 | 0.5354 | 0.018* | |
C3 | 0.63187 (19) | 0.45441 (9) | 0.40638 (17) | 0.0131 (3) | |
C4 | 0.72227 (19) | 0.53172 (9) | 0.41947 (18) | 0.0135 (3) | |
C5 | 0.68800 (19) | 0.58698 (9) | 0.28956 (17) | 0.0145 (3) | |
H5 | 0.5992 | 0.5747 | 0.1895 | 0.017* | |
C6 | 0.7804 (2) | 0.65795 (9) | 0.30511 (18) | 0.0157 (3) | |
H6 | 0.7581 | 0.6940 | 0.2160 | 0.019* | |
C7 | 0.90831 (19) | 0.67665 (9) | 0.45450 (18) | 0.0154 (3) | |
C8 | 0.94774 (19) | 0.62514 (9) | 0.58444 (18) | 0.0153 (3) | |
H8 | 1.0349 | 0.6389 | 0.6845 | 0.018* | |
C9 | 0.85580 (19) | 0.55131 (9) | 0.56571 (17) | 0.0133 (3) | |
C10 | 0.4232 (2) | 0.35374 (9) | 0.24153 (19) | 0.0172 (3) | |
H10A | 0.3101 | 0.3569 | 0.1517 | 0.021* | |
H10B | 0.4014 | 0.3348 | 0.3388 | 0.021* | |
C11 | 0.5388 (2) | 0.29206 (10) | 0.19883 (18) | 0.0177 (3) | |
H11A | 0.6598 | 0.2992 | 0.2736 | 0.021* | |
H11B | 0.5014 | 0.2363 | 0.2144 | 0.021* | |
Cl2 | 0.75804 (5) | 0.45204 (2) | 0.02211 (4) | 0.01726 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0192 (2) | 0.01435 (19) | 0.02016 (19) | −0.00294 (15) | 0.00339 (15) | 0.00041 (15) |
O1 | 0.0244 (6) | 0.0209 (6) | 0.0164 (5) | −0.0031 (5) | 0.0071 (5) | −0.0019 (5) |
N1 | 0.0159 (6) | 0.0175 (7) | 0.0112 (6) | 0.0010 (5) | 0.0030 (5) | 0.0010 (5) |
N2 | 0.0163 (6) | 0.0137 (7) | 0.0140 (6) | 0.0000 (5) | 0.0029 (5) | 0.0005 (5) |
C1 | 0.0194 (8) | 0.0160 (7) | 0.0146 (7) | 0.0032 (6) | 0.0079 (6) | 0.0021 (6) |
C2 | 0.0175 (7) | 0.0133 (7) | 0.0162 (7) | 0.0000 (6) | 0.0077 (6) | 0.0008 (6) |
C3 | 0.0130 (7) | 0.0139 (7) | 0.0138 (7) | 0.0031 (6) | 0.0064 (6) | −0.0010 (6) |
C4 | 0.0133 (7) | 0.0139 (7) | 0.0141 (7) | 0.0014 (6) | 0.0058 (6) | −0.0016 (6) |
C5 | 0.0143 (7) | 0.0151 (7) | 0.0120 (7) | 0.0021 (6) | 0.0021 (6) | −0.0012 (6) |
C6 | 0.0160 (7) | 0.0148 (7) | 0.0158 (7) | 0.0029 (6) | 0.0050 (6) | 0.0025 (6) |
C7 | 0.0152 (7) | 0.0126 (7) | 0.0196 (7) | −0.0003 (6) | 0.0078 (6) | −0.0016 (6) |
C8 | 0.0133 (7) | 0.0173 (8) | 0.0143 (7) | 0.0011 (6) | 0.0035 (6) | −0.0021 (6) |
C9 | 0.0144 (7) | 0.0133 (7) | 0.0131 (7) | 0.0035 (6) | 0.0060 (6) | 0.0000 (6) |
C10 | 0.0177 (8) | 0.0156 (8) | 0.0177 (7) | −0.0043 (6) | 0.0053 (6) | −0.0034 (6) |
C11 | 0.0209 (8) | 0.0159 (8) | 0.0164 (7) | −0.0023 (6) | 0.0066 (6) | −0.0002 (6) |
Cl2 | 0.01711 (19) | 0.0195 (2) | 0.01341 (17) | 0.00029 (15) | 0.00320 (14) | −0.00020 (14) |
Cl1—C7 | 1.7413 (16) | C4—C9 | 1.409 (2) |
O1—C11 | 1.4250 (18) | C4—C5 | 1.413 (2) |
O1—H1O | 0.838 (9) | C5—C6 | 1.371 (2) |
N1—C1 | 1.338 (2) | C5—H5 | 0.9500 |
N1—C9 | 1.3749 (19) | C6—C7 | 1.404 (2) |
N1—H1N | 0.879 (9) | C6—H6 | 0.9500 |
N2—C3 | 1.331 (2) | C7—C8 | 1.371 (2) |
N2—C10 | 1.4615 (19) | C8—C9 | 1.407 (2) |
N2—H2N | 0.869 (9) | C8—H8 | 0.9500 |
C1—C2 | 1.368 (2) | C10—C11 | 1.526 (2) |
C1—H1 | 0.9500 | C10—H10A | 0.9900 |
C2—C3 | 1.415 (2) | C10—H10B | 0.9900 |
C2—H2 | 0.9500 | C11—H11A | 0.9900 |
C3—C4 | 1.455 (2) | C11—H11B | 0.9900 |
C11—O1—H1O | 108.4 (14) | C5—C6—H6 | 120.5 |
C1—N1—C9 | 121.21 (13) | C7—C6—H6 | 120.5 |
C1—N1—H1N | 119.0 (12) | C8—C7—C6 | 122.19 (14) |
C9—N1—H1N | 119.6 (12) | C8—C7—Cl1 | 119.32 (12) |
C3—N2—C10 | 123.26 (13) | C6—C7—Cl1 | 118.48 (12) |
C3—N2—H2N | 117.9 (12) | C7—C8—C9 | 118.27 (14) |
C10—N2—H2N | 118.6 (12) | C7—C8—H8 | 120.9 |
N1—C1—C2 | 122.38 (14) | C9—C8—H8 | 120.9 |
N1—C1—H1 | 118.8 | N1—C9—C8 | 118.87 (13) |
C2—C1—H1 | 118.8 | N1—C9—C4 | 119.93 (14) |
C1—C2—C3 | 120.30 (14) | C8—C9—C4 | 121.20 (14) |
C1—C2—H2 | 119.8 | N2—C10—C11 | 112.19 (13) |
C3—C2—H2 | 119.8 | N2—C10—H10A | 109.2 |
N2—C3—C2 | 122.13 (14) | C11—C10—H10A | 109.2 |
N2—C3—C4 | 120.72 (13) | N2—C10—H10B | 109.2 |
C2—C3—C4 | 117.15 (13) | C11—C10—H10B | 109.2 |
C9—C4—C5 | 117.95 (14) | H10A—C10—H10B | 107.9 |
C9—C4—C3 | 118.95 (13) | O1—C11—C10 | 112.87 (13) |
C5—C4—C3 | 123.05 (14) | O1—C11—H11A | 109.0 |
C6—C5—C4 | 121.27 (14) | C10—C11—H11A | 109.0 |
C6—C5—H5 | 119.4 | O1—C11—H11B | 109.0 |
C4—C5—H5 | 119.4 | C10—C11—H11B | 109.0 |
C5—C6—C7 | 119.06 (14) | H11A—C11—H11B | 107.8 |
C9—N1—C1—C2 | −1.4 (2) | C5—C6—C7—Cl1 | −179.28 (11) |
N1—C1—C2—C3 | −0.9 (2) | C6—C7—C8—C9 | 0.0 (2) |
C10—N2—C3—C2 | −9.1 (2) | Cl1—C7—C8—C9 | −178.78 (11) |
C10—N2—C3—C4 | 170.11 (13) | C1—N1—C9—C8 | −177.54 (14) |
C1—C2—C3—N2 | −177.69 (14) | C1—N1—C9—C4 | 1.4 (2) |
C1—C2—C3—C4 | 3.0 (2) | C7—C8—C9—N1 | 176.63 (13) |
N2—C3—C4—C9 | 177.74 (13) | C7—C8—C9—C4 | −2.3 (2) |
C2—C3—C4—C9 | −3.0 (2) | C5—C4—C9—N1 | −176.31 (13) |
N2—C3—C4—C5 | −5.2 (2) | C3—C4—C9—N1 | 0.9 (2) |
C2—C3—C4—C5 | 174.04 (13) | C5—C4—C9—C8 | 2.6 (2) |
C9—C4—C5—C6 | −0.6 (2) | C3—C4—C9—C8 | 179.74 (13) |
C3—C4—C5—C6 | −177.64 (14) | C3—N2—C10—C11 | −74.61 (18) |
C4—C5—C6—C7 | −1.6 (2) | N2—C10—C11—O1 | −77.07 (16) |
C5—C6—C7—C8 | 2.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···Cl2 | 0.84 (2) | 2.30 (2) | 3.1338 (14) | 179 (2) |
N1—H1n···Cl2i | 0.88 (1) | 2.29 (1) | 3.1602 (15) | 168 (1) |
N2—H2n···Cl2ii | 0.87 (1) | 2.49 (2) | 3.2949 (14) | 154 (2) |
C2—H2···O1iii | 0.95 | 2.60 | 3.545 (2) | 173 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1o···Cl2 | 0.835 (16) | 2.299 (16) | 3.1338 (14) | 178.5 (17) |
N1—H1n···Cl2i | 0.879 (13) | 2.294 (14) | 3.1602 (15) | 168.4 (12) |
N2—H2n···Cl2ii | 0.869 (14) | 2.491 (15) | 3.2949 (14) | 154.2 (15) |
C2—H2···O1iii | 0.95 | 2.60 | 3.545 (2) | 173 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England (Coles & Gale, 2012), and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Structural studies are supported by the Ministry of Higher Education (Malaysia) and the University of Malaya through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/3).
References
Andrade, A. A., Varotti, M. F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–196. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689. Web of Science CSD CrossRef CAS Google Scholar
Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259–272. CAS Google Scholar
Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140. Web of Science CSD CrossRef CAS Google Scholar
Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163. CrossRef CAS PubMed Web of Science Google Scholar
Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. Web of Science CrossRef PubMed CAS Google Scholar
Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2013). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860. PubMed CAS Web of Science Google Scholar
Souza, M. V. N. de, Goncalves, R. S. B., Rodrigues, F. A. R., Cavalcanti, B. C., Bomfim, I. S., Pessoa, C. O., Wardell, J. L. & Wardell, S. M. S. V. (2014). Chem. Biol. Drug Des. 83, 126–131. Web of Science PubMed Google Scholar
Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591. CrossRef CAS PubMed Web of Science Google Scholar
Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.