organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Methyl­piperazin-1-yl)(2,3,4-tri­meth­­oxy­benzyl­­idene)amine

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 17 March 2014; accepted 20 March 2014; online 29 March 2014)

In the title compound, C15H23N3O3, the piperazine ring is in a slightly distorted chair conformation and is twisted from the mean plane of the benzene ring making a dihedral angle of 14.94 (6)°. The 4-meth­oxy substituent is almost co-planar with the benzene ring [C—C—O—C torsion angle = 5.4 (1)°], while the meth­oxy groups at positions 2 and 3 [C—C—O—C torsion angles of 122.6 (4) and −66.1 (4)°, respectively] are twisted away from the mean plane of the benzene ring in anti­clinical and synclinical conformations, respectively. No classical hydrogen bonds or any weak inter­molecular inter­actions are observed in the crystal structure.

Related literature

For a review of pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011[Elliott, S. (2011). Drug Test Anal. 3, 430-438.]). For the anti­microbial activity of Schiff base piperazine derivatives, see: Savaliya et al. (2010[Savaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267-271.]) and for their anti­bacterial activity, see: Xu et al. (2012[Xu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.]). For the anti­microbial activity of piperazine derivatives, see: Kharb et al. (2012[Kharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470-2488.]). For related structures, see: Kavitha et al. (2013a[Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013a). Acta Cryst. E69, o1706.],b[Kavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013b). Acta Cryst. E69, o1687-o1688.]); Guo (2007[Guo, M.-L. (2007). Acta Cryst. E63, o1788-o1789.]); Guo & Qiu (2007[Guo, M.-L. & Qiu, Y.-N. (2007). Acta Cryst. E63, o4641.]); Xu et al. (2009[Xu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997.]); Zhou et al. (2011[Zhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans.2 , pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H23N3O3

  • Mr = 293.36

  • Orthorhombic, P b c a

  • a = 7.84207 (14) Å

  • b = 14.2305 (3) Å

  • c = 27.6218 (5) Å

  • V = 3082.49 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 173 K

  • 0.30 × 0.26 × 0.18 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.290, Tmax = 1.000

  • 19693 measured reflections

  • 2978 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.04

  • 2978 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The Schiff base ligands derived from 1-amino-4-methylpiperazine have attracted the interest due to diverse biological applications found with piperazine moiety. Schiff base piperazine derivatives were found to be designed for the study of their antimicrobial activity (Savaliya et al., 2010) and antibacterial activity (Xu et al., 2012). A valuable insight into recent advances on antimicrobial activity of piperazine derivatives is reported (Kharb et al., 2012). A review on the current pharmacological and toxicological information for piperazine derivatives is described (Elliott, 2011). The crystal structures of some related compounds, viz., 2-[(4-methylpiperazin-1-yl)iminomethyl]phenol (Guo, 2007), 1,4-bis{3-[4-(dimethylamino)benzylideneamino] propyl}piperazine (Xu et al., 2009), 2-methoxy-4-[(4-methylpiperazin-1-yl)-iminomethyl]phenol (Zhou et al., 2011) and 2,4-dibromo-6-[(4-methylpiperazin-1-yl) iminomethyl]phenol (Guo & Qiu, 2007) have been reported. The crystal structures of similar Schiff bases, viz, (1H-indol-3-yl-methylene)- (4-methyl-piperazin-1-yl)-amine (Kavitha et al., 2013a) and (4-methyl-piperazin-1-yl)-(2-nitro-benzylidene)-amine (Kavitha et al., 2013b) have been reported. The title compound is a Schiff base prepared by the reaction of 1-amino-4-methylpiperazine and 2,3,4-trimethoxy benzaldehyde. In view of the above importance of N-piperazinyl Schiff bases, the title compound, (I), C15H23N3O3, has been synthesized and the crystal structure is reported.

The title compound, (I), crystallizes with one independent molecule in the asymmetric unit. In the molecule, the piperazine ring is in a slightly disordered chair conformation (puckering parameters Q, θ, and ϕ = 0.5691 (15)Å, 176.10 (14)° and 160 (2)°, respectively; (Cremer & Pople, 1975) and is twisted from the mean plane of the phenyl ring with a N2/N3/C5/C6 torsion angle of 177.3 (7)° (Fig. 1). The 4-methoxy substituent with a C10/C9/O3/C15 torsion angle of 5.4 (1)° is almost planar with respect to the mean plane of the phenyl ring while the methoxy groups at positions 2 and 3, with torsion angles of 122.6 (4)° (C6/C7/O1/C13) and -66.1 (4)° (C9/C8/O2/C14), are twisted away from the mean plane of the phenyl ring in anti-clinical and -syn-clinical conformations, respectively. Bond lengths are in normal ranges (Allen et al., 1987). No classical hydrogen bonds or any weak intermolecular interactions are observed.

Related literature top

For a review of pharmacological and toxicological information for piperazine derivatives, see: Elliott (2011). For the antimicrobial activity of Schiff base piperazine derivatives, see: Savaliya et al. (2010) and for their antibacterial activity, see: Xu et al. (2012). For the antimicrobial activity of piperazine derivatives, see:Kharb et al. (2012). For related structures, see: Kavitha et al. (2013a,b); Guo (2007); Guo & Qiu (2007); Xu et al. (2009); Zhou et al. (2011). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of 2,3,4-trimethoxy benzaldehyde (0.98 g, 0.005 mol) in 5 ml of methanol an equimolar amount of (1-amino-4-methyl)piperazine (0.57 g, 0.005 mol) is added dropwise with constant stirring. The mixture was refluxed for eight hours . The solution was evaporated at room temperature to obtain the solid. The solid was then recrystallized using ethylacetate and the crystals were used as such for x-ray diffraction studies (m.p.: 365-369 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2) OR 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C12H16N2O2) showing the labeling scheme with 30% probability displacement ellipsoids.
(4-Methylpiperazin-1-yl)(2,3,4-trimethoxybenzylidene)amine top
Crystal data top
C15H23N3O3Dx = 1.264 Mg m3
Mr = 293.36Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 8346 reflections
a = 7.84207 (14) Åθ = 4.5–71.5°
b = 14.2305 (3) ŵ = 0.73 mm1
c = 27.6218 (5) ÅT = 173 K
V = 3082.49 (10) Å3Irregular, colourless
Z = 80.30 × 0.26 × 0.18 mm
F(000) = 1264
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2978 independent reflections
Radiation source: Enhance (Cu) X-ray Source2643 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.051
ω scansθmax = 71.3°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 99
Tmin = 0.290, Tmax = 1.000k = 1417
19693 measured reflectionsl = 3333
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0679P)2 + 0.5881P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.23 e Å3
2978 reflectionsΔρmin = 0.17 e Å3
195 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00092 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
C15H23N3O3V = 3082.49 (10) Å3
Mr = 293.36Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 7.84207 (14) ŵ = 0.73 mm1
b = 14.2305 (3) ÅT = 173 K
c = 27.6218 (5) Å0.30 × 0.26 × 0.18 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2978 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2643 reflections with I > 2σ(I)
Tmin = 0.290, Tmax = 1.000Rint = 0.051
19693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
2978 reflectionsΔρmin = 0.17 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29270 (12)0.40317 (7)0.53704 (3)0.0368 (2)
O20.27459 (11)0.21257 (6)0.51816 (3)0.0335 (2)
O30.44344 (12)0.08844 (6)0.57497 (3)0.0352 (2)
N10.44972 (15)0.77433 (8)0.70944 (4)0.0362 (3)
N20.54792 (13)0.60211 (7)0.66430 (4)0.0295 (2)
N30.54620 (13)0.50677 (7)0.65387 (4)0.0302 (2)
C10.44272 (17)0.76304 (9)0.65706 (5)0.0357 (3)
H1A0.54840.78540.64290.043*
H1B0.35030.80080.64420.043*
C20.41546 (17)0.66106 (9)0.64310 (5)0.0353 (3)
H2A0.30450.64040.65440.042*
H2B0.41790.65500.60810.042*
C30.56104 (18)0.61506 (9)0.71668 (5)0.0351 (3)
H3A0.65550.57820.72910.042*
H3B0.45730.59310.73210.042*
C40.58872 (19)0.71782 (10)0.72874 (5)0.0372 (3)
H4A0.59460.72570.76360.045*
H4B0.69600.73880.71500.045*
C50.46406 (15)0.47565 (9)0.61694 (4)0.0286 (3)
H50.40130.51650.59760.034*
C60.47012 (14)0.37502 (9)0.60550 (4)0.0279 (3)
C70.38193 (14)0.34008 (9)0.56495 (4)0.0276 (3)
C80.37692 (14)0.24401 (9)0.55517 (4)0.0278 (3)
C90.46380 (15)0.18119 (9)0.58557 (4)0.0285 (3)
C100.55834 (16)0.21556 (9)0.62441 (4)0.0318 (3)
H100.62070.17460.64380.038*
C110.55890 (16)0.31101 (9)0.63400 (4)0.0309 (3)
H110.62070.33310.66040.037*
C120.4689 (2)0.87309 (11)0.72222 (6)0.0494 (4)
H12A0.57110.89740.70780.074*
H12B0.47570.87920.75680.074*
H12C0.37240.90780.71050.074*
C130.3389 (2)0.40626 (11)0.48695 (5)0.0441 (3)
H13A0.27570.35940.46950.066*
H13B0.45880.39410.48370.066*
H13C0.31320.46730.47410.066*
C140.36197 (19)0.16466 (11)0.47953 (5)0.0398 (3)
H14A0.28700.15860.45220.060*
H14B0.39620.10340.49030.060*
H14C0.46100.20010.47030.060*
C150.51186 (19)0.02173 (9)0.60812 (5)0.0400 (3)
H15A0.48130.04050.59800.060*
H15B0.46660.03330.63990.060*
H15C0.63380.02740.60890.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (5)0.0364 (5)0.0363 (5)0.0096 (4)0.0095 (4)0.0018 (4)
O20.0263 (4)0.0382 (5)0.0360 (5)0.0000 (3)0.0049 (3)0.0069 (4)
O30.0389 (5)0.0280 (5)0.0388 (5)0.0006 (4)0.0020 (4)0.0006 (4)
N10.0396 (6)0.0337 (6)0.0353 (6)0.0016 (4)0.0053 (4)0.0043 (5)
N20.0288 (5)0.0294 (5)0.0303 (5)0.0002 (4)0.0043 (4)0.0007 (4)
N30.0277 (5)0.0297 (5)0.0331 (5)0.0011 (4)0.0009 (4)0.0004 (4)
C10.0374 (7)0.0333 (7)0.0366 (7)0.0029 (5)0.0056 (5)0.0002 (5)
C20.0347 (6)0.0356 (7)0.0355 (6)0.0017 (5)0.0098 (5)0.0020 (5)
C30.0395 (7)0.0360 (7)0.0298 (6)0.0035 (5)0.0063 (5)0.0019 (5)
C40.0438 (7)0.0399 (7)0.0278 (6)0.0075 (6)0.0038 (5)0.0022 (5)
C50.0250 (6)0.0323 (6)0.0286 (6)0.0000 (5)0.0003 (4)0.0007 (5)
C60.0234 (5)0.0328 (6)0.0276 (6)0.0008 (4)0.0031 (4)0.0001 (5)
C70.0220 (5)0.0323 (6)0.0285 (6)0.0021 (4)0.0015 (4)0.0016 (5)
C80.0213 (5)0.0352 (7)0.0269 (6)0.0012 (4)0.0015 (4)0.0022 (5)
C90.0260 (6)0.0293 (6)0.0300 (6)0.0006 (4)0.0045 (4)0.0010 (5)
C100.0322 (6)0.0335 (7)0.0297 (6)0.0031 (5)0.0026 (5)0.0040 (5)
C110.0297 (6)0.0363 (7)0.0267 (6)0.0005 (5)0.0022 (4)0.0017 (5)
C120.0702 (11)0.0380 (8)0.0400 (8)0.0030 (7)0.0069 (7)0.0063 (6)
C130.0510 (8)0.0443 (8)0.0370 (7)0.0011 (6)0.0104 (6)0.0083 (6)
C140.0409 (7)0.0442 (8)0.0343 (7)0.0017 (6)0.0051 (5)0.0104 (6)
C150.0428 (7)0.0310 (7)0.0462 (8)0.0045 (6)0.0006 (6)0.0029 (6)
Geometric parameters (Å, º) top
O1—C71.3747 (15)C5—H50.9300
O1—C131.4308 (17)C5—C61.4673 (17)
O2—C81.3745 (14)C6—C71.4071 (17)
O2—C141.4397 (16)C6—C111.3908 (18)
O3—C91.3614 (15)C7—C81.3941 (18)
O3—C151.4239 (16)C8—C91.4032 (18)
N1—C11.4570 (17)C9—C101.3928 (18)
N1—C41.4556 (19)C10—H100.9300
N1—C121.4567 (18)C10—C111.3838 (18)
N2—N31.3871 (14)C11—H110.9300
N2—C21.4579 (16)C12—H12A0.9600
N2—C31.4623 (16)C12—H12B0.9600
N3—C51.2852 (16)C12—H12C0.9600
C1—H1A0.9700C13—H13A0.9600
C1—H1B0.9700C13—H13B0.9600
C1—C21.5167 (18)C13—H13C0.9600
C2—H2A0.9700C14—H14A0.9600
C2—H2B0.9700C14—H14B0.9600
C3—H3A0.9700C14—H14C0.9600
C3—H3B0.9700C15—H15A0.9600
C3—C41.5154 (18)C15—H15B0.9600
C4—H4A0.9700C15—H15C0.9600
C4—H4B0.9700
C7—O1—C13115.69 (10)O1—C7—C6117.76 (11)
C8—O2—C14115.31 (10)O1—C7—C8121.16 (11)
C9—O3—C15117.64 (10)C8—C7—C6120.97 (11)
C4—N1—C1109.32 (10)O2—C8—C7118.68 (11)
C4—N1—C12111.54 (12)O2—C8—C9121.42 (11)
C12—N1—C1110.54 (11)C7—C8—C9119.68 (11)
N3—N2—C2118.20 (10)O3—C9—C8115.60 (11)
N3—N2—C3109.23 (10)O3—C9—C10124.65 (11)
C2—N2—C3112.02 (10)C10—C9—C8119.72 (11)
C5—N3—N2120.44 (11)C9—C10—H10120.2
N1—C1—H1A109.4C11—C10—C9119.59 (11)
N1—C1—H1B109.4C11—C10—H10120.2
N1—C1—C2111.30 (11)C6—C11—H11118.9
H1A—C1—H1B108.0C10—C11—C6122.20 (11)
C2—C1—H1A109.4C10—C11—H11118.9
C2—C1—H1B109.4N1—C12—H12A109.5
N2—C2—C1110.37 (10)N1—C12—H12B109.5
N2—C2—H2A109.6N1—C12—H12C109.5
N2—C2—H2B109.6H12A—C12—H12B109.5
C1—C2—H2A109.6H12A—C12—H12C109.5
C1—C2—H2B109.6H12B—C12—H12C109.5
H2A—C2—H2B108.1O1—C13—H13A109.5
N2—C3—H3A109.6O1—C13—H13B109.5
N2—C3—H3B109.6O1—C13—H13C109.5
N2—C3—C4110.43 (10)H13A—C13—H13B109.5
H3A—C3—H3B108.1H13A—C13—H13C109.5
C4—C3—H3A109.6H13B—C13—H13C109.5
C4—C3—H3B109.6O2—C14—H14A109.5
N1—C4—C3110.21 (11)O2—C14—H14B109.5
N1—C4—H4A109.6O2—C14—H14C109.5
N1—C4—H4B109.6H14A—C14—H14B109.5
C3—C4—H4A109.6H14A—C14—H14C109.5
C3—C4—H4B109.6H14B—C14—H14C109.5
H4A—C4—H4B108.1O3—C15—H15A109.5
N3—C5—H5120.3O3—C15—H15B109.5
N3—C5—C6119.41 (11)O3—C15—H15C109.5
C6—C5—H5120.3H15A—C15—H15B109.5
C7—C6—C5120.03 (11)H15A—C15—H15C109.5
C11—C6—C5122.24 (11)H15B—C15—H15C109.5
C11—C6—C7117.73 (11)
O1—C7—C8—O22.82 (16)C5—C6—C7—C8175.85 (10)
O1—C7—C8—C9177.37 (10)C5—C6—C11—C10177.07 (11)
O2—C8—C9—O31.80 (16)C6—C7—C8—O2173.26 (10)
O2—C8—C9—C10176.27 (11)C6—C7—C8—C91.30 (16)
O3—C9—C10—C11174.78 (11)C7—C6—C11—C101.90 (18)
N1—C1—C2—N255.98 (15)C7—C8—C9—O3176.20 (10)
N2—N3—C5—C6177.42 (10)C7—C8—C9—C101.88 (17)
N2—C3—C4—N158.01 (14)C8—C9—C10—C113.11 (18)
N3—N2—C2—C1177.82 (10)C9—C10—C11—C61.20 (19)
N3—N2—C3—C4171.89 (10)C11—C6—C7—O1179.34 (10)
N3—C5—C6—C7179.49 (11)C11—C6—C7—C83.14 (17)
N3—C5—C6—C111.57 (18)C12—N1—C1—C2177.65 (12)
C1—N1—C4—C359.88 (14)C12—N1—C4—C3177.56 (11)
C2—N2—N3—C519.32 (17)C13—O1—C7—C6122.85 (12)
C2—N2—C3—C455.19 (14)C13—O1—C7—C860.96 (15)
C3—N2—N3—C5148.93 (11)C14—O2—C8—C7119.41 (12)
C3—N2—C2—C153.86 (14)C14—O2—C8—C966.14 (15)
C4—N1—C1—C259.20 (14)C15—O3—C9—C8172.57 (11)
C5—C6—C7—O10.35 (16)C15—O3—C9—C105.40 (17)

Experimental details

Crystal data
Chemical formulaC15H23N3O3
Mr293.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)7.84207 (14), 14.2305 (3), 27.6218 (5)
V3)3082.49 (10)
Z8
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.30 × 0.26 × 0.18
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.290, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19693, 2978, 2643
Rint0.051
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.04
No. of reflections2978
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2012 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans.2 , pp. S1–19.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, S. (2011). Drug Test Anal. 3, 430–438.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuo, M.-L. (2007). Acta Cryst. E63, o1788–o1789.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, M.-L. & Qiu, Y.-N. (2007). Acta Cryst. E63, o4641.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013a). Acta Cryst. E69, o1706.  CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Kaur, M. (2013b). Acta Cryst. E69, o1687–o1688.  CSD CrossRef IUCr Journals Google Scholar
First citationKharb, R., Bansal, K. & Sharma, A. K. (2012). Der Pharma Chem. 4, 2470–2488.  CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSavaliya, M. D., Dobaria, J. G. & Purohit, D. M. (2010). An Indian J. 6, 267–271.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-B., Xu, X.-Y., Wang, D.-Q., Yang, X.-J. & Li, S. (2009). Acta Cryst. E65, o2997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, R.-B., Zhang, N., Zhou, H.-Y., Yang, S.-P., Li, Y.-Y., Shi, D.-H., Ma, W.-X. & Xu, X.-Y. (2012). J. Chem. Crystallogr. 42, 928-932.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, L.-N., Yan, L., Zhou, H.-L., Yang, Q.-F. & Hu, Q.-L. (2011). Acta Cryst. E67, o100.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds