organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o402-o403

4-Amino-N-(2,3-di­hydro-1,3-thia­zol-2-yl­­idene)benzene­sulfonamide–2,4,6-tris­­(pyr­idin-2-yl)-1,3,5-triazine (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 2 March 2014; accepted 3 March 2014; online 8 March 2014)

The sulfa­thia­zole mol­ecule in the title 1:1 co-crystal, C9H9N3O2S2·C18H12N6, adopts an approximate L-shape [dihedral angle between the five- and six-membered rings = 86.20 (9)°] and features an intra­molecular hypervalent S⋯O inter­action [2.8666 (15) Å]. Overall, the triazine mol­ecule has the shape of a disk as the pendant pyridine rings are relatively close to coplanar with the central ring [dihedral angles = 18.35 (9), 6.12 (9) and 4.67 (9)°]. In the crystal packing, a linear supra­molecular chain aligned along [01-1] is formed as a result of amino–pyridyl N—H⋯N hydrogen bonding with syn-disposed pyridyl mol­ecules of one triazine, and amine–pyridyl N—H⋯N hydrogen bonding with the third pydridyl ring of a second triazine mol­ecule. A three-dimensional architecture arises as the chains are connected by C—H⋯O inter­actions.

Related literature

For previous co-crystallization studies with sulfa­thia­zole, see: Arman et al. (2012[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2662-o2663.]). For the polymorphic 1:1 co-crystals of sulfa­thia­zole and pyridine, see: Drebushchak et al. (2006a[Drebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006a). Acta Cryst. E62, o2669-o2671.],b[Drebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006b). Acta Cryst. E62, o2707-o2709.]). For hypervalent S⋯O inter­actions, see: O'Leary & Wallis (2007[O'Leary, J. & Wallis, J. D. (2007). CrystEngComm, 9, 941-950.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N6·C9H9N3O2S2

  • Mr = 567.65

  • Triclinic, [P \overline 1]

  • a = 8.8109 (13) Å

  • b = 12.7222 (16) Å

  • c = 13.1696 (14) Å

  • α = 66.227 (6)°

  • β = 73.797 (6)°

  • γ = 88.068 (9)°

  • V = 1292.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 98 K

  • 0.49 × 0.45 × 0.05 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.723, Tmax = 1.000

  • 8512 measured reflections

  • 5885 independent reflections

  • 5490 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.087

  • S = 0.99

  • 5885 reflections

  • 371 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N9i 0.90 (3) 1.98 (3) 2.835 (3) 158 (2)
N3—H2N⋯N8ii 0.85 (3) 2.13 (3) 2.983 (3) 174 (2)
N3—H3N⋯N7ii 0.89 (2) 2.13 (2) 3.010 (2) 171 (3)
C2—H2⋯O2iii 0.95 2.37 3.237 (3) 151
C16—H16⋯O2iv 0.95 2.50 3.331 (2) 145
C20—H20⋯O1v 0.95 2.48 3.156 (3) 128
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

In continuation of co-crystallisation experiments involving sulfa­thia­zole (Arman et al., 2012), herein, the crystal and molecular structure of the title co-crystal, (I), is described. Except for the description of polymorphic forms of the 1:1 co-crystals formed between sulfa­thia­zole and pyridine (Drebushchak et al., 2006a; Drebushchak et al., 2006b), no other reports of co-crystals of sulfa­thia­zole with pyridyl-containing molecules are known.

The components of co-crystal (I) are shown in Fig. 1. In the sulfa­thia­zole molecule, there is a twist about the S—N bond as seen in the value of the C4—S2—N2—C1 torsion angle of -77.54 (15)°. The dihedral angle between the five- and six-membered rings is 86.20 (9)°, so that the molecule has an overall L-shape. The observed conformation allows for the formation of an intra­molecular hypervalent S···O inter­action (O'Leary & Wallis, 2007), i.e. 2.8666 (15) Å. In the triazine molecule, the N7-, N8- and N9-containing pyridyl rings form dihedral angles of 18.35 (9), 6.12 (9) and 4.67 (9)°, respectively, with the central ring, indicating that overall the molecule has a disk shape. In terms of crystal packing (see below), crucially, the N7 and N8 atoms are directed toward each other, which facilitates the formation of amino-N—H···N(pyridyl) hydrogen bonding.

Table 1 summarises key hydrogen bonding contacts and Fig. 2 shows the association between the components of the co-crystal via amine-N—H with the N9-pydridyl ring of one triazine molecule, and between the amino-N—H atoms and the syn-disposed N7- and N8-pyridyl rings of another molecule, with the result that a linear supra­molecular chain is formed along [0 1 -1]. Chains are connected into a three-dimensional architecture by C—H···O inter­actions, Fig. 3 and Table 1.

Synthesis and crystallization top

Sulfa­thia­zole (Sigma-Aldrich) and 2,4,6-tris­(pyridin-2-yl)-1,3,5-triazine (Sigma-Aldrich) were used as delivered. Single crystals of (I) used in the present study were harvested from a 1:1 acetone/ethanol (10 ml) solution of a 1:3 ratio of 2,4,6-tris­(pyridin-2-yl)-1,3,5-triazine (19 mg) and sulfa­thia­zole (46 mg) by slow evaporation of the solvent. M.pt: 471–475 K.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The N—H H-atoms were located in a difference Fourier map and refined without restraint for amine-H1n but with Uiso(H) = 1.2Ueq(N) in the cases of amino-H2n and H3n.

Related literature top

For previous co-crystallization studies with sulfathiazole, see: Arman et al. (2012). For the polymorphic 1:1 co-crystals of sulfathiazole and pyridine, see: Drebushchak et al. (2006a,b). For hypervalent S···O interactions, see: O'Leary & Wallis (2007).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of (a) 4-amino-N-(1,3-thiazol-2(3H)-ylidene)benzenesulfonamide (sulfathiazole), and (b) 2,4,6-tris(pyridin-2-yl)-1,3,5-triazine, showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chains aligned along the [0 1 - 1] direction in (I) sustained by N—H···N hydrogen bonds which are shown as blue dashed lines.
[Figure 3] Fig. 3. Unit-cell contents in (I) viewed in projection down the a axis. The N—H···N hydrogen bonds and C—H···O interactions are shown as blue and orange dashed lines, respectively.
4-Amino-N-(2,3-dihydro-1,3-thiazol-2-ylidene)benzenesulfonamide; 2,4,6-tris(pyridin-2-yl)-1,3,5-triazine top
Crystal data top
C18H12N6·C9H9N3O2S2Z = 2
Mr = 567.65F(000) = 588
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8109 (13) ÅCell parameters from 4931 reflections
b = 12.7222 (16) Åθ = 3.0–40.2°
c = 13.1696 (14) ŵ = 0.25 mm1
α = 66.227 (6)°T = 98 K
β = 73.797 (6)°Platelet, gold
γ = 88.068 (9)°0.49 × 0.45 × 0.05 mm
V = 1292.1 (3) Å3
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5885 independent reflections
Radiation source: sealed tube5490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = 117
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1612
Tmin = 0.723, Tmax = 1.000l = 1717
8512 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.005P)2 + 1.820P]
where P = (Fo2 + 2Fc2)/3
5885 reflections(Δ/σ)max < 0.001
371 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C18H12N6·C9H9N3O2S2γ = 88.068 (9)°
Mr = 567.65V = 1292.1 (3) Å3
Triclinic, P1Z = 2
a = 8.8109 (13) ÅMo Kα radiation
b = 12.7222 (16) ŵ = 0.25 mm1
c = 13.1696 (14) ÅT = 98 K
α = 66.227 (6)°0.49 × 0.45 × 0.05 mm
β = 73.797 (6)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
5885 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5490 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 1.000Rint = 0.022
8512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.48 e Å3
5885 reflectionsΔρmin = 0.39 e Å3
371 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04089 (5)0.03018 (4)0.25889 (5)0.02706 (12)
S20.34188 (5)0.07956 (3)0.19769 (3)0.01620 (10)
O10.23839 (15)0.12511 (11)0.27391 (10)0.0209 (3)
O20.49844 (15)0.05721 (11)0.21024 (11)0.0223 (3)
N10.04768 (19)0.14266 (13)0.21606 (14)0.0216 (3)
H1N0.105 (3)0.195 (2)0.196 (2)0.042 (7)*
N20.26444 (17)0.04058 (12)0.21139 (12)0.0171 (3)
N30.3779 (2)0.37727 (13)0.28932 (13)0.0206 (3)
H2N0.311 (3)0.4266 (19)0.3067 (18)0.025*
H3N0.424 (3)0.3527 (18)0.3439 (19)0.025*
C10.1113 (2)0.05352 (14)0.22511 (14)0.0174 (3)
C20.1811 (2)0.06008 (18)0.2549 (2)0.0373 (5)
H20.29070.04880.26700.045*
C30.1146 (2)0.14667 (18)0.2330 (2)0.0322 (5)
H30.17290.20580.22920.039*
C40.3594 (2)0.17515 (14)0.05455 (14)0.0166 (3)
C50.2596 (2)0.26325 (15)0.02888 (15)0.0197 (3)
H50.18670.27680.08980.024*
C60.2662 (2)0.33105 (15)0.08495 (15)0.0203 (3)
H60.19870.39170.10140.024*
C70.3712 (2)0.31199 (14)0.17696 (14)0.0168 (3)
C80.4718 (2)0.22258 (15)0.14895 (15)0.0188 (3)
H80.54450.20810.20930.023*
C90.4662 (2)0.15621 (14)0.03585 (15)0.0182 (3)
H90.53550.09680.01890.022*
N40.71021 (17)0.54364 (12)0.51665 (12)0.0169 (3)
N50.80820 (17)0.39937 (12)0.65988 (12)0.0178 (3)
N60.65974 (18)0.54222 (12)0.70455 (12)0.0180 (3)
N70.50169 (17)0.71447 (12)0.47243 (12)0.0178 (3)
N80.83810 (18)0.44100 (13)0.36693 (13)0.0202 (3)
N90.82618 (18)0.29923 (13)0.88291 (13)0.0209 (3)
C100.6468 (2)0.58500 (14)0.59665 (14)0.0169 (3)
C110.7905 (2)0.45104 (14)0.55329 (14)0.0171 (3)
C120.7410 (2)0.44915 (14)0.73159 (14)0.0173 (3)
C130.5545 (2)0.68775 (14)0.56574 (14)0.0164 (3)
C140.4165 (2)0.80561 (15)0.44615 (15)0.0195 (3)
H140.37770.82510.38090.023*
C150.3814 (2)0.87340 (15)0.50870 (15)0.0211 (4)
H150.31920.93670.48730.025*
C160.4393 (2)0.84643 (15)0.60282 (16)0.0225 (4)
H160.41970.89210.64640.027*
C170.5265 (2)0.75155 (15)0.63252 (15)0.0200 (3)
H170.56650.73050.69740.024*
C180.8671 (2)0.39881 (14)0.47031 (15)0.0175 (3)
C190.9006 (2)0.39032 (16)0.29539 (16)0.0236 (4)
H190.88030.41900.22220.028*
C200.9932 (2)0.29850 (16)0.32140 (16)0.0242 (4)
H201.03350.26460.26790.029*
C211.0255 (2)0.25734 (16)0.42662 (16)0.0236 (4)
H211.09010.19520.44670.028*
C220.9619 (2)0.30844 (15)0.50265 (15)0.0205 (3)
H220.98280.28220.57550.025*
C230.7547 (2)0.39769 (14)0.85213 (15)0.0185 (3)
C240.8363 (2)0.25076 (16)0.99140 (16)0.0253 (4)
H240.88690.18131.01390.030*
C250.7773 (2)0.29598 (17)1.07283 (16)0.0262 (4)
H250.78670.25821.14920.031*
C260.7044 (2)0.39730 (17)1.04045 (16)0.0274 (4)
H260.66250.43061.09420.033*
C270.6937 (2)0.44959 (16)0.92786 (16)0.0238 (4)
H270.64530.51980.90310.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0168 (2)0.0232 (2)0.0442 (3)0.00686 (17)0.0085 (2)0.0174 (2)
S20.0161 (2)0.0180 (2)0.01595 (19)0.00379 (15)0.00736 (15)0.00686 (15)
O10.0245 (7)0.0229 (6)0.0183 (6)0.0043 (5)0.0080 (5)0.0105 (5)
O20.0174 (6)0.0265 (7)0.0237 (6)0.0041 (5)0.0113 (5)0.0078 (5)
N10.0203 (8)0.0193 (7)0.0298 (8)0.0049 (6)0.0112 (6)0.0123 (6)
N20.0167 (7)0.0161 (7)0.0189 (7)0.0044 (5)0.0068 (6)0.0067 (6)
N30.0255 (8)0.0205 (7)0.0166 (7)0.0049 (6)0.0076 (6)0.0076 (6)
C10.0180 (8)0.0169 (8)0.0175 (8)0.0059 (6)0.0072 (6)0.0062 (6)
C20.0188 (10)0.0312 (11)0.0659 (16)0.0044 (8)0.0167 (10)0.0212 (11)
C30.0242 (10)0.0269 (10)0.0508 (13)0.0019 (8)0.0187 (9)0.0162 (9)
C40.0176 (8)0.0171 (8)0.0147 (7)0.0005 (6)0.0055 (6)0.0055 (6)
C50.0220 (9)0.0200 (8)0.0174 (8)0.0059 (7)0.0049 (7)0.0090 (7)
C60.0226 (9)0.0180 (8)0.0207 (8)0.0069 (7)0.0074 (7)0.0078 (7)
C70.0183 (8)0.0160 (8)0.0175 (8)0.0017 (6)0.0071 (6)0.0066 (6)
C80.0177 (8)0.0212 (8)0.0184 (8)0.0035 (6)0.0046 (7)0.0095 (7)
C90.0159 (8)0.0179 (8)0.0215 (8)0.0044 (6)0.0065 (7)0.0081 (7)
N40.0177 (7)0.0169 (7)0.0168 (7)0.0015 (5)0.0063 (6)0.0068 (5)
N50.0177 (7)0.0179 (7)0.0187 (7)0.0018 (5)0.0068 (6)0.0076 (6)
N60.0214 (7)0.0164 (7)0.0174 (7)0.0022 (6)0.0080 (6)0.0067 (6)
N70.0191 (7)0.0172 (7)0.0163 (7)0.0018 (5)0.0060 (6)0.0054 (6)
N80.0216 (8)0.0211 (7)0.0193 (7)0.0038 (6)0.0065 (6)0.0096 (6)
N90.0245 (8)0.0197 (7)0.0210 (7)0.0046 (6)0.0115 (6)0.0079 (6)
C100.0170 (8)0.0166 (8)0.0173 (8)0.0002 (6)0.0062 (6)0.0062 (6)
C110.0162 (8)0.0165 (8)0.0180 (8)0.0007 (6)0.0046 (6)0.0067 (6)
C120.0181 (8)0.0161 (8)0.0185 (8)0.0001 (6)0.0073 (7)0.0065 (6)
C130.0163 (8)0.0155 (8)0.0159 (7)0.0005 (6)0.0044 (6)0.0048 (6)
C140.0192 (8)0.0198 (8)0.0179 (8)0.0018 (6)0.0071 (7)0.0051 (7)
C150.0204 (9)0.0181 (8)0.0225 (8)0.0047 (7)0.0059 (7)0.0064 (7)
C160.0271 (9)0.0187 (8)0.0229 (9)0.0040 (7)0.0060 (7)0.0108 (7)
C170.0236 (9)0.0192 (8)0.0185 (8)0.0017 (7)0.0076 (7)0.0080 (7)
C180.0163 (8)0.0170 (8)0.0183 (8)0.0009 (6)0.0039 (6)0.0068 (6)
C190.0278 (10)0.0259 (9)0.0193 (8)0.0041 (7)0.0075 (7)0.0111 (7)
C200.0241 (9)0.0252 (9)0.0238 (9)0.0038 (7)0.0028 (7)0.0133 (7)
C210.0192 (9)0.0227 (9)0.0281 (9)0.0063 (7)0.0052 (7)0.0109 (7)
C220.0183 (8)0.0219 (8)0.0205 (8)0.0026 (7)0.0057 (7)0.0079 (7)
C230.0197 (8)0.0176 (8)0.0192 (8)0.0011 (6)0.0082 (7)0.0067 (7)
C240.0308 (10)0.0219 (9)0.0252 (9)0.0067 (7)0.0154 (8)0.0071 (7)
C250.0322 (10)0.0284 (10)0.0195 (9)0.0049 (8)0.0141 (8)0.0073 (7)
C260.0342 (11)0.0299 (10)0.0225 (9)0.0077 (8)0.0115 (8)0.0134 (8)
C270.0290 (10)0.0229 (9)0.0224 (9)0.0080 (7)0.0113 (8)0.0098 (7)
Geometric parameters (Å, º) top
S1—C21.739 (2)N7—C131.347 (2)
S1—C11.7559 (17)N8—C191.335 (2)
S2—O21.4401 (13)N8—C181.343 (2)
S2—O11.4482 (13)N9—C241.337 (2)
S2—N21.6167 (15)N9—C231.345 (2)
S2—C41.7489 (17)C10—C131.490 (2)
N1—C11.343 (2)C11—C181.495 (2)
N1—C31.384 (2)C12—C231.492 (2)
N1—H1N0.90 (3)C13—C171.391 (2)
N2—C11.317 (2)C14—C151.390 (2)
N3—C71.359 (2)C14—H140.9500
N3—H2N0.86 (2)C15—C161.383 (3)
N3—H3N0.89 (2)C15—H150.9500
C2—C31.326 (3)C16—C171.388 (2)
C2—H20.9500C16—H160.9500
C3—H30.9500C17—H170.9500
C4—C51.392 (2)C18—C221.393 (2)
C4—C91.397 (2)C19—C201.385 (3)
C5—C61.381 (2)C19—H190.9500
C5—H50.9500C20—C211.379 (3)
C6—C71.407 (2)C20—H200.9500
C6—H60.9500C21—C221.388 (2)
C7—C81.411 (2)C21—H210.9500
C8—C91.372 (2)C22—H220.9500
C8—H80.9500C23—C271.388 (2)
C9—H90.9500C24—C251.385 (3)
N4—C111.341 (2)C24—H240.9500
N4—C101.341 (2)C25—C261.382 (3)
N5—C121.337 (2)C25—H250.9500
N5—C111.341 (2)C26—C271.389 (3)
N6—C121.337 (2)C26—H260.9500
N6—C101.338 (2)C27—H270.9500
N7—C141.338 (2)
C2—S1—C191.05 (9)N4—C11—C18118.45 (15)
O2—S2—O1117.20 (8)N5—C11—C18116.06 (15)
O2—S2—N2105.59 (8)N6—C12—N5125.13 (15)
O1—S2—N2111.61 (8)N6—C12—C23116.30 (15)
O2—S2—C4108.79 (8)N5—C12—C23118.56 (15)
O1—S2—C4108.12 (8)N7—C13—C17122.90 (16)
N2—S2—C4104.82 (8)N7—C13—C10117.34 (15)
C1—N1—C3115.58 (16)C17—C13—C10119.76 (15)
C1—N1—H1N123.4 (16)N7—C14—C15123.83 (16)
C3—N1—H1N120.9 (16)N7—C14—H14118.1
C1—N2—S2119.62 (12)C15—C14—H14118.1
C7—N3—H2N121.0 (14)C16—C15—C14118.37 (16)
C7—N3—H3N120.2 (14)C16—C15—H15120.8
H2N—N3—H3N115 (2)C14—C15—H15120.8
N2—C1—N1121.27 (15)C15—C16—C17118.85 (16)
N2—C1—S1129.99 (13)C15—C16—H16120.6
N1—C1—S1108.72 (13)C17—C16—H16120.6
C3—C2—S1111.04 (16)C16—C17—C13118.88 (16)
C3—C2—H2124.5C16—C17—H17120.6
S1—C2—H2124.5C13—C17—H17120.6
C2—C3—N1113.58 (18)N8—C18—C22122.68 (16)
C2—C3—H3123.2N8—C18—C11117.51 (15)
N1—C3—H3123.2C22—C18—C11119.80 (15)
C5—C4—C9119.38 (15)N8—C19—C20123.98 (17)
C5—C4—S2121.31 (13)N8—C19—H19118.0
C9—C4—S2119.07 (13)C20—C19—H19118.0
C6—C5—C4120.18 (16)C21—C20—C19118.51 (17)
C6—C5—H5119.9C21—C20—H20120.7
C4—C5—H5119.9C19—C20—H20120.7
C5—C6—C7121.20 (16)C20—C21—C22118.67 (17)
C5—C6—H6119.4C20—C21—H21120.7
C7—C6—H6119.4C22—C21—H21120.7
N3—C7—C6121.83 (16)C21—C22—C18118.91 (17)
N3—C7—C8120.52 (16)C21—C22—H22120.5
C6—C7—C8117.64 (15)C18—C22—H22120.5
C9—C8—C7121.02 (16)N9—C23—C27122.59 (16)
C9—C8—H8119.5N9—C23—C12116.79 (15)
C7—C8—H8119.5C27—C23—C12120.61 (16)
C8—C9—C4120.57 (16)N9—C24—C25123.73 (17)
C8—C9—H9119.7N9—C24—H24118.1
C4—C9—H9119.7C25—C24—H24118.1
C11—N4—C10114.23 (14)C26—C25—C24118.44 (17)
C12—N5—C11114.75 (15)C26—C25—H25120.8
C12—N6—C10114.91 (15)C24—C25—H25120.8
C14—N7—C13117.16 (15)C25—C26—C27118.78 (18)
C19—N8—C18117.21 (16)C25—C26—H26120.6
C24—N9—C23117.49 (16)C27—C26—H26120.6
N6—C10—N4125.46 (16)C23—C27—C26118.97 (17)
N6—C10—C13115.56 (15)C23—C27—H27120.5
N4—C10—C13118.97 (15)C26—C27—H27120.5
N4—C11—N5125.49 (15)
O2—S2—N2—C1167.64 (13)C11—N5—C12—N60.7 (2)
O1—S2—N2—C139.26 (16)C11—N5—C12—C23179.92 (15)
C4—S2—N2—C177.54 (15)C14—N7—C13—C171.2 (2)
S2—N2—C1—N1167.95 (13)C14—N7—C13—C10178.86 (15)
S2—N2—C1—S113.5 (2)N6—C10—C13—N7162.39 (15)
C3—N1—C1—N2179.67 (17)N4—C10—C13—N718.1 (2)
C3—N1—C1—S10.9 (2)N6—C10—C13—C1717.7 (2)
C2—S1—C1—N2179.95 (18)N4—C10—C13—C17161.75 (16)
C2—S1—C1—N11.38 (15)C13—N7—C14—C150.5 (3)
C1—S1—C2—C31.62 (19)N7—C14—C15—C160.9 (3)
S1—C2—C3—N11.4 (3)C14—C15—C16—C171.5 (3)
C1—N1—C3—C20.4 (3)C15—C16—C17—C130.8 (3)
O2—S2—C4—C5140.37 (14)N7—C13—C17—C160.6 (3)
O1—S2—C4—C512.10 (17)C10—C13—C17—C16179.51 (16)
N2—S2—C4—C5107.07 (15)C19—N8—C18—C222.0 (3)
O2—S2—C4—C945.36 (16)C19—N8—C18—C11176.87 (16)
O1—S2—C4—C9173.63 (13)N4—C11—C18—N86.3 (2)
N2—S2—C4—C967.20 (15)N5—C11—C18—N8173.32 (15)
C9—C4—C5—C60.1 (3)N4—C11—C18—C22174.83 (16)
S2—C4—C5—C6174.18 (14)N5—C11—C18—C225.6 (2)
C4—C5—C6—C71.0 (3)C18—N8—C19—C200.5 (3)
C5—C6—C7—N3179.31 (17)N8—C19—C20—C211.0 (3)
C5—C6—C7—C81.2 (3)C19—C20—C21—C221.0 (3)
N3—C7—C8—C9179.96 (16)C20—C21—C22—C180.4 (3)
C6—C7—C8—C90.5 (3)N8—C18—C22—C212.0 (3)
C7—C8—C9—C40.5 (3)C11—C18—C22—C21176.84 (16)
C5—C4—C9—C80.8 (3)C24—N9—C23—C270.5 (3)
S2—C4—C9—C8173.57 (14)C24—N9—C23—C12178.59 (16)
C12—N6—C10—N41.4 (2)N6—C12—C23—N9175.31 (15)
C12—N6—C10—C13179.14 (14)N5—C12—C23—N94.1 (2)
C11—N4—C10—N60.7 (2)N6—C12—C23—C273.8 (2)
C11—N4—C10—C13179.88 (14)N5—C12—C23—C27176.81 (17)
C10—N4—C11—N50.9 (2)C23—N9—C24—C250.2 (3)
C10—N4—C11—C18179.52 (15)N9—C24—C25—C260.4 (3)
C12—N5—C11—N41.6 (2)C24—C25—C26—C270.1 (3)
C12—N5—C11—C18178.84 (14)N9—C23—C27—C261.0 (3)
C10—N6—C12—N50.7 (2)C12—C23—C27—C26178.08 (17)
C10—N6—C12—C23178.71 (15)C25—C26—C27—C230.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N9i0.90 (3)1.98 (3)2.835 (3)158 (2)
N3—H2N···N8ii0.85 (3)2.13 (3)2.983 (3)174 (2)
N3—H3N···N7ii0.89 (2)2.13 (2)3.010 (2)171 (3)
C2—H2···O2iii0.952.373.237 (3)151
C16—H16···O2iv0.952.503.331 (2)145
C20—H20···O1v0.952.483.156 (3)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N9i0.90 (3)1.98 (3)2.835 (3)158 (2)
N3—H2N···N8ii0.85 (3)2.13 (3)2.983 (3)174 (2)
N3—H3N···N7ii0.89 (2)2.13 (2)3.010 (2)171 (3)
C2—H2···O2iii0.952.373.237 (3)151
C16—H16···O2iv0.952.503.331 (2)145
C20—H20···O1v0.952.483.156 (3)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z.
 

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2662–o2663.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDrebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006a). Acta Cryst. E62, o2669–o2671.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDrebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006b). Acta Cryst. E62, o2707–o2709.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationO'Leary, J. & Wallis, J. D. (2007). CrystEngComm, 9, 941–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o402-o403
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds