metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m117-m118

Tetra-μ3-iodido-tetra­kis­[(tri-n-butyl­phosphane-κP)copper(I)]

aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: wolfgang.frey@oc.uni-stuttgart.de

(Received 27 November 2013; accepted 14 February 2014; online 5 March 2014)

The title complex, [Cu4I4(C12H27P)4], crystallizes with six mol­ecules in the unit cell and with three independent one-third mol­ecule fragments, completed by application of the relevant symmetry operators, in the asymmetric unit. The tetranuclear copper core shows a tetrahedral geometry (site symmetry 3..). The I atoms also form a tetra­hedron, with I⋯I distances of 4.471 (1) Å. Both tetra­hedra show an orientation similar to that of a pair of self-dual platonic bodies. The edges of the I-tetra­hedral structure are capped to the face centers of the Cu-tetra­hedron and vice versa. The Cuface⋯I distances are 2.18 Å (averaged) and the Iface⋯Cu distances are 0.78 Å (averaged). As a geometric consequence of these properties there are eight distorted trigonal–bipyramidal polyhedra evident, wherein each trigonal face builds up the equatorial site and the opposite Cu⋯I positions form the axial site. As expected, the n-butyl moieties are highly flexible, resulting in large elongations of their anisotropic displacement parameters. Some C atoms of the n-butyl groups were needed to fix alternative discrete disordered positions.

Related literature

For general background to this work, see: Ainscough et al. (2001[Ainscough, E. W., Brodie, A. M., Burrell, A. K., Freeman, G. H., Jameson, G. B., Bowmaker, G. A., Hanna, J. V. & Healy, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 144-151.]); Alyea et al. (1985[Alyea, E. C., Ferguson, G., Malito, J. & Ruhl, B. L. (1985). Inorg. Chem. 24, 3719-3720.]); Baker et al. (1994[Baker, L.-J., Bowmaker, G. A., Hart, R. D., Harvey, P. J., Healy, P. C. & White, A. H. (1994). Inorg. Chem. 33, 3925-3931.]); Barron et al. (1984[Barron, P. F., Dyason, J. C., Engelhardt, L. M., Healy, P. C. & White, A. H. (1984). Inorg. Chem. 23, 3766-3769.]); Bowmaker et al. (1989[Bowmaker, G. A., Cotton, J. D., Healy, P. C., Kildea, J. D., Silong, S. B., Skelton, B. W. & White, A. H. (1989). Inorg. Chem. 28, 1462-1466.], 1992[Bowmaker, G. A., Camp, D., Hart, R. D., Healy, P. C., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 1155-1166.], 1994[Bowmaker, G. A., Hanna, J. V., Hart, R. D., Healy, P. C. & White, A. H. (1994). Aust. J. Chem. 47, 25-45.] 1999[Bowmaker, G. A., de Silva, E. N., Healy, P. C., Skelton, B. W. & White, A. H. (1999). J. Chem. Soc. Dalton Trans. pp. 901-908.], 2002[Bowmaker, G. A., Boyd, S. E., Hanna, J. V., Hart, R. D., Healy, P. C., Skelton, B. W. & White, A. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2722-2730.]); Churchill & Kalra (1973[Churchill, M. R. & Kalra, K. L. (1973). J. Am. Chem. Soc. 95, 5772-5773.], 1974[Churchill, M. R. & Kalra, K. L. (1974). Inorg. Chem. 13, 1065-1071.]); Churchill, DeBoer & Donovan (1975[Churchill, M. R., DeBoer, B. G. & Donovan, D. J. (1975). Inorg. Chem. 14, 617-623.]); Churchill, DeBoer & Mendak (1975[Churchill, M. R., DeBoer, B. G. & Mendak, S. J. (1975). Inorg. Chem. 14, 2041-2047.]); Churchill & Rotella (1977[Churchill, M. R. & Rotella, F. J. (1977). Inorg. Chem. 16, 3267-3273.], 1979[Churchill, M. R. & Rotella, J. F. (1979). Inorg. Chem. 18, 166-171.]); Dyason, Engelhardt et al. (1985[Dyason, J. C., Engelhardt, L. M., Pakawatchai, C., Healy, P. C. & White, A. H. (1985). Aust. J. Chem. 38, 1243-1250.]); Dyason, Healy et al. (1985[Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A., Raston, C. L. & White, A. J. (1985). J. Chem. Soc. Dalton Trans. pp. 831-838.]); Gill et al. (1976[Gill, J. T., Mayerle, J. J., Welcker, P. S., Lewis, D. F., Ucko, D. A., Barton, D. J., Stowens, D. & Lippard, S. J. (1976). Inorg. Chem. 15, 1155-1168.]); Goel & Beauchamp (1983[Goel, R. G. & Beauchamp, A. L. (1983). Inorg. Chem. 22, 395-400.]); Hadjikakou et al. (1993[Hadjikakou, S. K., Akrivos, P. D., Karagiannidis, P., Raptopoulou, E. & Terzis, A. (1993). Inorg. Chim. Acta, 210, 27-31.]); Herberhold et al. (2003[Herberhold, M., Akkus, N. & Milius, W. (2003). Z. Anorg. Allg. Chem. 629, 2458-2464.]); Hermann et al. (2001[Hermann, H. L., Boche, G. & Schwerdtfeger, P. (2001). Chem. Eur. J. 7, 5333-5342.]); Jansen (1987[Jansen, M. (1987). Angew. Chem. 99, 1136-1149.]); Krause (2002[Krause, N. (2002). In Modern Organocopper Chemistry. Weinheim: Wiley-VCH.]); Mann et al. (1936[Mann, F. G., Purdie, D. & Wells, A. F. (1936). J. Chem. Soc. pp. 1503-1513.]); Medina et al. (2005[Medina, I., Mague, J. T. & Fink, M. J. (2005). Acta Cryst. E61, m1550-m1552.]); Moers & Op Het Veld (1970[Moers, F. G. & Op Het Veld, P. H. (1970). J. Inorg. Nucl. Chem. 32, 3225-3228.]); Ramaprabhu et al. (1993[Ramaprabhu, S., Amstutz, N., Lucken, E. A. C. & Bernardinelli, G. (1993). J. Chem. Soc. Dalton Trans. pp. 871-875.], 1998[Ramaprabhu, S., Amstutz, N., Lucken, E. A. C. & Bernardinelli, G. (1998). Z. Naturforsch. Teil A, 53, 625-629.]); Schwerdtfeger et al. (2004[Schwerdtfeger, P., Krawczyk, R. P., Hammerl, A. & Brown, R. (2004). Inorg. Chem. 43, 6707-6716.]); Soloveichik et al. (1992[Soloveichik, G. L., Eisenstein, O., Poulton, J. T., Streib, W. E., Huffman, J. C. & Caulton, K. G. (1992). Inorg. Chem. 31, 3306-3312.]); Wells (1936[Wells, A. F. (1936). Z. Kristallogr. 94, 447-460.]); Whitesides et al. (1971[Whitesides, G. M., Casey, C. P. & Krieger, J. K. (1971). J. Am. Chem. Soc. 93, 1379-1389.]). The Cu⋯Cu distance is markably short as compared with the reported distances of other tetranuclear copper phosphane complexes (Medina et al., 2005[Medina, I., Mague, J. T. & Fink, M. J. (2005). Acta Cryst. E61, m1550-m1552.]). Nevertheless there are examples for tetra­meric copper complexes with a Cu⋯Cu distance shorter than 2.700 Å (Blake et al., 2001[Blake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Deveson, A., Fenske, D., Gregory, D. H., Hanton, L. R., Hubberstey, P. & Schröder, M. (2001). Chem. Commun. pp. 1432-1433.]; Churchill et al., 1982[Churchill, M. R., Davies, G., El-Sayed, M. A., Hutchinson, J. P. & Rupich, M. W. (1982). Inorg. Chem. 21, 995-1001.]; Kim et al., 2008[Kim, T. H., Shin, Y. W., Jung, J. H., Kim, J. S. & Kim, J. (2008). Angew. Chem. 120, 697-700.]; Schramm, 1978[Schramm, V. (1978). Inorg. Chem. 17, 714-718.]). Both tetra­hedra formed by iodines show an orientation similar to that of a pair of self-dual platonic bodies (Glaeser & Polthier, 2010[Glaeser, G. & Polthier, K. (2010). Bilder der Mathematik, p. 2. Heidelberg: Spektrum Akademischer Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4I4(C12H27P)4]

  • Mr = 1570.98

  • Trigonal, P 3c 1

  • a = 22.006 (2) Å

  • c = 23.276 (2) Å

  • V = 9761.6 (15) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 3.31 mm−1

  • T = 110 K

  • 0.23 × 0.19 × 0.13 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: numerical (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.674, Tmax = 0.852

  • 89010 measured reflections

  • 13415 independent reflections

  • 10102 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.099

  • S = 1.03

  • 13415 reflections

  • 612 parameters

  • 341 restraints

  • H-atom parameters constrained

  • Δρmax = 1.62 e Å−3

  • Δρmin = −1.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 6695 Friedel pairs

  • Absolute structure parameter: −0.02 (2)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrameric phosphane complexes of copper(I) halides are extensively used as reagents for copper-mediated conjugate additions (Krause, 2002). Furthermore, theoretical interest stems from the fact that all group 11 elements in the oxidation state +1 are prone to form clusters with potential metal-metal distances (Jansen, 1987). Thus, theoretical work on such complexes (XCuPR3)4 has been carried out to study structures and stabilities in detail (Schwerdtfeger et al., 2004; Hermann et al., 2001). However, the plethora of structural information on these compounds came from X-ray crystal structure analyses from various copper(I) halide phosphane complexes (Gill et al., 1976). For monophosphanes, different structural motifs were found, e.g. monomers, µ2-halide dimers or µ3-halide bridged tetramers resulting in coordination numbers of 2, 3, or 4 for copper(I) which seemed to be mostly dependent on the phosphane. Sterically bulky phosphane ligands such as trimesitylphosphane (mes3P) (Alyea et al., 1985), tris(2,4,6-trimethoxyphenyl)phosphane (tmpp) (Baker et al., 1994; Bowmaker et al., 1989) or triscycloheptatrienylphosphane (Herberhold et al., 2003) led exclusively to monomeric complexes with a linear X–Cu–P orientation. Phosphanes with moderate steric bias resulted in the formation of µ-halide-bridged dimers e.g. for PCy3, PBu3, and mixed aryl phosphanes (Moers & Op Het Veld, 1970; Churchill & Rotella, 1979; Soloveichik et al.,1992; Ainscough et al., 2001; Bowmaker et al., 1992; Bowmaker et al., 1994; Hadjikakou et al., 1993; Ramaprabhu et al., 1993; Ramaprabhu et al., 1998). In contrast, sterically less demanding phosphane ligands preferred the formation of tetrameric complexes. In this case, two different structures are possible, a pseudo-cubane structure 1 with triply-bridging halides [Cu(µ3-X)PR3]4 which was observed for PMe3 (X = I) (Bowmaker et al., 1999), PEt3 (X = Cl, Br, I) (Churchill & Kalra, 1974; Churchill, DeBoer, Donovan, 1975; Churchill, DeBoer, Mendak, 1975), t-Bu3P (X = Br, I) (Goel & Beauchamp, 1983; Medina et al., 2005), PMePh2 (X = I) (Churchill & Rotella, 1977), and PPh3 (X = Br, Cl, I) or an open-step tetramer 2 which was observed for PPh3 (X = Br, I) (Churchill & Kalra, 1973; Churchill & Kalra, 1974; Churchill, DeBoer, Donovan, 1975; Churchill, DeBoer, Mendak, 1975; Dyason, Engelhardt et al., 1985; Dyason, Healy et al., 1985) (Fig. 1). It had already been noted that the preferred structure seemed to strongly depend on the solvent, with toluene favoring the cubane structure and chloroform favoring the step isomer while acetonitrile gave mixtures (Dyason, Engelhardt et al., 1985; Dyason, Healy et al., 1985). Similar solvent effects were also reported by Herberhold et al. (2003). Although the known tri-n-butyl phosphane complex [n-Bu3PCuI]4 had already been characterized by using X-ray crystallography (Wells, 1936), no atomic coordinates, bond lengths or bond angles were reported. Only two space groups C3c and C3c were proposed giving preference to the latter (Mann et al., 1936; Wells, 1936). Thus, we decided to reinvestigate the crystal structure of [n-Bu3PCuI]4 (Fig. 2–4). The copper(I) complex was prepared by treatment of anhydrous CuI with n-Bu3P in a two-phase mixture of a saturated aqueous solution of potassium iodide and diethyl ether (Whitesides et al., 1971). The crude product was dissolved in acetone/methanol (9:1) and cooled to -78°C, whereby the tetrameric complex precipitated. We were able to confirm the previously postulated tetrameric complex with a distorted heterocubane structure similar to the AsEt3 derivative (Wells, 1936). Interestingly, [n-Bu3PCuI]4 possesses remarkably short Cu···Cu and large I···I distances with 2.764 (2) Å and 4.471 (1) Å. Further comparison of the structure with other tetrameric copper complexes (Medina et al., 2005) reveals very similar Cu–P bond lengths despite the different σ-donor/π-acceptor strengths of Et3P, n-Bu3P, Ph3P and t-Bu3P, respectively. Furthermore, complex [n-Bu3PCuI]4 has the largest I–Cu–I angle and the smallest Cu–I–Cu angle as compared to the other complexes (Churchill & Kalra, 1974; Dyason, Engelhardt et al., 1985; Dyason, Healy et al., 1985; Medina et al., 2005). Due to this very strong distortion the structure could be better described as two interpenetrating copper and iodine tetrahedrons.

Related literature top

For general background to this work, see: Ainscough et al. (2001); Alyea et al. (1985); Baker et al. (1994); Barron et al. (1984); Bowmaker et al. (1989, 1992, 1994 1999, 2002); Churchill & Kalra (1973, 1974); Churchill, DeBoer & Donovan (1975); Churchill, DeBoer & Mendak (1975); Churchill & Rotella (1977, 1979); Dyason, Engelhardt et al. (1985); Dyason, Healy et al. (1985); Gill et al. (1976); Goel & Beauchamp (1983); Hadjikakou et al. (1993); Herberhold et al. (2003); Hermann et al. (2001); Jansen (1987); Krause (2002); Mann et al. (1936); Medina et al. (2005); Moers & Op Het Veld (1970); Ramaprabhu et al. (1993, 1998); Schwerdtfeger et al. (2004); Soloveichik et al. (1992); Wells (1936); Whitesides et al. (1971). The Cu···Cu distance is markably short as compared with the reported distances of other tetrameric copper phosphane complexes (Medina et al., 2005). Nevertheless there are examples for tetrameric copper complexes with a Cu···Cu distance shorter than 2.700 Å (Blake et al., 2001; Churchill et al., 1982; Kim et al., 2008; Schramm, 1978). Both tetrahedrons formed by iodines show an orientation similar to that of a pair of self-dual platonic bodies (Glaeser & Polthier, 2010).

Experimental top

The title complex was prepared analogously to a literature procedure (Whitesides et al., 1971); for characterization, the precipitate obtained at -78°C was dissolved in acetone and crystallized at -50°C. Yield: 46%. M.p. 75–76°C [75°C (Mann et al., 1936, Wells, 1936, Whitesides et al., 1971)]. Anal. Calc. for C48H108Cu4I4P4: C, 36.70; H, 6.93; I, 32.31%. Found: C, 37.09; H, 6.93; I, 32.37%. 1H NMR (300 MHz, CDCl3): δ = 0.91 (t, J = 7.2 Hz, 9 H, CH3), 1.31–1.44 (m, 6 H, CH2CH3), 1.44–1.64 (m, 12 H, PCH2CH2) p.p.m.. 13C NMR (75 MHz, CDCl3): δ = 13.8 (CH3), 24.1 (d, JC—P = 16.4 Hz, PCH2), 24.6 (d, JC—P = 12.2 Hz, PCH2CH2), 26.3 (d,JC—P = 2.3 Hz, CH2CH3) p.p.m.. 31P NMR (121 MHz, CDCl3): δ = -29.5—34.7 (m) p.p.m.. Single crystals suitable for X-ray analysis were obtained by dissolving the product in dichloromethane, overlaying with ethanol and slow evaporation of the solvents at room temperature.

Refinement top

H atoms were only partly located in difference fourier map, because of the strong disordered behaviour of the n-butyl moieties. They are refined with fixed individual displacement parameters using a riding model with C—H ranging [U(H) = 1.2 Ueq(C) for methylene groups and [U(H) = 1.5 Ueq(C) for methyl groups] from 0.98 to 0.99 Å. In addition, the methyl groups are allowed to rotate but not to tip. A free refinement of the anisotropic displacement parameters of the n-butyl moieties was not possible, so an ISOR = 0.01 instruction for all carbons was established, which solves this problem. The carbon atoms C17, C18, C21, C28, C37 and C38 were identified as discrete disordered atoms. Their distances were fixed by an DFIX instruction (intervall 1.50 to 1.54 Å) forced by an estimated standard deviation of 0.01 Å. The population parameters of the disordered positions were refined free. The main domains converged with population fractions of 0.55 (C17, C18), 0.66 (C21), 0.52 (C28) and 0.58 (C37, C38). The distances C22—C23, C23—C24 and C39—C40 were also fixed by the DFIX command by the same conditions as above.

Nevertheless it was not possible to prevent the detection of some B-alerts in the checkcif utility. There are two short intermolecular H···H distances of 1.76 Å and 1.95 Å and also a large Ueq(max)/Ueq(min) ratio of the carbon atoms. The C—C bond precision is 0.0205 Å, which is low. All these diagnostic results have their reason in the high flexibility of the n-butyl moieties in context to the high electron density localized on the heavy elements (iodine) at the rigid core of the system. Even the terminal carbons show a large elongation of their displacement parameters which is also a sign of the dynamic behaviour of the n-butyl moieties. The detection of the large Hirshfeld Test value of bond C23—C24 (7.5 su) yields in the difficulties resolving the discrete disorder positions by the same reasons.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Possible tetrameric core structures based on cubane (1) or open-step framework (2).
[Figure 2] Fig. 2. ORTEP-style plot-view of complex [n-Bu3PCuI]4 in the solid state of one conformer.
[Figure 3] Fig. 3. Packing diagram of the unit cell.
[Figure 4] Fig. 4. Molecule fragment of independent atom positions of one conformer.
[Figure 5] Fig. 5. Core geometry.
Tetra-µ3-iodido-tetrakis[(tri-n-butylphosphane-κP)copper(I)] top
Crystal data top
[Cu4I4(C12H27P)4]Dx = 1.603 Mg m3
Mr = 1570.98Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3c1Cell parameters from 10102 reflections
Hall symbol: P 3 -2"cθ = 1.8–26.4°
a = 22.006 (2) ŵ = 3.31 mm1
c = 23.276 (2) ÅT = 110 K
V = 9761.6 (15) Å3Irregular, colourless
Z = 60.23 × 0.19 × 0.13 mm
F(000) = 4704
Data collection top
Bruker Kappa APEXII DUO
diffractometer
13415 independent reflections
Radiation source: fine-focus sealed tube10102 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.039
ω + Phi Scans scansθmax = 26.4°, θmin = 1.8°
Absorption correction: numerical
(Blessing, 1995)
h = 2727
Tmin = 0.674, Tmax = 0.852k = 2327
89010 measured reflectionsl = 2829
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0213P)2 + 46.6098P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
13415 reflectionsΔρmax = 1.62 e Å3
612 parametersΔρmin = 1.16 e Å3
341 restraintsAbsolute structure: Flack (1983), 6695 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Cu4I4(C12H27P)4]Z = 6
Mr = 1570.98Mo Kα radiation
Trigonal, P3c1µ = 3.31 mm1
a = 22.006 (2) ÅT = 110 K
c = 23.276 (2) Å0.23 × 0.19 × 0.13 mm
V = 9761.6 (15) Å3
Data collection top
Bruker Kappa APEXII DUO
diffractometer
13415 independent reflections
Absorption correction: numerical
(Blessing, 1995)
10102 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.852Rint = 0.039
89010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0213P)2 + 46.6098P]
where P = (Fo2 + 2Fc2)/3
S = 1.03Δρmax = 1.62 e Å3
13415 reflectionsΔρmin = 1.16 e Å3
612 parametersAbsolute structure: Flack (1983), 6695 Friedel pairs
341 restraintsAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.98362 (3)0.87545 (3)0.58137 (2)0.04502 (13)
I21.00001.00000.73872 (3)0.0401 (2)
Cu10.92257 (5)0.93441 (5)0.64411 (4)0.0433 (2)
Cu21.00001.00000.54664 (6)0.0437 (4)
P11.00001.00000.45024 (14)0.0444 (9)
C11.0170 (5)0.9357 (5)0.4165 (3)0.056 (2)
H1A0.97960.88830.42810.067*
H1B1.01400.93940.37440.067*
C21.0876 (5)0.9430 (5)0.4311 (4)0.055 (2)
H2A1.09410.94650.47330.066*
H2B1.12540.98680.41390.066*
C31.0940 (6)0.8809 (6)0.4090 (4)0.073 (3)
H3A1.08370.87480.36740.087*
H3B1.05910.83750.42880.087*
C41.1690 (6)0.8926 (6)0.4198 (5)0.085 (3)
H4A1.20320.93260.39710.127*
H4B1.17050.85040.40850.127*
H4C1.18060.90190.46070.127*
P20.82325 (12)0.84464 (12)0.67885 (9)0.0458 (5)
C50.8325 (5)0.8140 (5)0.7491 (3)0.052 (2)
H5A0.84540.85210.77740.063*
H5B0.78650.77410.76080.063*
C60.8872 (5)0.7907 (5)0.7513 (4)0.060 (2)
H6A0.86660.74380.73320.073*
H6B0.92760.82350.72730.073*
C70.9152 (7)0.7866 (6)0.8102 (4)0.084 (3)
H7A0.94840.76900.80540.100*
H7B0.94170.83450.82650.100*
C80.8628 (8)0.7430 (8)0.8497 (6)0.128 (5)
H8A0.82820.75840.85340.192*
H8B0.88430.74580.88720.192*
H8C0.83950.69440.83600.192*
C90.7468 (5)0.8566 (6)0.6880 (4)0.067 (3)
H9A0.73340.86610.64990.081*
H9B0.70700.81190.70220.081*
C100.7566 (6)0.9112 (6)0.7261 (5)0.076 (3)
H10A0.79460.95640.71110.092*
H10B0.77180.90300.76400.092*
C110.6882 (6)0.9169 (7)0.7346 (5)0.091 (4)
H11A0.70040.95940.75750.109*
H11B0.67160.92260.69650.109*
C120.6287 (7)0.8531 (8)0.7646 (6)0.112 (4)
H12A0.61450.81110.74120.168*
H12B0.58860.86040.76970.168*
H12C0.64480.84690.80230.168*
C130.7867 (5)0.7657 (5)0.6361 (3)0.057 (2)
H13A0.82130.74960.63330.068*
H13B0.74440.72850.65550.068*
C140.7669 (7)0.7768 (6)0.5752 (4)0.083 (3)
H14A0.80800.81730.55740.100*
H14B0.72890.78830.57790.100*
C150.7423 (8)0.7115 (7)0.5360 (6)0.108 (4)
H15A0.70550.66950.55620.130*
H15B0.72140.71800.50060.130*
C160.7988 (13)0.6998 (12)0.5209 (9)0.200 (9)
H16A0.84230.74500.51750.300*
H16B0.78840.67510.48400.300*
H16C0.80420.67150.55070.300*
I30.66670.33330.63630 (3)0.0468 (2)
I40.79161 (4)0.44159 (5)0.79251 (3)0.0826 (3)
Cu30.67703 (7)0.41066 (7)0.72971 (4)0.0649 (3)
Cu40.66670.33330.82528 (8)0.0834 (7)
P30.69157 (19)0.51440 (17)0.70139 (16)0.0875 (9)
C170.6509 (10)0.5582 (10)0.7297 (6)0.065 (6)0.55 (2)
H17A0.66740.60280.70860.078*0.55 (2)
H17B0.59960.52920.72370.078*0.55 (2)
C180.6656 (10)0.5741 (11)0.7941 (6)0.070 (6)0.55 (2)
H18A0.71570.60930.79980.084*0.55 (2)
H18B0.65580.53080.81470.084*0.55 (2)
C17A0.6452 (14)0.5360 (11)0.7697 (12)0.075 (8)0.45 (2)
H17C0.59380.50410.76870.090*0.45 (2)
H17D0.66330.52840.80640.090*0.45 (2)
C18A0.6621 (12)0.6124 (10)0.7656 (8)0.075 (8)0.45 (2)
H18C0.64280.62240.73080.090*0.45 (2)
H18D0.71270.64700.77000.090*0.45 (2)
C190.6189 (8)0.6031 (8)0.8202 (6)0.140 (6)
H19A0.57060.57120.80630.168*0.55 (2)
H19B0.61810.59560.86220.168*0.55 (2)
H19C0.56900.56610.81680.168*0.45 (2)
H19D0.64010.59690.85560.168*0.45 (2)
C200.6311 (10)0.6757 (9)0.8125 (8)0.158 (7)
H20A0.67840.70960.82590.237*
H20B0.59630.68110.83470.237*
H20C0.62670.68390.77170.237*
C210.6658 (7)0.5116 (13)0.6206 (13)0.083 (8)0.66 (5)
H21A0.68290.55980.60600.100*0.66 (5)
H21B0.68680.48940.59710.100*0.66 (5)
C21A0.6529 (13)0.5238 (13)0.6461 (14)0.054 (10)0.34 (5)
H21C0.64480.56300.65590.065*0.34 (5)
H21D0.68860.54160.61520.065*0.34 (5)
C220.5843 (6)0.4680 (7)0.6172 (6)0.118 (5)
H22A0.56510.49740.63140.141*0.66 (5)
H22B0.56770.42730.64330.141*0.66 (5)
H22C0.54930.47890.63350.141*0.34 (5)
H22D0.57540.42450.63690.141*0.34 (5)
C230.5541 (11)0.4406 (10)0.5560 (6)0.167 (7)
H23A0.56190.40130.54620.201*
H23B0.50270.42190.55680.201*
C240.5850 (14)0.4942 (13)0.5108 (10)0.265 (14)
H24A0.58500.53670.52320.397*
H24B0.55740.47630.47550.397*
H24C0.63340.50520.50350.397*
C250.7827 (6)0.5870 (6)0.6999 (5)0.092 (4)
H25A0.78320.63050.68810.110*
H25B0.80250.59440.73920.110*
C260.8288 (7)0.5735 (6)0.6590 (5)0.095 (4)
H26A0.81460.57510.61890.114*
H26B0.82140.52600.66610.114*
C270.9069 (8)0.6276 (8)0.6663 (7)0.131 (5)
H27A0.91200.67470.66970.157*0.52 (2)
H27B0.92350.61760.70270.157*0.52 (2)
H27C0.91640.64580.70610.157*0.48 (2)
H27D0.93580.60560.65830.157*0.48 (2)
C280.9527 (12)0.6291 (13)0.6191 (9)0.094 (8)0.52 (2)
H28A0.93890.64210.58310.141*0.52 (2)
H28B0.94790.58260.61490.141*0.52 (2)
H28C1.00160.66360.62790.141*0.52 (2)
C28A0.9243 (16)0.6854 (13)0.6252 (11)0.112 (11)0.48 (2)
H28D0.97520.71740.62490.168*0.48 (2)
H28E0.90070.71110.63690.168*0.48 (2)
H28F0.90860.66600.58660.168*0.48 (2)
P40.66670.33330.92200 (18)0.0867 (17)
C290.5817 (6)0.3008 (6)0.9553 (4)0.083 (3)
H29A0.58700.29970.99740.099*
H29B0.56470.33390.94700.099*
C300.5275 (6)0.2290 (7)0.9353 (5)0.089 (3)
H30A0.54480.19600.94290.107*
H30B0.52130.23030.89330.107*
C310.4572 (8)0.2019 (8)0.9642 (6)0.120 (5)
H31A0.43920.23400.95530.144*
H31B0.46390.20281.00640.144*
C320.4027 (9)0.1280 (9)0.9464 (7)0.146 (6)
H32A0.40210.12420.90450.219*
H32B0.35630.11790.95990.219*
H32C0.41430.09440.96340.219*
I50.33330.66671.02038 (4)0.0597 (3)
I60.46756 (4)0.71941 (4)0.86390 (2)0.0751 (2)
Cu50.38394 (7)0.75018 (7)0.92661 (4)0.0679 (3)
Cu60.33330.66670.83068 (7)0.0725 (6)
P50.33330.66670.73393 (16)0.0726 (14)
C330.3336 (7)0.5928 (6)0.7002 (4)0.084 (3)
H33A0.28660.55080.70540.101*
H33B0.34100.60210.65840.101*
C340.3888 (6)0.5754 (6)0.7225 (4)0.078 (3)
H34A0.43570.61800.71980.093*
H34B0.37940.56220.76360.093*
C350.3894 (7)0.5163 (7)0.6896 (6)0.100 (4)
H35A0.40160.53020.64890.120*
H35B0.34210.47410.69070.120*
C360.4433 (9)0.4988 (8)0.7158 (7)0.137 (6)
H36A0.49080.53850.70990.206*
H36B0.43900.45700.69720.206*
H36C0.43430.49000.75710.206*
P60.44960 (17)0.86037 (17)0.95844 (12)0.0738 (8)
C370.5201 (11)0.9100 (9)0.9053 (11)0.083 (7)0.58 (2)
H37A0.54430.88270.89940.100*0.58 (2)
H37B0.49630.90780.86860.100*0.58 (2)
C380.5771 (10)0.9853 (10)0.9127 (8)0.104 (9)0.58 (2)
H38A0.60720.99040.94600.125*0.58 (2)
H38B0.55661.01610.91840.125*0.58 (2)
C37A0.5427 (12)0.9222 (13)0.9340 (8)0.053 (7)0.42 (2)
H37C0.56490.96280.96040.064*0.42 (2)
H37D0.57000.89760.93570.064*0.42 (2)
C38A0.5447 (8)0.9479 (12)0.8736 (8)0.065 (8)0.42 (2)
H38C0.51330.96790.87080.078*0.42 (2)
H38D0.52740.90790.84650.078*0.42 (2)
C390.6193 (8)1.0038 (8)0.8566 (7)0.139 (6)
H39A0.63620.97110.84680.167*0.58 (2)
H39B0.59501.01050.82350.167*0.58 (2)
H39C0.64360.97670.85110.167*0.42 (2)
H39D0.61351.01790.81750.167*0.42 (2)
C400.6744 (11)1.0712 (10)0.8831 (9)0.192 (8)
H40A0.65621.10360.88690.288*
H40B0.71621.09240.85870.288*
H40C0.68661.06170.92120.288*
C410.4796 (6)0.8673 (6)1.0326 (5)0.076 (3)
H41A0.50230.91711.04460.091*
H41B0.43820.84031.05760.091*
C420.5304 (7)0.8411 (7)1.0420 (5)0.092 (4)
H42A0.57680.87591.02630.110*
H42B0.51380.79671.02070.110*
C430.5390 (7)0.8284 (8)1.1070 (5)0.104 (4)
H43A0.49240.79601.12360.125*
H43B0.56840.80611.11040.125*
C440.5728 (8)0.8966 (8)1.1404 (7)0.126 (5)
H44A0.62060.92721.12630.188*
H44B0.57440.88681.18130.188*
H44C0.54530.92011.13540.188*
C450.4063 (7)0.9125 (7)0.9600 (5)0.089 (3)
H45A0.44100.96100.97170.106*
H45B0.39060.91480.92060.106*
C460.3447 (6)0.8859 (6)0.9992 (5)0.080 (3)
H46A0.36100.88781.03920.096*
H46B0.31190.83600.98990.096*
C470.3053 (7)0.9252 (7)0.9964 (6)0.093 (4)
H47A0.28960.92420.95640.112*
H47B0.33760.97491.00680.112*
C480.2412 (8)0.8957 (8)1.0362 (6)0.110 (4)
H48A0.21400.84451.03210.164*
H48B0.21180.91581.02570.164*
H48C0.25680.90771.07610.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0568 (3)0.0457 (3)0.0341 (2)0.0268 (3)0.0013 (2)0.0033 (2)
I20.0474 (3)0.0474 (3)0.0255 (4)0.02371 (16)0.0000.000
Cu10.0470 (6)0.0423 (5)0.0341 (5)0.0175 (5)0.0006 (4)0.0003 (4)
Cu20.0528 (6)0.0528 (6)0.0253 (7)0.0264 (3)0.0000.000
P10.0528 (14)0.0528 (14)0.0278 (16)0.0264 (7)0.0000.000
C10.072 (5)0.060 (5)0.036 (4)0.033 (4)0.001 (4)0.005 (3)
C20.064 (5)0.061 (5)0.041 (4)0.032 (4)0.005 (4)0.003 (4)
C30.096 (7)0.077 (6)0.061 (5)0.054 (5)0.005 (5)0.005 (4)
C40.089 (7)0.100 (7)0.085 (6)0.062 (6)0.001 (5)0.004 (5)
P20.0462 (12)0.0488 (13)0.0381 (10)0.0205 (11)0.0013 (9)0.0029 (9)
C50.062 (5)0.052 (5)0.042 (4)0.028 (4)0.004 (4)0.010 (3)
C60.081 (6)0.049 (5)0.049 (4)0.031 (4)0.011 (4)0.001 (4)
C70.109 (7)0.083 (6)0.070 (6)0.056 (6)0.017 (5)0.002 (5)
C80.133 (9)0.121 (9)0.116 (8)0.054 (7)0.019 (7)0.013 (7)
C90.067 (6)0.084 (6)0.056 (5)0.042 (5)0.005 (4)0.010 (4)
C100.075 (6)0.072 (6)0.084 (6)0.038 (5)0.014 (5)0.000 (5)
C110.078 (6)0.114 (8)0.079 (6)0.046 (6)0.008 (5)0.006 (6)
C120.104 (8)0.132 (9)0.114 (8)0.071 (7)0.010 (6)0.005 (7)
C130.053 (5)0.057 (5)0.046 (4)0.017 (4)0.005 (4)0.004 (4)
C140.096 (7)0.072 (6)0.052 (5)0.019 (5)0.020 (5)0.004 (4)
C150.117 (8)0.087 (7)0.094 (7)0.031 (6)0.036 (6)0.016 (6)
C160.209 (13)0.190 (12)0.183 (12)0.087 (9)0.004 (9)0.038 (9)
I30.0580 (3)0.0580 (3)0.0245 (4)0.02900 (17)0.0000.000
I40.0915 (6)0.1065 (6)0.0383 (3)0.0409 (5)0.0148 (3)0.0186 (3)
Cu30.0853 (9)0.0761 (8)0.0342 (5)0.0410 (7)0.0001 (5)0.0056 (5)
Cu40.1118 (12)0.1118 (12)0.0266 (9)0.0559 (6)0.0000.000
P30.090 (2)0.0643 (19)0.104 (2)0.0353 (17)0.0179 (18)0.0260 (17)
C170.072 (9)0.070 (9)0.060 (8)0.040 (7)0.006 (7)0.000 (7)
C180.073 (9)0.066 (9)0.057 (8)0.024 (7)0.004 (7)0.011 (7)
C17A0.083 (11)0.070 (11)0.079 (11)0.043 (8)0.014 (8)0.004 (8)
C18A0.078 (11)0.066 (11)0.076 (11)0.033 (8)0.006 (8)0.009 (8)
C190.122 (9)0.163 (10)0.105 (8)0.049 (7)0.021 (7)0.042 (7)
C200.138 (10)0.200 (11)0.128 (9)0.078 (8)0.019 (7)0.018 (8)
C210.094 (10)0.075 (10)0.073 (11)0.037 (7)0.005 (7)0.019 (7)
C21A0.060 (13)0.057 (12)0.042 (12)0.027 (9)0.005 (8)0.012 (8)
C220.109 (8)0.109 (8)0.136 (9)0.055 (7)0.019 (7)0.008 (7)
C230.171 (11)0.176 (11)0.138 (10)0.074 (8)0.036 (8)0.026 (8)
C240.260 (16)0.269 (17)0.266 (17)0.133 (11)0.001 (10)0.017 (10)
C250.096 (7)0.081 (7)0.099 (7)0.046 (6)0.000 (6)0.019 (5)
C260.098 (7)0.077 (7)0.092 (7)0.031 (6)0.006 (6)0.010 (5)
C270.121 (9)0.119 (9)0.133 (9)0.045 (7)0.009 (7)0.001 (7)
C280.094 (11)0.098 (12)0.093 (11)0.051 (8)0.006 (8)0.017 (8)
C28A0.119 (14)0.112 (14)0.106 (14)0.059 (10)0.003 (9)0.010 (9)
P40.116 (3)0.116 (3)0.028 (2)0.0581 (14)0.0000.000
C290.101 (7)0.104 (7)0.032 (4)0.043 (6)0.009 (4)0.011 (4)
C300.097 (7)0.103 (7)0.058 (5)0.044 (6)0.000 (5)0.019 (5)
C310.128 (9)0.116 (8)0.094 (7)0.045 (7)0.010 (7)0.008 (6)
C320.155 (10)0.142 (9)0.120 (9)0.059 (7)0.011 (7)0.019 (7)
I50.0761 (5)0.0761 (5)0.0270 (4)0.0380 (2)0.0000.000
I60.0866 (5)0.1004 (5)0.0381 (3)0.0465 (4)0.0095 (3)0.0011 (3)
Cu50.0833 (9)0.0823 (9)0.0354 (5)0.0393 (8)0.0014 (6)0.0012 (5)
Cu60.0944 (10)0.0944 (10)0.0285 (9)0.0472 (5)0.0000.000
P50.095 (2)0.095 (2)0.0269 (18)0.0477 (11)0.0000.000
C330.089 (7)0.099 (7)0.058 (6)0.042 (6)0.005 (5)0.005 (5)
C340.092 (7)0.090 (7)0.059 (5)0.052 (5)0.002 (5)0.004 (5)
C350.092 (7)0.102 (7)0.102 (7)0.046 (6)0.003 (6)0.009 (6)
C360.150 (10)0.131 (9)0.140 (9)0.078 (8)0.012 (7)0.006 (7)
P60.080 (2)0.0772 (19)0.0680 (17)0.0421 (17)0.0089 (14)0.0044 (14)
C370.085 (10)0.073 (10)0.091 (11)0.039 (8)0.008 (8)0.004 (8)
C380.102 (12)0.103 (12)0.103 (12)0.048 (9)0.009 (8)0.003 (8)
C37A0.046 (10)0.059 (10)0.049 (9)0.022 (7)0.005 (7)0.003 (7)
C38A0.060 (10)0.075 (11)0.060 (10)0.033 (8)0.010 (7)0.005 (8)
C390.133 (9)0.143 (9)0.149 (9)0.074 (7)0.027 (7)0.053 (7)
C400.195 (12)0.209 (12)0.180 (11)0.106 (9)0.007 (8)0.041 (9)
C410.078 (6)0.070 (6)0.080 (6)0.037 (5)0.009 (5)0.017 (5)
C420.104 (7)0.077 (6)0.102 (7)0.051 (6)0.014 (6)0.016 (5)
C430.097 (7)0.120 (8)0.099 (7)0.058 (6)0.011 (6)0.013 (6)
C440.113 (8)0.143 (9)0.134 (9)0.074 (7)0.023 (7)0.043 (7)
C450.103 (7)0.092 (7)0.081 (6)0.056 (6)0.013 (5)0.008 (5)
C460.093 (7)0.084 (6)0.069 (6)0.050 (5)0.011 (5)0.006 (5)
C470.096 (7)0.095 (7)0.098 (7)0.055 (6)0.002 (6)0.002 (6)
C480.117 (8)0.123 (8)0.101 (7)0.068 (7)0.006 (6)0.010 (6)
Geometric parameters (Å, º) top
I1—Cu1i2.6578 (11)C22—H22C0.9900
I1—Cu22.7032 (7)C22—H22D0.9900
I1—Cu12.7137 (11)C23—C241.470 (10)
I2—Cu12.7161 (12)C23—H23A0.9900
I2—Cu1ii2.7161 (11)C23—H23B0.9900
I2—Cu1i2.7161 (12)C24—H24A0.9800
Cu1—P22.240 (2)C24—H24B0.9800
Cu1—I1ii2.6578 (11)C24—H24C0.9800
Cu1—Cu1ii2.7535 (17)C25—C261.526 (16)
Cu1—Cu1i2.7535 (17)C25—H25A0.9900
Cu1—Cu22.7702 (15)C25—H25B0.9900
Cu2—P12.244 (4)C26—C271.534 (18)
Cu2—I1i2.7032 (7)C26—H26A0.9900
Cu2—I1ii2.7033 (7)C26—H26B0.9900
Cu2—Cu1ii2.7701 (15)C27—C281.480 (10)
Cu2—Cu1i2.7702 (15)C27—C28A1.481 (10)
P1—C11.812 (9)C27—H27A0.9900
P1—C1i1.812 (9)C27—H27B0.9900
P1—C1ii1.812 (9)C27—H27C0.9900
C1—C21.520 (12)C27—H27D0.9900
C1—H1A0.9900C28—H28A0.9800
C1—H1B0.9900C28—H28B0.9800
C2—C31.530 (13)C28—H28C0.9800
C2—H2A0.9900C28A—H28D0.9800
C2—H2B0.9900C28A—H28E0.9800
C3—C41.559 (15)C28A—H28F0.9800
C3—H3A0.9900P4—C29iv1.809 (11)
C3—H3B0.9900P4—C291.809 (11)
C4—H4A0.9800P4—C29iii1.809 (11)
C4—H4B0.9800C29—C301.500 (16)
C4—H4C0.9800C29—H29A0.9900
P2—C131.805 (9)C29—H29B0.9900
P2—C51.819 (8)C30—C311.509 (18)
P2—C91.841 (10)C30—H30A0.9900
C5—C61.527 (13)C30—H30B0.9900
C5—H5A0.9900C31—C321.52 (2)
C5—H5B0.9900C31—H31A0.9900
C6—C71.525 (12)C31—H31B0.9900
C6—H6A0.9900C32—H32A0.9800
C6—H6B0.9900C32—H32B0.9800
C7—C81.410 (17)C32—H32C0.9800
C7—H7A0.9900I5—Cu5v2.7081 (13)
C7—H7B0.9900I5—Cu5vi2.7081 (13)
C8—H8A0.9800I5—Cu52.7081 (13)
C8—H8B0.9800I6—Cu5vi2.6841 (15)
C8—H8C0.9800I6—Cu52.6872 (14)
C9—C101.421 (13)I6—Cu62.6909 (9)
C9—H9A0.9900Cu5—P62.239 (4)
C9—H9B0.9900Cu5—I6v2.6841 (15)
C10—C111.583 (15)Cu5—Cu62.7490 (18)
C10—H10A0.9900Cu5—Cu5vi2.777 (2)
C10—H10B0.9900Cu5—Cu5v2.777 (2)
C11—C121.528 (17)Cu6—P52.252 (4)
C11—H11A0.9900Cu6—I6vi2.6910 (9)
C11—H11B0.9900Cu6—I6v2.6911 (9)
C12—H12A0.9800Cu6—Cu5v2.7491 (18)
C12—H12B0.9800Cu6—Cu5vi2.7491 (18)
C12—H12C0.9800P5—C33v1.809 (11)
C13—C141.536 (12)P5—C331.809 (11)
C13—H13A0.9900P5—C33vi1.809 (11)
C13—H13B0.9900C33—C341.534 (15)
C14—C151.554 (16)C33—H33A0.9900
C14—H14A0.9900C33—H33B0.9900
C14—H14B0.9900C34—C351.518 (16)
C15—C161.43 (2)C34—H34A0.9900
C15—H15A0.9900C34—H34B0.9900
C15—H15B0.9900C35—C361.543 (19)
C16—H16A0.9800C35—H35A0.9900
C16—H16B0.9800C35—H35B0.9900
C16—H16C0.9800C36—H36A0.9800
I3—Cu3iii2.6994 (13)C36—H36B0.9800
I3—Cu32.6994 (13)C36—H36C0.9800
I3—Cu3iv2.6995 (13)P6—C451.823 (12)
I4—Cu32.6909 (15)P6—C411.826 (11)
I4—Cu3iii2.6923 (15)P6—C371.85 (2)
I4—Cu42.6956 (11)P6—C37A1.89 (2)
Cu3—P32.240 (4)C37—C381.507 (10)
Cu3—I4iv2.6924 (15)C37—H37A0.9900
Cu3—Cu42.7400 (19)C37—H37B0.9900
Cu3—Cu3iii2.771 (2)C38—C391.535 (10)
Cu3—Cu3iv2.771 (2)C38—H38A0.9900
Cu4—P42.251 (5)C38—H38B0.9900
Cu4—I4iii2.6955 (10)C37A—C38A1.508 (10)
Cu4—I4iv2.6958 (10)C37A—H37C0.9900
Cu4—Cu3iii2.7398 (19)C37A—H37D0.9900
Cu4—Cu3iv2.7399 (19)C38A—C391.530 (10)
P3—C21A1.61 (3)C38A—H38C0.9900
P3—C171.739 (17)C38A—H38D0.9900
P3—C251.836 (13)C39—C401.502 (10)
P3—C211.96 (3)C39—H39A0.9900
P3—C17A2.07 (3)C39—H39B0.9900
C17—C181.538 (10)C39—H39C0.9900
C17—H17A0.9900C39—H39D0.9900
C17—H17B0.9900C40—H40A0.9800
C18—C191.575 (10)C40—H40B0.9800
C18—H18A0.9900C40—H40C0.9800
C18—H18B0.9900C41—C421.509 (15)
C17A—C18A1.534 (10)C41—H41A0.9900
C17A—H17C0.9900C41—H41B0.9900
C17A—H17D0.9900C42—C431.567 (17)
C18A—C191.538 (10)C42—H42A0.9900
C18A—H18C0.9900C42—H42B0.9900
C18A—H18D0.9900C43—C441.515 (18)
C19—C201.492 (9)C43—H43A0.9900
C19—H19A0.9900C43—H43B0.9900
C19—H19B0.9900C44—H44A0.9800
C19—H19C0.9900C44—H44B0.9800
C19—H19D0.9900C44—H44C0.9800
C20—H20A0.9800C45—C461.489 (15)
C20—H20B0.9800C45—H45A0.9900
C20—H20C0.9800C45—H45B0.9900
C21—C221.556 (9)C46—C471.501 (15)
C21—H21A0.9900C46—H46A0.9900
C21—H21B0.9900C46—H46B0.9900
C21A—C221.544 (10)C47—C481.533 (17)
C21A—H21C0.9900C47—H47A0.9900
C21A—H21D0.9900C47—H47B0.9900
C22—C231.559 (9)C48—H48A0.9800
C22—H22A0.9900C48—H48B0.9800
C22—H22B0.9900C48—H48C0.9800
Cu1i—I1—Cu262.22 (3)C23—C22—H22A108.5
Cu1i—I1—Cu161.67 (4)C21A—C22—H22B103.0
Cu2—I1—Cu161.51 (3)C21—C22—H22B108.5
Cu1—I2—Cu1ii60.91 (4)C23—C22—H22B108.5
Cu1—I2—Cu1i60.91 (4)H22A—C22—H22B107.5
Cu1ii—I2—Cu1i60.91 (4)C21A—C22—H22C102.1
P2—Cu1—I1ii109.25 (7)C21—C22—H22C128.9
P2—Cu1—I1105.70 (7)C23—C22—H22C102.1
I1ii—Cu1—I1112.56 (4)H22A—C22—H22C22.3
P2—Cu1—I2104.61 (6)H22B—C22—H22C90.3
I1ii—Cu1—I2112.94 (4)C21A—C22—H22D102.1
I1—Cu1—I2111.18 (4)C21—C22—H22D100.6
P2—Cu1—Cu1ii146.32 (8)C23—C22—H22D102.1
I1ii—Cu1—Cu1ii60.17 (4)H22A—C22—H22D122.3
I1—Cu1—Cu1ii107.80 (3)H22B—C22—H22D14.8
I2—Cu1—Cu1ii59.544 (18)H22C—C22—H22D104.8
P2—Cu1—Cu1i141.32 (8)C24—C23—C22114.0 (18)
I1ii—Cu1—Cu1i109.43 (3)C24—C23—H23A108.7
I1—Cu1—Cu1i58.17 (4)C22—C23—H23A108.7
I2—Cu1—Cu1i59.544 (18)C24—C23—H23B108.7
Cu1ii—Cu1—Cu1i60.0C22—C23—H23B108.7
P2—Cu1—Cu2146.10 (7)H23A—C23—H23B107.6
I1ii—Cu1—Cu259.70 (2)C23—C24—H24A109.5
I1—Cu1—Cu259.06 (2)C23—C24—H24B109.5
I2—Cu1—Cu2109.15 (4)H24A—C24—H24B109.5
Cu1ii—Cu1—Cu260.20 (2)C23—C24—H24C109.5
Cu1i—Cu1—Cu260.20 (2)H24A—C24—H24C109.5
P1—Cu2—I1i107.40 (3)H24B—C24—H24C109.5
P1—Cu2—I1107.40 (3)C26—C25—P3112.7 (8)
I1i—Cu2—I1111.47 (3)C26—C25—H25A109.1
P1—Cu2—I1ii107.40 (3)P3—C25—H25A109.1
I1i—Cu2—I1ii111.46 (3)C26—C25—H25B109.1
I1—Cu2—I1ii111.46 (3)P3—C25—H25B109.1
P1—Cu2—Cu1ii144.98 (3)H25A—C25—H25B107.8
I1i—Cu2—Cu1ii58.08 (3)C25—C26—C27112.1 (11)
I1—Cu2—Cu1ii107.62 (5)C25—C26—H26A109.2
I1ii—Cu2—Cu1ii59.43 (3)C27—C26—H26A109.2
P1—Cu2—Cu1i144.98 (3)C25—C26—H26B109.2
I1i—Cu2—Cu1i59.43 (3)C27—C26—H26B109.2
I1—Cu2—Cu1i58.09 (3)H26A—C26—H26B107.9
I1ii—Cu2—Cu1i107.62 (5)C28—C27—C28A67.7 (15)
Cu1ii—Cu2—Cu1i59.60 (4)C28—C27—C26114.9 (16)
P1—Cu2—Cu1144.98 (3)C28A—C27—C26107.6 (18)
I1i—Cu2—Cu1107.62 (5)C28—C27—H27A108.5
I1—Cu2—Cu159.43 (3)C28A—C27—H27A46.1
I1ii—Cu2—Cu158.09 (3)C26—C27—H27A108.5
Cu1ii—Cu2—Cu159.60 (4)C28—C27—H27B108.5
Cu1i—Cu2—Cu159.60 (4)C28A—C27—H27B141.0
C1—P1—C1i102.6 (3)C26—C27—H27B108.5
C1—P1—C1ii102.6 (3)H27A—C27—H27B107.5
C1i—P1—C1ii102.6 (3)C28—C27—H27C133.1
C1—P1—Cu2115.7 (3)C28A—C27—H27C110.2
C1i—P1—Cu2115.7 (3)C26—C27—H27C110.2
C1ii—P1—Cu2115.6 (3)H27A—C27—H27C67.0
C2—C1—P1114.9 (6)H27B—C27—H27C42.4
C2—C1—H1A108.5C28—C27—H27D43.5
P1—C1—H1A108.5C28A—C27—H27D110.2
C2—C1—H1B108.5C26—C27—H27D110.2
P1—C1—H1B108.5H27A—C27—H27D139.8
H1A—C1—H1B107.5H27B—C27—H27D69.8
C1—C2—C3112.2 (8)H27C—C27—H27D108.5
C1—C2—H2A109.2C27—C28—H28A109.5
C3—C2—H2A109.2C27—C28—H28B109.5
C1—C2—H2B109.2C27—C28—H28C109.5
C3—C2—H2B109.2C27—C28A—H28D109.5
H2A—C2—H2B107.9C27—C28A—H28E109.5
C2—C3—C4111.2 (9)H28D—C28A—H28E109.5
C2—C3—H3A109.4C27—C28A—H28F109.5
C4—C3—H3A109.4H28D—C28A—H28F109.5
C2—C3—H3B109.4H28E—C28A—H28F109.5
C4—C3—H3B109.4C29iv—P4—C29103.0 (4)
H3A—C3—H3B108.0C29iv—P4—C29iii103.0 (4)
C3—C4—H4A109.5C29—P4—C29iii103.0 (4)
C3—C4—H4B109.5C29iv—P4—Cu4115.3 (3)
H4A—C4—H4B109.5C29—P4—Cu4115.3 (3)
C3—C4—H4C109.5C29iii—P4—Cu4115.3 (3)
H4A—C4—H4C109.5C30—C29—P4113.9 (8)
H4B—C4—H4C109.5C30—C29—H29A108.8
C13—P2—C5102.6 (4)P4—C29—H29A108.8
C13—P2—C9101.6 (5)C30—C29—H29B108.8
C5—P2—C9103.2 (4)P4—C29—H29B108.8
C13—P2—Cu1114.7 (3)H29A—C29—H29B107.7
C5—P2—Cu1114.3 (3)C29—C30—C31113.3 (11)
C9—P2—Cu1118.3 (4)C29—C30—H30A108.9
C6—C5—P2114.0 (6)C31—C30—H30A108.9
C6—C5—H5A108.8C29—C30—H30B108.9
P2—C5—H5A108.8C31—C30—H30B108.9
C6—C5—H5B108.8H30A—C30—H30B107.7
P2—C5—H5B108.8C30—C31—C32114.0 (14)
H5A—C5—H5B107.6C30—C31—H31A108.7
C7—C6—C5117.4 (8)C32—C31—H31A108.7
C7—C6—H6A108.0C30—C31—H31B108.7
C5—C6—H6A108.0C32—C31—H31B108.7
C7—C6—H6B108.0H31A—C31—H31B107.6
C5—C6—H6B108.0C31—C32—H32A109.5
H6A—C6—H6B107.2C31—C32—H32B109.5
C8—C7—C6114.2 (11)H32A—C32—H32B109.5
C8—C7—H7A108.7C31—C32—H32C109.5
C6—C7—H7A108.7H32A—C32—H32C109.5
C8—C7—H7B108.7H32B—C32—H32C109.5
C6—C7—H7B108.7Cu5v—I5—Cu5vi61.70 (4)
H7A—C7—H7B107.6Cu5v—I5—Cu561.69 (5)
C7—C8—H8A109.5Cu5vi—I5—Cu561.69 (5)
C7—C8—H8B109.5Cu5vi—I6—Cu562.27 (6)
H8A—C8—H8B109.5Cu5vi—I6—Cu661.52 (4)
C7—C8—H8C109.5Cu5—I6—Cu661.48 (4)
H8A—C8—H8C109.5P6—Cu5—I6v106.29 (9)
H8B—C8—H8C109.5P6—Cu5—I6107.47 (9)
C10—C9—P2115.5 (8)I6v—Cu5—I6112.44 (5)
C10—C9—H9A108.4P6—Cu5—I5106.98 (8)
P2—C9—H9A108.4I6v—Cu5—I5111.68 (5)
C10—C9—H9B108.4I6—Cu5—I5111.58 (5)
P2—C9—H9B108.4P6—Cu5—Cu6145.00 (9)
H9A—C9—H9B107.5I6v—Cu5—Cu659.37 (3)
C9—C10—C11113.3 (10)I6—Cu5—Cu659.33 (3)
C9—C10—H10A108.9I5—Cu5—Cu6108.02 (5)
C11—C10—H10A108.9P6—Cu5—Cu5vi145.35 (11)
C9—C10—H10B108.9I6v—Cu5—Cu5vi108.36 (5)
C11—C10—H10B108.9I6—Cu5—Cu5vi58.81 (5)
H10A—C10—H10B107.7I5—Cu5—Cu5vi59.15 (2)
C12—C11—C10113.4 (11)Cu6—Cu5—Cu5vi59.66 (3)
C12—C11—H11A108.9P6—Cu5—Cu5v144.26 (10)
C10—C11—H11A108.9I6v—Cu5—Cu5v58.92 (5)
C12—C11—H11B108.9I6—Cu5—Cu5v108.26 (5)
C10—C11—H11B108.9I5—Cu5—Cu5v59.15 (2)
H11A—C11—H11B107.7Cu6—Cu5—Cu5v59.66 (3)
C11—C12—H12A109.5Cu5vi—Cu5—Cu5v60.0
C11—C12—H12B109.5P5—Cu6—I6106.70 (4)
H12A—C12—H12B109.5P5—Cu6—I6vi106.70 (4)
C11—C12—H12C109.5I6—Cu6—I6vi112.10 (3)
H12A—C12—H12C109.5P5—Cu6—I6v106.70 (4)
H12B—C12—H12C109.5I6—Cu6—I6v112.10 (3)
C14—C13—P2112.4 (7)I6vi—Cu6—I6v112.09 (3)
C14—C13—H13A109.1P5—Cu6—Cu5144.32 (3)
P2—C13—H13A109.1I6—Cu6—Cu559.19 (4)
C14—C13—H13B109.1I6vi—Cu6—Cu5108.98 (6)
P2—C13—H13B109.1I6v—Cu6—Cu559.12 (4)
H13A—C13—H13B107.9P5—Cu6—Cu5v144.32 (3)
C13—C14—C15112.9 (10)I6—Cu6—Cu5v108.98 (6)
C13—C14—H14A109.0I6vi—Cu6—Cu5v59.11 (4)
C15—C14—H14A109.0I6v—Cu6—Cu5v59.19 (4)
C13—C14—H14B109.0Cu5—Cu6—Cu5v60.68 (6)
C15—C14—H14B109.0P5—Cu6—Cu5vi144.32 (3)
H14A—C14—H14B107.8I6—Cu6—Cu5vi59.12 (4)
C16—C15—C14112.2 (14)I6vi—Cu6—Cu5vi59.19 (4)
C16—C15—H15A109.2I6v—Cu6—Cu5vi108.98 (6)
C14—C15—H15A109.2Cu5—Cu6—Cu5vi60.68 (6)
C16—C15—H15B109.2Cu5v—Cu6—Cu5vi60.68 (6)
C14—C15—H15B109.2C33v—P5—C33102.6 (4)
H15A—C15—H15B107.9C33v—P5—C33vi102.5 (4)
C15—C16—H16A109.5C33—P5—C33vi102.6 (4)
C15—C16—H16B109.5C33v—P5—Cu6115.7 (4)
H16A—C16—H16B109.5C33—P5—Cu6115.7 (3)
C15—C16—H16C109.5C33vi—P5—Cu6115.7 (3)
H16A—C16—H16C109.5C34—C33—P5115.8 (8)
H16B—C16—H16C109.5C34—C33—H33A108.3
Cu3iii—I3—Cu361.76 (5)P5—C33—H33A108.3
Cu3iii—I3—Cu3iv61.76 (5)C34—C33—H33B108.3
Cu3—I3—Cu3iv61.76 (5)P5—C33—H33B108.3
Cu3—I4—Cu3iii61.96 (5)H33A—C33—H33B107.4
Cu3—I4—Cu461.15 (4)C35—C34—C33113.0 (10)
Cu3iii—I4—Cu461.13 (5)C35—C34—H34A109.0
P3—Cu3—I4105.29 (10)C33—C34—H34A109.0
P3—Cu3—I4iv105.90 (11)C35—C34—H34B109.0
I4—Cu3—I4iv112.59 (5)C33—C34—H34B109.0
P3—Cu3—I3109.23 (10)H34A—C34—H34B107.8
I4—Cu3—I3111.73 (5)C34—C35—C36110.6 (11)
I4iv—Cu3—I3111.68 (5)C34—C35—H35A109.5
P3—Cu3—Cu4142.84 (10)C36—C35—H35A109.5
I4—Cu3—Cu459.51 (3)C34—C35—H35B109.5
I4iv—Cu3—Cu459.50 (3)C36—C35—H35B109.5
I3—Cu3—Cu4107.93 (5)H35A—C35—H35B108.1
P3—Cu3—Cu3iii145.57 (12)C35—C36—H36A109.5
I4—Cu3—Cu3iii59.04 (5)C35—C36—H36B109.5
I4iv—Cu3—Cu3iii108.47 (5)H36A—C36—H36B109.5
I3—Cu3—Cu3iii59.12 (2)C35—C36—H36C109.5
Cu4—Cu3—Cu3iii59.62 (3)H36A—C36—H36C109.5
P3—Cu3—Cu3iv146.15 (11)H36B—C36—H36C109.5
I4—Cu3—Cu3iv108.51 (5)C45—P6—C41102.1 (5)
I4iv—Cu3—Cu3iv58.99 (5)C45—P6—C37101.0 (8)
I3—Cu3—Cu3iv59.12 (2)C41—P6—C37114.8 (8)
Cu4—Cu3—Cu3iv59.62 (3)C45—P6—C37A105.8 (8)
Cu3iii—Cu3—Cu3iv60.0C41—P6—C37A90.5 (7)
P4—Cu4—I4iii106.43 (4)C37—P6—C37A24.4 (7)
P4—Cu4—I4106.43 (4)C45—P6—Cu5115.5 (5)
I4iii—Cu4—I4112.33 (4)C41—P6—Cu5114.4 (4)
P4—Cu4—I4iv106.43 (4)C37—P6—Cu5108.3 (6)
I4iii—Cu4—I4iv112.33 (4)C37A—P6—Cu5124.0 (8)
I4—Cu4—I4iv112.33 (4)C38—C37—P6124.2 (15)
P4—Cu4—Cu3iii144.28 (3)C38—C37—H37A106.3
I4iii—Cu4—Cu3iii59.34 (4)P6—C37—H37A106.3
I4—Cu4—Cu3iii59.37 (4)C38—C37—H37B106.3
I4iv—Cu4—Cu3iii109.29 (7)P6—C37—H37B106.3
P4—Cu4—Cu3iv144.27 (3)H37A—C37—H37B106.4
I4iii—Cu4—Cu3iv59.37 (4)C37—C38—C39104.7 (14)
I4—Cu4—Cu3iv109.29 (7)C37—C38—H38A110.8
I4iv—Cu4—Cu3iv59.34 (4)C39—C38—H38A110.8
Cu3iii—Cu4—Cu3iv60.75 (6)C37—C38—H38B110.8
P4—Cu4—Cu3144.27 (3)C39—C38—H38B110.8
I4iii—Cu4—Cu3109.29 (7)H38A—C38—H38B108.9
I4—Cu4—Cu359.34 (4)C38A—C37A—P6111.7 (14)
I4iv—Cu4—Cu359.38 (4)C38A—C37A—H37C109.3
Cu3iii—Cu4—Cu360.75 (6)P6—C37A—H37C109.3
Cu3iv—Cu4—Cu360.75 (6)C38A—C37A—H37D109.3
C21A—P3—C1777.3 (15)P6—C37A—H37D109.3
C21A—P3—C25106.9 (10)H37C—C37A—H37D107.9
C17—P3—C2599.5 (8)C37A—C38A—C39111.2 (15)
C21A—P3—C2122.1 (11)C37A—C38A—H38C109.4
C17—P3—C2199.2 (11)C39—C38A—H38C109.4
C25—P3—C21100.5 (6)C37A—C38A—H38D109.4
C21A—P3—C17A103.4 (17)C39—C38A—H38D109.4
C17—P3—C17A29.8 (7)H38C—C38A—H38D108.0
C25—P3—C17A105.3 (8)C40—C39—C38A134.3 (18)
C21—P3—C17A125.3 (12)C40—C39—C3889.6 (15)
C21A—P3—Cu3123.4 (9)C38A—C39—C3845.9 (11)
C17—P3—Cu3127.0 (7)C40—C39—H39A113.7
C25—P3—Cu3115.5 (4)C38A—C39—H39A96.8
C21—P3—Cu3111.1 (9)C38—C39—H39A113.7
C17A—P3—Cu399.9 (6)C40—C39—H39B113.7
C18—C17—P3112.9 (12)C38A—C39—H39B83.1
C18—C17—H17A109.0C38—C39—H39B113.7
P3—C17—H17A109.0H39A—C39—H39B111.0
C18—C17—H17B109.0C40—C39—H39C103.6
P3—C17—H17B109.0C38A—C39—H39C103.6
H17A—C17—H17B107.8C38—C39—H39C112.9
C17—C18—C19111.2 (12)H39A—C39—H39C10.3
C17—C18—H18A109.4H39B—C39—H39C119.0
C19—C18—H18A109.4C40—C39—H39D103.6
C17—C18—H18B109.4C38A—C39—H39D103.6
C19—C18—H18B109.4C38—C39—H39D135.2
H18A—C18—H18B108.0H39A—C39—H39D99.9
C18A—C17A—P3109.1 (14)H39B—C39—H39D22.2
C18A—C17A—H17C109.9H39C—C39—H39D105.3
P3—C17A—H17C109.9C39—C40—H40A109.5
C18A—C17A—H17D109.9C39—C40—H40B109.5
P3—C17A—H17D109.9H40A—C40—H40B109.5
H17C—C17A—H17D108.3C39—C40—H40C109.5
C17A—C18A—C1990.4 (14)H40A—C40—H40C109.5
C17A—C18A—H18C113.6H40B—C40—H40C109.5
C19—C18A—H18C113.6C42—C41—P6114.3 (8)
C17A—C18A—H18D113.6C42—C41—H41A108.7
C19—C18A—H18D113.6P6—C41—H41A108.7
H18C—C18A—H18D110.8C42—C41—H41B108.7
C20—C19—C18A89.4 (13)P6—C41—H41B108.7
C20—C19—C18125.6 (15)H41A—C41—H41B107.6
C18A—C19—C1841.6 (10)C41—C42—C43112.8 (11)
C20—C19—H19A105.9C41—C42—H42A109.0
C18A—C19—H19A101.5C43—C42—H42A109.0
C18—C19—H19A105.9C41—C42—H42B109.0
C20—C19—H19B105.9C43—C42—H42B109.0
C18A—C19—H19B142.8H42A—C42—H42B107.8
C18—C19—H19B105.9C44—C43—C42111.3 (12)
H19A—C19—H19B106.3C44—C43—H43A109.4
C20—C19—H19C113.7C42—C43—H43A109.4
C18A—C19—H19C113.7C44—C43—H43B109.4
C18—C19—H19C108.5C42—C43—H43B109.4
H19A—C19—H19C15.3H43A—C43—H43B108.0
H19B—C19—H19C91.2C43—C44—H44A109.5
C20—C19—H19D113.7C43—C44—H44B109.5
C18A—C19—H19D113.7H44A—C44—H44B109.5
C18—C19—H19D79.4C43—C44—H44C109.5
H19A—C19—H19D126.0H44A—C44—H44C109.5
H19B—C19—H19D29.1H44B—C44—H44C109.5
H19C—C19—H19D111.0C46—C45—P6115.1 (8)
C19—C20—H20A109.5C46—C45—H45A108.5
C19—C20—H20B109.5P6—C45—H45A108.5
H20A—C20—H20B109.5C46—C45—H45B108.5
C19—C20—H20C109.5P6—C45—H45B108.5
H20A—C20—H20C109.5H45A—C45—H45B107.5
H20B—C20—H20C109.5C45—C46—C47114.9 (10)
C22—C21—P3107.2 (14)C45—C46—H46A108.5
C22—C21—H21A110.3C47—C46—H46A108.5
P3—C21—H21A110.3C45—C46—H46B108.5
C22—C21—H21B110.3C47—C46—H46B108.5
P3—C21—H21B110.3H46A—C46—H46B107.5
H21A—C21—H21B108.5C46—C47—C48113.8 (11)
C22—C21A—P3127.9 (19)C46—C47—H47A108.8
C22—C21A—H21C105.3C48—C47—H47A108.8
P3—C21A—H21C105.3C46—C47—H47B108.8
C22—C21A—H21D105.3C48—C47—H47B108.8
P3—C21A—H21D105.3H47A—C47—H47B107.7
H21C—C21A—H21D106.0C47—C48—H48A109.5
C21A—C22—C2128.5 (10)C47—C48—H48B109.5
C21A—C22—C23139.8 (18)H48A—C48—H48B109.5
C21—C22—C23115.0 (17)C47—C48—H48C109.5
C21A—C22—H22A84.4H48A—C48—H48C109.5
C21—C22—H22A108.5H48B—C48—H48C109.5
Cu1i—I1—Cu1—P2141.25 (7)I4—Cu3—P3—C17A89.2 (9)
Cu2—I1—Cu1—P2146.80 (7)I4iv—Cu3—P3—C17A30.3 (9)
Cu1i—I1—Cu1—I1ii99.56 (4)I3—Cu3—P3—C17A150.7 (9)
Cu2—I1—Cu1—I1ii27.61 (3)Cu4—Cu3—P3—C17A29.8 (9)
Cu1i—I1—Cu1—I228.30 (4)Cu3iii—Cu3—P3—C17A146.2 (9)
Cu2—I1—Cu1—I2100.25 (4)Cu3iv—Cu3—P3—C17A87.8 (9)
Cu1i—I1—Cu1—Cu1ii35.178 (18)C21A—P3—C17—C18178.8 (18)
Cu2—I1—Cu1—Cu1ii36.77 (3)C25—P3—C17—C1873.5 (16)
Cu2—I1—Cu1—Cu1i71.95 (3)C21—P3—C17—C18175.9 (15)
Cu1i—I1—Cu1—Cu271.95 (3)C17A—P3—C17—C1830.7 (17)
Cu1ii—I2—Cu1—P2147.60 (9)Cu3—P3—C17—C1858.8 (17)
Cu1i—I2—Cu1—P2141.49 (9)P3—C17—C18—C19171.3 (13)
Cu1ii—I2—Cu1—I1ii28.89 (4)C21A—P3—C17A—C18A63 (2)
Cu1i—I2—Cu1—I1ii99.80 (3)C17—P3—C17A—C18A33.8 (17)
Cu1ii—I2—Cu1—I198.76 (3)C25—P3—C17A—C18A49 (2)
Cu1i—I2—Cu1—I127.86 (4)C21—P3—C17A—C18A67 (2)
Cu1i—I2—Cu1—Cu1ii70.907 (16)Cu3—P3—C17A—C18A168.6 (18)
Cu1ii—I2—Cu1—Cu1i70.907 (16)P3—C17A—C18A—C19179.1 (15)
Cu1ii—I2—Cu1—Cu235.453 (8)C17A—C18A—C19—C20175.6 (19)
Cu1i—I2—Cu1—Cu235.454 (8)C17A—C18A—C19—C1831.7 (14)
Cu1i—I1—Cu2—P1144.67 (3)C17—C18—C19—C2076 (2)
Cu1—I1—Cu2—P1144.26 (3)C17—C18—C19—C18A42.1 (17)
Cu1i—I1—Cu2—I1i27.29 (4)C21A—P3—C21—C2255 (2)
Cu1—I1—Cu2—I1i98.36 (5)C17—P3—C21—C2262.2 (18)
Cu1i—I1—Cu2—I1ii97.95 (5)C25—P3—C21—C22163.8 (15)
Cu1—I1—Cu2—I1ii26.88 (4)C17A—P3—C21—C2246 (2)
Cu1i—I1—Cu2—Cu1ii34.60 (4)Cu3—P3—C21—C2273.5 (18)
Cu1—I1—Cu2—Cu1ii36.47 (4)C17—P3—C21A—C22103 (3)
Cu1—I1—Cu2—Cu1i71.07 (5)C25—P3—C21A—C22161 (3)
Cu1i—I1—Cu2—Cu171.07 (5)C21—P3—C21A—C2285 (3)
P2—Cu1—Cu2—P15.30 (15)C17A—P3—C21A—C2288 (3)
I1ii—Cu1—Cu2—P174.04 (4)Cu3—P3—C21A—C2223 (4)
I1—Cu1—Cu2—P176.24 (4)P3—C21A—C22—C2199 (4)
I2—Cu1—Cu2—P1180.0P3—C21A—C22—C23135 (3)
Cu1ii—Cu1—Cu2—P1144.816 (9)P3—C21—C22—C21A42 (3)
Cu1i—Cu1—Cu2—P1144.815 (9)P3—C21—C22—C23162.5 (15)
P2—Cu1—Cu2—I1i175.92 (13)C21A—C22—C23—C2430 (4)
I1ii—Cu1—Cu2—I1i104.743 (17)C21—C22—C23—C2448 (3)
I1—Cu1—Cu2—I1i104.973 (17)C21A—P3—C25—C2680.9 (17)
I2—Cu1—Cu2—I1i1.22 (4)C17—P3—C25—C26160.4 (10)
Cu1ii—Cu1—Cu2—I1i33.97 (4)C21—P3—C25—C2659.1 (14)
Cu1i—Cu1—Cu2—I1i36.40 (4)C17A—P3—C25—C26169.6 (11)
P2—Cu1—Cu2—I170.94 (13)Cu3—P3—C25—C2660.5 (10)
I1ii—Cu1—Cu2—I1150.28 (3)P3—C25—C26—C27169.4 (10)
I2—Cu1—Cu2—I1103.76 (4)C25—C26—C27—C28165.3 (16)
Cu1ii—Cu1—Cu2—I1138.94 (4)C25—C26—C27—C28A92.2 (17)
Cu1i—Cu1—Cu2—I168.57 (4)I4iii—Cu4—P4—C29iv29.3 (5)
P2—Cu1—Cu2—I1ii79.34 (13)I4—Cu4—P4—C29iv90.7 (5)
I1—Cu1—Cu2—I1ii150.28 (3)I4iv—Cu4—P4—C29iv149.3 (5)
I2—Cu1—Cu2—I1ii105.96 (4)Cu3iii—Cu4—P4—C29iv30.6 (5)
Cu1ii—Cu1—Cu2—I1ii70.78 (4)Cu3iv—Cu4—P4—C29iv89.4 (5)
Cu1i—Cu1—Cu2—I1ii141.14 (4)Cu3—Cu4—P4—C29iv150.6 (5)
P2—Cu1—Cu2—Cu1ii150.12 (15)I4iii—Cu4—P4—C2990.7 (5)
I1ii—Cu1—Cu2—Cu1ii70.78 (4)I4—Cu4—P4—C29149.3 (5)
I1—Cu1—Cu2—Cu1ii138.94 (4)I4iv—Cu4—P4—C2929.3 (5)
I2—Cu1—Cu2—Cu1ii35.184 (9)Cu3iii—Cu4—P4—C29150.6 (5)
Cu1i—Cu1—Cu2—Cu1ii70.369 (17)Cu3iv—Cu4—P4—C2930.6 (5)
P2—Cu1—Cu2—Cu1i139.51 (15)Cu3—Cu4—P4—C2989.4 (5)
I1ii—Cu1—Cu2—Cu1i141.14 (4)I4iii—Cu4—P4—C29iii149.3 (5)
I1—Cu1—Cu2—Cu1i68.57 (4)I4—Cu4—P4—C29iii29.3 (5)
I2—Cu1—Cu2—Cu1i35.185 (9)I4iv—Cu4—P4—C29iii90.7 (5)
Cu1ii—Cu1—Cu2—Cu1i70.369 (17)Cu3iii—Cu4—P4—C29iii89.4 (5)
I1i—Cu2—P1—C1101.6 (3)Cu3iv—Cu4—P4—C29iii150.6 (5)
I1—Cu2—P1—C118.4 (3)Cu3—Cu4—P4—C29iii30.6 (5)
I1ii—Cu2—P1—C1138.4 (3)C29iv—P4—C29—C3072.3 (11)
Cu1ii—Cu2—P1—C1160.4 (3)C29iii—P4—C29—C30179.1 (8)
Cu1i—Cu2—P1—C140.4 (3)Cu4—P4—C29—C3054.3 (9)
Cu1—Cu2—P1—C179.6 (3)P4—C29—C30—C31178.9 (9)
I1i—Cu2—P1—C1i18.4 (3)C29—C30—C31—C32177.6 (12)
I1—Cu2—P1—C1i138.4 (3)Cu5vi—I6—Cu5—P6144.84 (10)
I1ii—Cu2—P1—C1i101.6 (3)Cu6—I6—Cu5—P6144.27 (10)
Cu1ii—Cu2—P1—C1i40.4 (3)Cu5vi—I6—Cu5—I6v98.53 (5)
Cu1i—Cu2—P1—C1i79.6 (3)Cu6—I6—Cu5—I6v27.64 (4)
Cu1—Cu2—P1—C1i160.4 (3)Cu5vi—I6—Cu5—I527.86 (5)
I1i—Cu2—P1—C1ii138.4 (3)Cu6—I6—Cu5—I598.75 (5)
I1—Cu2—P1—C1ii101.6 (3)Cu5vi—I6—Cu5—Cu670.89 (4)
I1ii—Cu2—P1—C1ii18.4 (3)Cu6—I6—Cu5—Cu5vi70.89 (4)
Cu1ii—Cu2—P1—C1ii79.6 (3)Cu5vi—I6—Cu5—Cu5v35.39 (2)
Cu1i—Cu2—P1—C1ii160.4 (3)Cu6—I6—Cu5—Cu5v35.50 (4)
Cu1—Cu2—P1—C1ii40.4 (3)Cu5v—I5—Cu5—P6143.73 (12)
C1i—P1—C1—C266.6 (9)Cu5vi—I5—Cu5—P6145.04 (12)
C1ii—P1—C1—C2172.8 (6)Cu5v—I5—Cu5—I6v27.81 (5)
Cu2—P1—C1—C260.3 (7)Cu5vi—I5—Cu5—I6v99.05 (4)
P1—C1—C2—C3171.1 (6)Cu5v—I5—Cu5—I698.99 (4)
C1—C2—C3—C4175.1 (8)Cu5vi—I5—Cu5—I627.75 (5)
I1ii—Cu1—P2—C1394.7 (3)Cu5v—I5—Cu5—Cu635.619 (10)
I1—Cu1—P2—C1326.7 (3)Cu5vi—I5—Cu5—Cu635.619 (10)
I2—Cu1—P2—C13144.2 (3)Cu5v—I5—Cu5—Cu5vi71.238 (19)
Cu1ii—Cu1—P2—C13159.4 (3)Cu5vi—I5—Cu5—Cu5v71.238 (19)
Cu1i—Cu1—P2—C1385.0 (3)Cu5vi—I6—Cu6—P5143.97 (3)
Cu2—Cu1—P2—C1330.7 (4)Cu5—I6—Cu6—P5143.95 (3)
I1ii—Cu1—P2—C5147.2 (3)Cu5vi—I6—Cu6—I6vi27.51 (5)
I1—Cu1—P2—C591.4 (3)Cu5—I6—Cu6—I6vi99.59 (7)
I2—Cu1—P2—C526.0 (3)Cu5vi—I6—Cu6—I6v99.57 (7)
Cu1ii—Cu1—P2—C582.4 (4)Cu5—I6—Cu6—I6v27.49 (5)
Cu1i—Cu1—P2—C533.1 (4)Cu5vi—I6—Cu6—Cu572.08 (6)
Cu2—Cu1—P2—C5148.8 (3)Cu5vi—I6—Cu6—Cu5v35.98 (5)
I1ii—Cu1—P2—C925.4 (4)Cu5—I6—Cu6—Cu5v36.09 (5)
I1—Cu1—P2—C9146.8 (4)Cu5—I6—Cu6—Cu5vi72.08 (6)
I2—Cu1—P2—C995.8 (4)P6—Cu5—Cu6—P51.1 (2)
Cu1ii—Cu1—P2—C939.4 (4)I6v—Cu5—Cu6—P575.00 (5)
Cu1i—Cu1—P2—C9154.9 (3)I6—Cu5—Cu6—P575.12 (5)
Cu2—Cu1—P2—C989.4 (4)I5—Cu5—Cu6—P5180.0
C13—P2—C5—C667.1 (8)Cu5vi—Cu5—Cu6—P5144.596 (12)
C9—P2—C5—C6172.5 (7)Cu5v—Cu5—Cu6—P5144.597 (12)
Cu1—P2—C5—C657.7 (7)P6—Cu5—Cu6—I676.21 (17)
P2—C5—C6—C7161.1 (8)I6v—Cu5—Cu6—I6150.11 (4)
C5—C6—C7—C856.1 (14)I5—Cu5—Cu6—I6104.88 (5)
C13—P2—C9—C10173.1 (8)Cu5vi—Cu5—Cu6—I669.48 (6)
C5—P2—C9—C1067.0 (9)Cu5v—Cu5—Cu6—I6140.29 (5)
Cu1—P2—C9—C1060.3 (8)P6—Cu5—Cu6—I6vi178.84 (17)
P2—C9—C10—C11177.4 (8)I6v—Cu5—Cu6—I6vi104.93 (2)
C9—C10—C11—C1265.7 (14)I6—Cu5—Cu6—I6vi104.95 (2)
C5—P2—C13—C14174.2 (8)I5—Cu5—Cu6—I6vi0.07 (5)
C9—P2—C13—C1467.6 (8)Cu5vi—Cu5—Cu6—I6vi35.47 (6)
Cu1—P2—C13—C1461.3 (8)Cu5v—Cu5—Cu6—I6vi35.33 (5)
P2—C13—C14—C15174.3 (9)P6—Cu5—Cu6—I6v73.90 (17)
C13—C14—C15—C1670.2 (18)I6—Cu5—Cu6—I6v150.11 (4)
Cu3iii—I4—Cu3—P3146.42 (11)I5—Cu5—Cu6—I6v105.00 (5)
Cu4—I4—Cu3—P3142.92 (11)Cu5vi—Cu5—Cu6—I6v140.41 (5)
Cu3iii—I4—Cu3—I4iv98.66 (5)Cu5v—Cu5—Cu6—I6v69.60 (5)
Cu4—I4—Cu3—I4iv28.00 (4)P6—Cu5—Cu6—Cu5v143.5 (2)
Cu3iii—I4—Cu3—I327.96 (5)I6v—Cu5—Cu6—Cu5v69.60 (5)
Cu4—I4—Cu3—I398.62 (5)I6—Cu5—Cu6—Cu5v140.29 (5)
Cu3iii—I4—Cu3—Cu470.66 (4)I5—Cu5—Cu6—Cu5v35.403 (12)
Cu4—I4—Cu3—Cu3iii70.66 (4)Cu5vi—Cu5—Cu6—Cu5v70.81 (2)
Cu3iii—I4—Cu3—Cu3iv35.35 (2)P6—Cu5—Cu6—Cu5vi145.7 (2)
Cu4—I4—Cu3—Cu3iv35.31 (4)I6v—Cu5—Cu6—Cu5vi140.41 (5)
Cu3iii—I3—Cu3—P3144.02 (13)I6—Cu5—Cu6—Cu5vi69.48 (6)
Cu3iv—I3—Cu3—P3144.71 (13)I5—Cu5—Cu6—Cu5vi35.404 (12)
Cu3iii—I3—Cu3—I427.94 (5)Cu5v—Cu5—Cu6—Cu5vi70.81 (2)
Cu3iv—I3—Cu3—I499.20 (4)I6—Cu6—P5—C33v37.2 (4)
Cu3iii—I3—Cu3—I4iv99.18 (4)I6vi—Cu6—P5—C33v157.2 (4)
Cu3iv—I3—Cu3—I4iv27.91 (5)I6v—Cu6—P5—C33v82.8 (4)
Cu3iii—I3—Cu3—Cu435.632 (10)Cu5—Cu6—P5—C33v22.9 (4)
Cu3iv—I3—Cu3—Cu435.634 (10)Cu5v—Cu6—P5—C33v142.9 (4)
Cu3iv—I3—Cu3—Cu3iii71.27 (2)Cu5vi—Cu6—P5—C33v97.1 (4)
Cu3iii—I3—Cu3—Cu3iv71.27 (2)I6—Cu6—P5—C3382.8 (5)
Cu3—I4—Cu4—P4144.01 (3)I6vi—Cu6—P5—C3337.2 (5)
Cu3iii—I4—Cu4—P4144.00 (3)I6v—Cu6—P5—C33157.2 (5)
Cu3—I4—Cu4—I4iii99.89 (7)Cu5—Cu6—P5—C33142.9 (5)
Cu3iii—I4—Cu4—I4iii27.89 (5)Cu5v—Cu6—P5—C3397.1 (5)
Cu3—I4—Cu4—I4iv27.91 (5)Cu5vi—Cu6—P5—C3322.9 (5)
Cu3iii—I4—Cu4—I4iv99.90 (7)I6—Cu6—P5—C33vi157.2 (4)
Cu3—I4—Cu4—Cu3iii71.99 (6)I6vi—Cu6—P5—C33vi82.8 (4)
Cu3—I4—Cu4—Cu3iv35.97 (5)I6v—Cu6—P5—C33vi37.2 (4)
Cu3iii—I4—Cu4—Cu3iv36.02 (5)Cu5—Cu6—P5—C33vi97.1 (4)
Cu3iii—I4—Cu4—Cu371.99 (6)Cu5v—Cu6—P5—C33vi22.9 (4)
P3—Cu3—Cu4—P40.5 (2)Cu5vi—Cu6—P5—C33vi142.9 (4)
I4—Cu3—Cu4—P474.87 (5)C33v—P5—C33—C3477.5 (12)
I4iv—Cu3—Cu4—P474.93 (5)C33vi—P5—C33—C34176.4 (8)
I3—Cu3—Cu4—P4180.000 (2)Cu6—P5—C33—C3449.4 (10)
Cu3iii—Cu3—Cu4—P4144.581 (12)P5—C33—C34—C35176.0 (9)
Cu3iv—Cu3—Cu4—P4144.578 (12)C33—C34—C35—C36177.2 (11)
P3—Cu3—Cu4—I4iii179.43 (18)I6v—Cu5—P6—C4521.6 (4)
I4—Cu3—Cu4—I4iii105.10 (2)I6—Cu5—P6—C45142.2 (4)
I4iv—Cu3—Cu4—I4iii105.10 (2)I5—Cu5—P6—C4597.8 (4)
I3—Cu3—Cu4—I4iii0.03 (5)Cu6—Cu5—P6—C4581.1 (4)
Cu3iii—Cu3—Cu4—I4iii35.39 (5)Cu5vi—Cu5—P6—C45157.8 (4)
Cu3iv—Cu3—Cu4—I4iii35.45 (5)Cu5v—Cu5—P6—C4537.4 (5)
P3—Cu3—Cu4—I474.33 (18)I6v—Cu5—P6—C41139.7 (4)
I4iv—Cu3—Cu4—I4149.80 (4)I6—Cu5—P6—C4199.7 (4)
I3—Cu3—Cu4—I4105.13 (5)I5—Cu5—P6—C4120.3 (4)
Cu3iii—Cu3—Cu4—I469.71 (5)Cu6—Cu5—P6—C41160.8 (4)
Cu3iv—Cu3—Cu4—I4140.55 (5)Cu5vi—Cu5—P6—C4139.6 (5)
P3—Cu3—Cu4—I4iv75.47 (18)Cu5v—Cu5—P6—C4180.7 (4)
I4—Cu3—Cu4—I4iv149.80 (4)I6v—Cu5—P6—C3790.7 (8)
I3—Cu3—Cu4—I4iv105.07 (5)I6—Cu5—P6—C3729.9 (8)
Cu3iii—Cu3—Cu4—I4iv140.49 (5)I5—Cu5—P6—C37149.8 (8)
Cu3iv—Cu3—Cu4—I4iv69.65 (5)Cu6—Cu5—P6—C3731.3 (8)
P3—Cu3—Cu4—Cu3iii144.0 (2)Cu5vi—Cu5—P6—C3789.9 (8)
I4—Cu3—Cu4—Cu3iii69.71 (5)Cu5v—Cu5—P6—C37149.8 (8)
I4iv—Cu3—Cu4—Cu3iii140.49 (5)I6v—Cu5—P6—C37A111.7 (7)
I3—Cu3—Cu4—Cu3iii35.419 (12)I6—Cu5—P6—C37A8.8 (7)
Cu3iv—Cu3—Cu4—Cu3iii70.84 (2)I5—Cu5—P6—C37A128.8 (7)
P3—Cu3—Cu4—Cu3iv145.1 (2)Cu6—Cu5—P6—C37A52.3 (8)
I4—Cu3—Cu4—Cu3iv140.55 (5)Cu5vi—Cu5—P6—C37A68.9 (8)
I4iv—Cu3—Cu4—Cu3iv69.65 (5)Cu5v—Cu5—P6—C37A170.8 (7)
I3—Cu3—Cu4—Cu3iv35.422 (11)C45—P6—C37—C3861 (2)
Cu3iii—Cu3—Cu4—Cu3iv70.84 (2)C41—P6—C37—C3848 (2)
I4—Cu3—P3—C21A157.5 (17)C37A—P6—C37—C3843 (2)
I4iv—Cu3—P3—C21A83.0 (17)Cu5—P6—C37—C38177.2 (19)
I3—Cu3—P3—C21A37.4 (17)P6—C37—C38—C39176.6 (16)
Cu4—Cu3—P3—C21A143.2 (17)C45—P6—C37A—C38A64.0 (19)
Cu3iii—Cu3—P3—C21A100.5 (17)C41—P6—C37A—C38A166.7 (18)
Cu3iv—Cu3—P3—C21A25.5 (17)C37—P6—C37A—C38A18 (2)
I4—Cu3—P3—C17102.9 (7)Cu5—P6—C37A—C38A73.0 (19)
I4iv—Cu3—P3—C1716.6 (7)P6—C37A—C38A—C39173.9 (15)
I3—Cu3—P3—C17137.0 (7)C37A—C38A—C39—C4052 (3)
Cu4—Cu3—P3—C1743.6 (8)C37A—C38A—C39—C3836.0 (18)
Cu3iii—Cu3—P3—C17159.9 (7)C37—C38—C39—C40169.9 (19)
Cu3iv—Cu3—P3—C1774.1 (7)C37—C38—C39—C38A21.7 (16)
I4—Cu3—P3—C2523.1 (5)C45—P6—C41—C42168.3 (9)
I4iv—Cu3—P3—C25142.6 (4)C37—P6—C41—C4260.0 (12)
I3—Cu3—P3—C2597.0 (4)C37A—P6—C41—C4262.0 (12)
Cu4—Cu3—P3—C2582.5 (5)Cu5—P6—C41—C4266.2 (10)
Cu3iii—Cu3—P3—C2533.9 (5)P6—C41—C42—C43164.3 (9)
Cu3iv—Cu3—P3—C25159.9 (4)C41—C42—C43—C4465.7 (15)
I4—Cu3—P3—C21136.8 (7)C41—P6—C45—C4662.1 (10)
I4iv—Cu3—P3—C21103.8 (7)C37—P6—C45—C46179.3 (11)
I3—Cu3—P3—C2116.6 (7)C37A—P6—C45—C46156.1 (10)
Cu4—Cu3—P3—C21163.9 (7)Cu5—P6—C45—C4662.7 (10)
Cu3iii—Cu3—P3—C2179.7 (7)P6—C45—C46—C47174.7 (9)
Cu3iv—Cu3—P3—C2146.3 (7)C45—C46—C47—C48178.7 (11)
Symmetry codes: (i) y+2, xy+1, z; (ii) x+y+1, x+2, z; (iii) x+y+1, x+1, z; (iv) y+1, xy, z; (v) y+1, xy+1, z; (vi) x+y, x+1, z.

Experimental details

Crystal data
Chemical formula[Cu4I4(C12H27P)4]
Mr1570.98
Crystal system, space groupTrigonal, P3c1
Temperature (K)110
a, c (Å)22.006 (2), 23.276 (2)
V3)9761.6 (15)
Z6
Radiation typeMo Kα
µ (mm1)3.31
Crystal size (mm)0.23 × 0.19 × 0.13
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correctionNumerical
(Blessing, 1995)
Tmin, Tmax0.674, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
89010, 13415, 10102
Rint0.039
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.099, 1.03
No. of reflections13415
No. of parameters612
No. of restraints341
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0213P)2 + 46.6098P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.62, 1.16
Absolute structureFlack (1983), 6695 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors gratefully acknowledge generous financial support from the Deutsche Forschungsgemeinschaft, the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg and the Fonds der Chemischen Industrie. We also thank Dr Angelika Baro for her competent and friendly support for establishing this publication.

References

First citationAinscough, E. W., Brodie, A. M., Burrell, A. K., Freeman, G. H., Jameson, G. B., Bowmaker, G. A., Hanna, J. V. & Healy, P. C. (2001). J. Chem. Soc. Dalton Trans. pp. 144–151.  Web of Science CSD CrossRef Google Scholar
First citationAlyea, E. C., Ferguson, G., Malito, J. & Ruhl, B. L. (1985). Inorg. Chem. 24, 3719–3720.  CSD CrossRef CAS Web of Science Google Scholar
First citationBaker, L.-J., Bowmaker, G. A., Hart, R. D., Harvey, P. J., Healy, P. C. & White, A. H. (1994). Inorg. Chem. 33, 3925–3931.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarron, P. F., Dyason, J. C., Engelhardt, L. M., Healy, P. C. & White, A. H. (1984). Inorg. Chem. 23, 3766–3769.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlake, A. J., Brooks, N. R., Champness, N. R., Crew, M., Deveson, A., Fenske, D., Gregory, D. H., Hanton, L. R., Hubberstey, P. & Schröder, M. (2001). Chem. Commun. pp. 1432–1433.  Web of Science CSD CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBowmaker, G. A., Boyd, S. E., Hanna, J. V., Hart, R. D., Healy, P. C., Skelton, B. W. & White, A. H. (2002). J. Chem. Soc. Dalton Trans. pp. 2722–2730.  Web of Science CSD CrossRef Google Scholar
First citationBowmaker, G. A., Camp, D., Hart, R. D., Healy, P. C., Skelton, B. W. & White, A. H. (1992). Aust. J. Chem. 45, 1155–1166.  CSD CrossRef CAS Google Scholar
First citationBowmaker, G. A., Cotton, J. D., Healy, P. C., Kildea, J. D., Silong, S. B., Skelton, B. W. & White, A. H. (1989). Inorg. Chem. 28, 1462–1466.  CSD CrossRef CAS Web of Science Google Scholar
First citationBowmaker, G. A., de Silva, E. N., Healy, P. C., Skelton, B. W. & White, A. H. (1999). J. Chem. Soc. Dalton Trans. pp. 901–908.  Web of Science CSD CrossRef Google Scholar
First citationBowmaker, G. A., Hanna, J. V., Hart, R. D., Healy, P. C. & White, A. H. (1994). Aust. J. Chem. 47, 25–45.  CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurchill, M. R., Davies, G., El-Sayed, M. A., Hutchinson, J. P. & Rupich, M. W. (1982). Inorg. Chem. 21, 995–1001.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R., DeBoer, B. G. & Donovan, D. J. (1975). Inorg. Chem. 14, 617–623.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R., DeBoer, B. G. & Mendak, S. J. (1975). Inorg. Chem. 14, 2041–2047.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Kalra, K. L. (1973). J. Am. Chem. Soc. 95, 5772–5773.  CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Kalra, K. L. (1974). Inorg. Chem. 13, 1065–1071.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Rotella, F. J. (1977). Inorg. Chem. 16, 3267–3273.  CSD CrossRef CAS Web of Science Google Scholar
First citationChurchill, M. R. & Rotella, J. F. (1979). Inorg. Chem. 18, 166–171.  CSD CrossRef CAS Web of Science Google Scholar
First citationDyason, J. C., Engelhardt, L. M., Pakawatchai, C., Healy, P. C. & White, A. H. (1985). Aust. J. Chem. 38, 1243–1250.  CSD CrossRef CAS Google Scholar
First citationDyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A., Raston, C. L. & White, A. J. (1985). J. Chem. Soc. Dalton Trans. pp. 831–838.  CSD CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGill, J. T., Mayerle, J. J., Welcker, P. S., Lewis, D. F., Ucko, D. A., Barton, D. J., Stowens, D. & Lippard, S. J. (1976). Inorg. Chem. 15, 1155–1168.  CSD CrossRef CAS Web of Science Google Scholar
First citationGlaeser, G. & Polthier, K. (2010). Bilder der Mathematik, p. 2. Heidelberg: Spektrum Akademischer Verlag.  Google Scholar
First citationGoel, R. G. & Beauchamp, A. L. (1983). Inorg. Chem. 22, 395–400.  CSD CrossRef CAS Web of Science Google Scholar
First citationHadjikakou, S. K., Akrivos, P. D., Karagiannidis, P., Raptopoulou, E. & Terzis, A. (1993). Inorg. Chim. Acta, 210, 27–31.  CSD CrossRef CAS Web of Science Google Scholar
First citationHerberhold, M., Akkus, N. & Milius, W. (2003). Z. Anorg. Allg. Chem. 629, 2458–2464.  Web of Science CSD CrossRef CAS Google Scholar
First citationHermann, H. L., Boche, G. & Schwerdtfeger, P. (2001). Chem. Eur. J. 7, 5333–5342.  CrossRef PubMed CAS Google Scholar
First citationJansen, M. (1987). Angew. Chem. 99, 1136–1149.  CrossRef CAS Google Scholar
First citationKim, T. H., Shin, Y. W., Jung, J. H., Kim, J. S. & Kim, J. (2008). Angew. Chem. 120, 697–700.  CrossRef Google Scholar
First citationKrause, N. (2002). In Modern Organocopper Chemistry. Weinheim: Wiley-VCH.  Google Scholar
First citationMann, F. G., Purdie, D. & Wells, A. F. (1936). J. Chem. Soc. pp. 1503–1513.  CrossRef Google Scholar
First citationMedina, I., Mague, J. T. & Fink, M. J. (2005). Acta Cryst. E61, m1550–m1552.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoers, F. G. & Op Het Veld, P. H. (1970). J. Inorg. Nucl. Chem. 32, 3225–3228.  CrossRef CAS Web of Science Google Scholar
First citationRamaprabhu, S., Amstutz, N., Lucken, E. A. C. & Bernardinelli, G. (1993). J. Chem. Soc. Dalton Trans. pp. 871–875.  CSD CrossRef Web of Science Google Scholar
First citationRamaprabhu, S., Amstutz, N., Lucken, E. A. C. & Bernardinelli, G. (1998). Z. Naturforsch. Teil A, 53, 625–629.  CAS Google Scholar
First citationSchramm, V. (1978). Inorg. Chem. 17, 714–718.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchwerdtfeger, P., Krawczyk, R. P., Hammerl, A. & Brown, R. (2004). Inorg. Chem. 43, 6707–6716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoloveichik, G. L., Eisenstein, O., Poulton, J. T., Streib, W. E., Huffman, J. C. & Caulton, K. G. (1992). Inorg. Chem. 31, 3306–3312.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWells, A. F. (1936). Z. Kristallogr. 94, 447–460.  CAS Google Scholar
First citationWhitesides, G. M., Casey, C. P. & Krieger, J. K. (1971). J. Am. Chem. Soc. 93, 1379–1389.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m117-m118
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds