organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o388-o389

2,6-Dihy­dr­oxy-4-oxo-2-(pyridin-1-ium-3-yl)-4H-1,3,2-benzodioxaborinin-2-ide 0.67-hydrate

aFacultad de Ingenieria Mochis, Universidad Autónoma de Sinaloa, Fuente Poseidón y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, México, and bCentro de Graduados e Investigación en Química, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, México
*Correspondence e-mail: cenriqueza@yahoo.com.mx

(Received 8 February 2014; accepted 24 February 2014; online 5 March 2014)

The asymmetric unit of the title compound, C12H10BNO5·0.67H2O, contains three independent pyridinylboronic acid esters adopting zwitterionic forms and two water mol­ecules. The six-membered heterocyclic rings in the boronic esters have half-chair conformations and the deviations of the B atoms from the boronate mean planes range from 0.456 (3) to 0.657 (3) Å. All of the B atoms have tetra­hedral coordination environments, with B—O and B—C bond lengths of 1.446 (4)–1.539 (3) and 1.590 (5)–1.609 (5) Å, respectively. In the crystal, the ester and water mol­ecules are linked into a three-dimensional network by a large number of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further accomplished by ππ inter­actions, with centroid–centroid distances of 3.621 (4)–3.787 (4) Å.

Related literature

For the synthesis and applications of boronic esters, see: Höpfl (2002[Höpfl, H. (2002). Struct. Bond. 103, 1-56.]); Fujita et al. (2008[Fujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076-1091.]); Severin (2009[Severin, K. (2009). Dalton Trans. pp. 5254-5264.]). For related structures, see: Barba et al. (2010[Barba, V., Hernández, R., Santillan, R. & Farfán, R. (2010). Inorg. Chim. Acta, 363, 4112-4116.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10BNO5·0.67H2O

  • Mr = 271.03

  • Triclinic, [P \overline 1]

  • a = 10.350 (2) Å

  • b = 13.916 (3) Å

  • c = 14.340 (3) Å

  • α = 65.785 (4)°

  • β = 73.421 (4)°

  • γ = 87.213 (5)°

  • V = 1799.8 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.45 × 0.41 × 0.28 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.95, Tmax = 0.97

  • 18938 measured reflections

  • 7051 independent reflections

  • 3529 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.092

  • S = 1.02

  • 7051 reflections

  • 571 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O62—H62A⋯O25 0.84 1.86 2.702 (4) 174
O45—H45′⋯O23i 0.84 1.94 2.777 (2) 177
O4—H4′⋯O45ii 0.84 1.77 2.579 (3) 162
O61—H61A⋯O43ii 0.84 1.95 2.749 (3) 159
O5—H5′⋯O3iii 0.84 1.93 2.773 (2) 178
O24—H24′⋯O5iv 0.84 1.8 2.638 (3) 179
O25—H25′⋯O4v 0.84 1.95 2.791 (3) 173
O62—H62B⋯O24vi 0.84 2.02 2.810 (4) 157
O44—H44′⋯O61vii 0.84 1.82 2.656 (3) 177
O61—H61B⋯O62viii 0.84 1.83 2.673 (3) 178
N1—H1′⋯O23i 0.84 1.89 2.725 (4) 176
N21—H21′⋯O3ix 0.84 1.89 2.727 (4) 170
N41—H41′⋯O43x 0.84 1.92 2.749 (5) 169
C11—H11⋯O62iv 0.95 2.57 3.348 (4) 140
C23—H23⋯O5iv 0.95 2.59 3.215 (4) 123
C43—H43⋯O61vii 0.95 2.57 3.201 (4) 124
Symmetry codes: (i) x+1, y, z; (ii) x, y, z-1; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z; (vi) -x, -y+2, -z+1; (vii) -x+1, -y, -z+1; (viii) x, y-1, z; (ix) x-1, y, z; (x) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker, 2001[Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The O—H groups of boronic acids are able to react with alcohols to give boronic esters through the formation of covalent B–O bonds (Fujita et al., 2008). The high thermodynamic stability of boronic esters has been employed for the formation of cyclo-oligomeric and polymeric boron compounds with potential applications in gas storage and separation (Höpfl et al., 2002; Severin et al., 2009). Herein, we report on the solid-state structure of a new boronic ester formed between 2,5-dihydroxybenzoic acid and 3-pyridine boronic acid.

The molecular components of the title compound, 6-hydroxy-2-(pyridinium-3-yl)-4H-benzo-1,3,2-dioxaborininato-4-one) 0.67-hydrate, are shown in Fig. 1. The asymmetric unit contains three crystallographically independent ester molecules with similar conformations and two water molecules. The six-membered heterocyclic rings in the boronic esters have half-chair conformations, and the deviation of the B atom from the boronate mean planes range from 0.456 (3) to 0.657 (3) Å. The B atoms have tetrahedral coordination environments with B—O and B—C bond distances of 1.446 (4)–1.539 (3) Å and 1.590 (5)–1.609 (5) Å, respectively. The tetrahedral character of the boron atoms was evidenced also by 11B-NMR spectroscopy, giving a chemical shift of 3.8 p.p.m. (Barba et al., 2010). In the crystal, the molecular entities are linked into a three-dimensional network by a large number of O—H···O and N+—H···-O hydrogen bonds. Crystal packing is accomplished by additional C—H···O and ππ contacts (Table 1 and Fig 2), of which the latter are formed between pyridinium and phenyl rings. The centroid-centroid distances are Cg1···Cg2i = 3.774 (4) Å, Cg1···Cg4ii = 3.787 (4) Å and Cg2···Cg3iii = 3.621 (4) Å, where Cg1, Cg2, Cg3 and Cg4 are the centroids of C1–C6, N21/C28–C32, C41–C46 and N41/C48–C52 rings, respectively. [symmetry codes: (i) 1 - x, 1 - y, -z; (ii) 1 - x, 1 - y, 1 - z; (iii) -x, 1 - y, 1 - z.]

Related literature top

For the synthesis and applications of boronic esters, see: Höpfl (2002); Fujita et al. (2008); Severin (2009). For related structures, see: Barba et al. (2010).

Experimental top

C12H10BNO5 was formed from a solution of 3-pyridin boronic acid (0.05 g, 0.41 mmol), 2,5-dihydroxybenzoic acid (0.06 g, 0.41 mmol) in a solvent mixture of CH3OH (8 ml) and H2O (2 ml), which was heated under reflux for 1 h, giving a clear transparent solution. Cooling the reaction mixture slowly to room temperature afforded yellow crystals suitable for X-ray diffraction in approximately 55% yield. 11B NMR (64 MHz, DMSO-d6) δ: 3.8 p.p.m..

Refinement top

H atoms bonded to C atoms were positioned geometrically and constrained using the riding-model approximation [C—H = 0.95 A and Uiso(H) = 1.2Ueq(C)]. H atoms bonded to O and N were initially located in a difference Fourier map; then, the positions were refined with O(N)—H distance restraints of 0.840 (1) A and with Uiso(H) = 1.5Ueq(O,N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures in the asymmetric unit of the title compound, with the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the b axis, showing the three-dimensional hydrogen-bonded network. Hydrogen bonds were drawn as dashed lines.
2,6-Dihydroxy-4-oxo-2-(pyridin-1-ium-3-yl)-4H-1,3,2-benzodioxaborinin-2-ide 0.67-hydrate top
Crystal data top
C12H10BNO5·0.67H2OZ = 6
Mr = 271.03F(000) = 844
Triclinic, P1Dx = 1.500 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.350 (2) ÅCell parameters from 1641 reflections
b = 13.916 (3) Åθ = 2.5–21.2°
c = 14.340 (3) ŵ = 0.12 mm1
α = 65.785 (4)°T = 100 K
β = 73.421 (4)°Block, light yellow
γ = 87.213 (5)°0.45 × 0.41 × 0.28 mm
V = 1799.8 (7) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
7051 independent reflections
Radiation source: fine-focus sealed tube3529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 8.3 pixels mm-1θmax = 26.0°, θmin = 1.8°
phi and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.95, Tmax = 0.97l = 1717
18938 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0125P)2]
where P = (Fo2 + 2Fc2)/3
7051 reflections(Δ/σ)max < 0.001
571 parametersΔρmax = 0.71 e Å3
13 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H10BNO5·0.67H2Oγ = 87.213 (5)°
Mr = 271.03V = 1799.8 (7) Å3
Triclinic, P1Z = 6
a = 10.350 (2) ÅMo Kα radiation
b = 13.916 (3) ŵ = 0.12 mm1
c = 14.340 (3) ÅT = 100 K
α = 65.785 (4)°0.45 × 0.41 × 0.28 mm
β = 73.421 (4)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
7051 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3529 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.092
18938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05313 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.71 e Å3
7051 reflectionsΔρmin = 0.26 e Å3
571 parameters
Special details top

Experimental. IR (KBr): 3520, 3370, 2950, 3024, 2942, 1648, 1615, 1562, 1480, 1305 and 786 cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.9002 (3)0.3451 (3)0.2383 (3)0.0221 (9)
N10.8273 (3)0.4137 (2)0.4822 (2)0.0249 (7)
H1'0.837 (3)0.4691 (13)0.490 (2)0.037*
O10.83252 (17)0.25852 (15)0.23193 (14)0.0223 (5)
O20.86471 (17)0.45237 (15)0.16481 (14)0.0196 (5)
O30.82959 (17)0.55863 (15)0.01161 (15)0.0204 (5)
O40.76584 (19)0.30256 (15)0.15147 (16)0.0230 (5)
H4'0.752 (3)0.3656 (7)0.185 (2)0.034*
O51.04678 (19)0.34308 (16)0.20681 (14)0.0237 (5)
H5'1.083 (2)0.374 (2)0.1405 (4)0.036*
C10.8181 (3)0.2723 (3)0.1362 (2)0.0210 (8)
C20.8197 (2)0.3732 (2)0.0568 (2)0.0162 (7)
C30.8017 (2)0.3854 (2)0.0408 (2)0.0195 (7)
H30.80420.45400.09540.023*
C40.7803 (3)0.2968 (2)0.0568 (2)0.0189 (8)
C50.7774 (2)0.1964 (2)0.0234 (2)0.0195 (7)
H50.76240.13590.01180.023*
C60.7958 (3)0.1834 (2)0.1190 (2)0.0203 (8)
H60.79350.11450.17300.024*
C70.8381 (3)0.4674 (3)0.0756 (2)0.0207 (8)
C80.8476 (3)0.3359 (2)0.3585 (2)0.0204 (8)
C90.8663 (3)0.4209 (2)0.3818 (2)0.0258 (8)
H90.90800.48600.32500.031*
C100.7715 (3)0.3239 (3)0.5661 (2)0.0249 (8)
H100.74650.32110.63630.030*
C110.7504 (3)0.2356 (3)0.5504 (2)0.0252 (8)
H110.71150.17090.60930.030*
C120.7875 (3)0.2433 (2)0.4464 (2)0.0223 (8)
H120.77110.18300.43490.027*
B210.0548 (3)0.8085 (3)0.2594 (3)0.0228 (9)
N210.1361 (2)0.7302 (2)0.0507 (2)0.0203 (6)
H21'0.147 (3)0.6730 (11)0.046 (2)0.030*
O210.12591 (17)0.88671 (15)0.29523 (15)0.0223 (5)
O220.09568 (17)0.69622 (15)0.34851 (15)0.0217 (5)
O230.14161 (18)0.58725 (16)0.51874 (15)0.0241 (5)
O240.14430 (19)0.83893 (16)0.70031 (16)0.0263 (5)
H24'0.113 (3)0.7810 (11)0.729 (2)0.039*
O250.08854 (18)0.83243 (16)0.23529 (16)0.0241 (5)
H25'0.139 (2)0.7942 (19)0.210 (2)0.036*
C210.1338 (3)0.8719 (3)0.3963 (2)0.0206 (8)
C220.1302 (3)0.7722 (2)0.4743 (2)0.0178 (7)
C230.1363 (3)0.7592 (2)0.5777 (2)0.0212 (8)
H230.13520.69070.63120.025*
C240.1440 (3)0.8462 (2)0.6014 (2)0.0213 (8)
C250.1537 (3)0.9453 (2)0.5241 (2)0.0255 (8)
H250.16381.00450.54190.031*
C260.1489 (3)0.9593 (2)0.4221 (2)0.0245 (8)
H260.15591.02730.37010.029*
C270.1224 (3)0.6792 (3)0.4487 (2)0.0199 (8)
C280.0973 (3)0.8118 (2)0.1587 (2)0.0182 (7)
C290.1085 (3)0.7234 (2)0.1394 (2)0.0213 (8)
H290.09650.65610.19000.026*
C300.1534 (3)0.8226 (2)0.0245 (2)0.0212 (8)
H300.17010.82470.08710.025*
C310.1470 (3)0.9131 (2)0.0107 (2)0.0251 (8)
H310.16020.97900.06290.030*
C320.1203 (2)0.9070 (2)0.0823 (2)0.0216 (8)
H320.11800.96960.09340.026*
B410.5523 (3)0.5007 (3)0.7575 (3)0.0271 (10)
N410.5362 (3)0.7370 (3)0.8323 (2)0.0331 (7)
H41'0.549 (3)0.746 (3)0.8832 (17)0.050*
O410.47752 (18)0.48464 (17)0.69074 (15)0.0278 (6)
O420.49835 (18)0.42130 (17)0.87233 (15)0.0253 (5)
O430.44602 (18)0.25267 (16)0.98428 (16)0.0293 (6)
O440.4175 (2)0.07153 (18)0.74251 (18)0.0370 (6)
H44'0.452 (3)0.035 (2)0.7914 (17)0.056*
O450.69516 (18)0.47905 (17)0.72686 (15)0.0255 (5)
H45'0.743 (2)0.514 (2)0.6640 (8)0.038*
C410.4587 (3)0.3823 (3)0.7069 (2)0.0257 (8)
C420.4645 (3)0.2998 (3)0.8004 (2)0.0222 (8)
C430.4520 (3)0.1950 (3)0.8145 (2)0.0275 (8)
H430.45890.13890.87860.033*
C440.4293 (3)0.1734 (3)0.7338 (2)0.0257 (8)
C450.4154 (3)0.2559 (3)0.6422 (2)0.0277 (8)
H450.39570.24110.58840.033*
C460.4301 (3)0.3593 (3)0.6284 (2)0.0277 (8)
H460.42070.41530.56520.033*
C470.4713 (3)0.3225 (3)0.8912 (3)0.0275 (8)
C480.5329 (3)0.6165 (3)0.7528 (2)0.0245 (8)
C490.5463 (3)0.6392 (3)0.8358 (3)0.0300 (9)
H490.56290.58390.89650.036*
C500.5167 (3)0.8196 (3)0.7474 (3)0.0361 (9)
H500.51470.88870.74560.043*
C510.4998 (3)0.8035 (3)0.6645 (3)0.0350 (9)
H510.48340.86070.60500.042*
C520.5070 (3)0.7020 (3)0.6678 (2)0.0309 (9)
H520.49380.69070.61000.037*
O610.4664 (2)0.0441 (2)0.10850 (19)0.0460 (7)
H61A0.468 (3)0.1027 (14)0.0576 (19)0.069*
H61B0.3878 (13)0.028 (3)0.151 (2)0.069*
O620.2191 (2)0.98825 (19)0.24779 (19)0.0329 (6)
H62A0.175 (3)0.9429 (18)0.242 (3)0.049*
H62B0.175 (3)1.0343 (18)0.264 (2)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.024 (2)0.019 (2)0.021 (2)0.0021 (17)0.0106 (18)0.0041 (19)
N10.0314 (16)0.026 (2)0.0243 (17)0.0072 (15)0.0157 (13)0.0130 (16)
O10.0317 (12)0.0254 (14)0.0138 (13)0.0026 (10)0.0129 (10)0.0079 (10)
O20.0264 (12)0.0219 (13)0.0147 (12)0.0037 (9)0.0125 (10)0.0075 (10)
O30.0280 (12)0.0197 (13)0.0141 (12)0.0034 (10)0.0092 (10)0.0058 (11)
O40.0318 (12)0.0257 (14)0.0190 (14)0.0090 (11)0.0165 (10)0.0112 (11)
O50.0267 (13)0.0311 (15)0.0120 (12)0.0024 (10)0.0094 (10)0.0053 (11)
C10.0194 (17)0.028 (2)0.0165 (19)0.0002 (15)0.0074 (14)0.0081 (17)
C20.0154 (16)0.020 (2)0.0141 (18)0.0028 (14)0.0050 (14)0.0079 (16)
C30.0164 (16)0.022 (2)0.0201 (19)0.0022 (14)0.0088 (14)0.0060 (16)
C40.0155 (17)0.025 (2)0.0198 (19)0.0054 (15)0.0106 (14)0.0099 (17)
C50.0207 (17)0.018 (2)0.022 (2)0.0044 (14)0.0067 (15)0.0103 (16)
C60.0231 (17)0.021 (2)0.0157 (19)0.0023 (15)0.0076 (14)0.0057 (16)
C70.0136 (17)0.032 (2)0.019 (2)0.0037 (15)0.0046 (14)0.0138 (18)
C80.0208 (17)0.024 (2)0.022 (2)0.0052 (15)0.0130 (15)0.0097 (17)
C90.0336 (19)0.033 (2)0.0109 (19)0.0014 (16)0.0128 (16)0.0048 (17)
C100.0254 (18)0.033 (2)0.0141 (19)0.0068 (17)0.0088 (15)0.0067 (18)
C110.0285 (18)0.028 (2)0.0155 (19)0.0004 (16)0.0064 (15)0.0049 (16)
C120.0253 (18)0.024 (2)0.025 (2)0.0060 (15)0.0132 (15)0.0132 (17)
B210.024 (2)0.022 (2)0.024 (2)0.0031 (18)0.0151 (18)0.0059 (19)
N210.0208 (14)0.0213 (18)0.0225 (16)0.0019 (13)0.0085 (12)0.0112 (15)
O210.0301 (12)0.0268 (14)0.0156 (13)0.0106 (10)0.0124 (10)0.0112 (11)
O220.0255 (12)0.0278 (14)0.0134 (13)0.0019 (10)0.0085 (10)0.0083 (11)
O230.0333 (12)0.0204 (14)0.0172 (13)0.0001 (10)0.0096 (10)0.0049 (11)
O240.0406 (14)0.0272 (15)0.0187 (14)0.0121 (11)0.0180 (11)0.0116 (12)
O250.0243 (13)0.0319 (15)0.0227 (13)0.0050 (10)0.0088 (10)0.0165 (11)
C210.0207 (17)0.031 (2)0.018 (2)0.0040 (15)0.0108 (15)0.0150 (17)
C220.0166 (16)0.023 (2)0.0174 (19)0.0023 (14)0.0094 (14)0.0089 (16)
C230.0197 (17)0.025 (2)0.019 (2)0.0029 (15)0.0101 (14)0.0063 (16)
C240.0224 (17)0.026 (2)0.020 (2)0.0059 (15)0.0123 (15)0.0098 (17)
C250.0332 (19)0.027 (2)0.026 (2)0.0100 (16)0.0141 (16)0.0182 (18)
C260.0324 (19)0.023 (2)0.019 (2)0.0080 (16)0.0134 (16)0.0072 (16)
C270.0133 (16)0.032 (2)0.018 (2)0.0027 (15)0.0095 (15)0.0108 (18)
C280.0168 (16)0.019 (2)0.0169 (19)0.0011 (14)0.0049 (14)0.0056 (16)
C290.0225 (17)0.027 (2)0.0153 (19)0.0048 (15)0.0104 (14)0.0064 (16)
C300.0248 (18)0.024 (2)0.0145 (19)0.0017 (15)0.0107 (15)0.0047 (16)
C310.0281 (19)0.022 (2)0.025 (2)0.0031 (15)0.0127 (16)0.0069 (17)
C320.0214 (17)0.022 (2)0.024 (2)0.0050 (14)0.0103 (15)0.0094 (16)
B410.026 (2)0.035 (3)0.017 (2)0.0007 (19)0.0083 (18)0.006 (2)
N410.0249 (16)0.041 (2)0.036 (2)0.0050 (14)0.0090 (15)0.0192 (18)
O410.0315 (13)0.0310 (15)0.0220 (13)0.0021 (11)0.0159 (10)0.0066 (12)
O420.0271 (12)0.0286 (15)0.0176 (13)0.0018 (11)0.0084 (10)0.0058 (11)
O430.0302 (12)0.0322 (15)0.0197 (13)0.0023 (11)0.0093 (10)0.0033 (12)
O440.0433 (15)0.0343 (17)0.0420 (17)0.0069 (12)0.0229 (12)0.0176 (14)
O450.0239 (12)0.0344 (15)0.0157 (13)0.0035 (10)0.0053 (10)0.0084 (12)
C410.0215 (18)0.030 (2)0.023 (2)0.0005 (16)0.0094 (15)0.0066 (18)
C420.0211 (18)0.031 (2)0.017 (2)0.0017 (15)0.0104 (15)0.0086 (17)
C430.0253 (18)0.030 (2)0.023 (2)0.0005 (16)0.0106 (16)0.0043 (17)
C440.0223 (18)0.030 (2)0.023 (2)0.0009 (16)0.0073 (15)0.0087 (18)
C450.0225 (18)0.038 (2)0.023 (2)0.0017 (17)0.0076 (15)0.0110 (18)
C460.0229 (18)0.037 (2)0.021 (2)0.0050 (16)0.0109 (15)0.0067 (18)
C470.0161 (18)0.031 (2)0.029 (2)0.0005 (16)0.0077 (16)0.0057 (19)
C480.0181 (17)0.035 (2)0.020 (2)0.0043 (15)0.0048 (15)0.0120 (18)
C490.0242 (19)0.035 (2)0.033 (2)0.0082 (17)0.0136 (16)0.0127 (19)
C500.033 (2)0.031 (2)0.045 (3)0.0061 (17)0.0132 (19)0.015 (2)
C510.037 (2)0.035 (3)0.033 (2)0.0121 (18)0.0164 (18)0.0112 (19)
C520.0264 (19)0.038 (2)0.027 (2)0.0083 (17)0.0078 (16)0.0135 (19)
O610.0400 (14)0.0447 (19)0.0402 (19)0.0037 (15)0.0133 (13)0.0038 (14)
O620.0376 (15)0.0347 (18)0.0381 (15)0.0054 (12)0.0178 (12)0.0220 (13)
Geometric parameters (Å, º) top
B1—O11.469 (5)C23—C241.379 (5)
B1—O21.533 (3)C24—C251.391 (3)
B1—O51.456 (3)C25—H250.950
B1—C81.604 (5)C25—C261.381 (5)
N1—H1'0.84 (3)C26—H260.950
N1—C91.340 (4)C28—C291.384 (5)
N1—C101.334 (3)C28—C321.392 (3)
O1—C11.357 (4)C29—H290.950
O2—C71.316 (4)C30—H300.950
O3—C71.241 (3)C30—C311.360 (5)
O4—H4'0.840 (12)C31—H310.950
O4—C41.377 (4)C31—C321.406 (5)
O5—H5'0.839 (6)C32—H320.950
C1—C21.395 (3)B41—O411.476 (5)
C1—C61.398 (5)B41—O421.512 (3)
C2—C31.404 (4)B41—O451.471 (3)
C2—C71.474 (5)B41—C481.590 (5)
C3—H30.950N41—H41'0.84 (3)
C3—C41.381 (5)N41—C491.342 (5)
C4—C51.392 (3)N41—C501.347 (4)
C5—H50.950O41—C411.359 (4)
C5—C61.375 (4)O42—C471.315 (4)
C6—H60.950O43—C471.247 (3)
C8—C91.390 (5)O44—H44'0.84 (3)
C8—C121.391 (3)O44—C441.380 (4)
C9—H90.950O45—H45'0.839 (11)
C10—H100.950C41—C421.376 (4)
C10—C111.374 (5)C41—C461.397 (5)
C11—H110.950C42—C431.395 (5)
C11—C121.390 (4)C42—C471.480 (6)
C12—H120.950C43—H430.950
B21—O211.467 (4)C43—C441.389 (5)
B21—O221.539 (3)C44—C451.384 (4)
B21—O251.446 (4)C45—H450.950
B21—C281.609 (5)C45—C461.380 (5)
N21—H21'0.84 (2)C46—H460.950
N21—C291.346 (5)C48—C491.393 (6)
N21—C301.340 (3)C48—C521.392 (4)
O21—C211.355 (4)C49—H490.950
O22—C271.302 (4)C50—H500.950
O23—C271.242 (3)C50—C511.353 (6)
O24—H24'0.840 (18)C51—H510.950
O24—C241.378 (4)C51—C521.394 (5)
O25—H25'0.84 (3)C52—H520.950
C21—C221.386 (3)O61—H61A0.840 (18)
C21—C261.399 (5)O61—H61B0.840 (14)
C22—C231.400 (4)O62—H62A0.84 (3)
C22—C271.475 (5)O62—H62B0.84 (3)
C23—H230.950
O1—B1—O2110.5 (3)C24—C25—C26121.3 (3)
O1—B1—O5112 (3)H25—C25—C26119.0
O1—B1—C8108.9 (3)C21—C26—C25119.1 (3)
O2—B1—O5107.9 (3)C21—C26—H26120.0
O2—B1—C8107.8 (3)C25—C26—H26120.0
O5—B1—C8109.8 (3)O22—C27—O23120.0 (4)
H1'—N1—C9117 (1)O22—C27—C22117.6 (3)
H1'—N1—C10120 (1)O23—C27—C22122.4 (3)
C9—N1—C10122.3 (3)B21—C28—C29123.4 (3)
B1—O1—C1118.5 (2)B21—C28—C32120.9 (3)
B1—O2—C7122.4 (2)C29—C28—C32115.7 (3)
H4'—O4—C4106 (2)N21—C29—C28121.7 (3)
B1—O5—H5'113.5 (6)N21—C29—H29119.0
O1—C1—C2121.3 (3)C28—C29—H29119.0
O1—C1—C6119.0 (3)N21—C30—H30120.0
C2—C1—C6119.7 (3)N21—C30—C31119.8 (3)
C1—C2—C3120.2 (3)H30—C30—C31120.0
C1—C2—C7120.1 (3)C30—C31—H31121.0
C3—C2—C7119.7 (3)C30—C31—C32118.5 (3)
C2—C3—H3120.0H31—C31—C32121.0
C2—C3—C4119.4 (3)C28—C32—C31121.9 (3)
H3—C3—C4120.0C28—C32—H32119.0
O4—C4—C3122.7 (3)C31—C32—H32119.0
O4—C4—C5117.3 (3)O41—B41—O42110.4 (3)
C3—C4—C5120.0 (3)O41—B41—O45111.9 (3)
C4—C5—H5119.0O41—B41—C48108.8 (3)
C4—C5—C6121.2 (3)O42—B41—O45103.7 (3)
H5—C5—C6119.0O42—B41—C48108.9 (3)
C1—C6—C5119.6 (3)O45—B41—C48113.1 (3)
C1—C6—H6120.0H41'—N41—C49117 (2)
C5—C6—H6120.0H41'—N41—C50120 (2)
O2—C7—O3119.5 (3)C49—N41—C50122.2 (4)
O2—C7—C2117.5 (3)B41—O41—C41114.8 (3)
O3—C7—C2123.0 (3)B41—O42—C47118.5 (3)
B1—C8—C9121.0 (3)H44'—O44—C44104 (2)
B1—C8—C12123.6 (3)B41—O45—H45'119 (1)
C9—C8—C12115.3 (3)O41—C41—C42121.5 (3)
N1—C9—C8121.9 (3)O41—C41—C46119.8 (3)
N1—C9—H9119.0C42—C41—C46118.6 (3)
C8—C9—H9119.0C41—C42—C43121.3 (3)
N1—C10—H10120.0C41—C42—C47119.2 (3)
N1—C10—C11119.7 (3)C43—C42—C47119.2 (3)
H10—C10—C11120.0C42—C43—H43120.0
C10—C11—H11120.0C42—C43—C44119.3 (3)
C10—C11—C12118.4 (3)H43—C43—C44120.0
H11—C11—C12120.0O44—C44—C43122 (3)
C8—C12—C11122.4 (3)O44—C44—C45118.3 (3)
C8—C12—H12119.0C43—C44—C45119.7 (3)
C11—C12—H12119.0C44—C45—H45120.0
O21—B21—O22110.4 (3)C44—C45—C46120.5 (3)
O21—B21—O25107.4 (3)H45—C45—C46120.0
O21—B21—C28109.5 (3)C41—C46—C45120.5 (3)
O22—B21—O25109.1 (3)C41—C46—H46120.0
O22—B21—C28107.3 (2)C45—C46—H46120.0
O25—B21—C28113.1 (3)O42—C47—O43119.8 (3)
H21'—N21—C29116 (1)O42—C47—C42117.8 (3)
H21'—N21—C30121 (1)O43—C47—C42122.4 (3)
C29—N21—C30122.4 (3)B41—C48—C49120.2 (3)
B21—O21—C21115.9 (3)B41—C48—C52124.5 (3)
B21—O22—C27120.9 (2)C49—C48—C52115.2 (3)
H24'—O24—C24105 (2)N41—C49—C48121.8 (4)
B21—O25—H25'114 (2)N41—C49—H49119.0
O21—C21—C22121.4 (3)C48—C49—H49119.0
O21—C21—C26118.8 (3)N41—C50—H50120.0
C22—C21—C26119.8 (3)N41—C50—C51119.5 (3)
C21—C22—C23120.3 (3)H50—C50—C51120.0
C21—C22—C27119.8 (3)C50—C51—H51120.0
C23—C22—C27119.9 (3)C50—C51—C52119.1 (4)
C22—C23—H23120.0H51—C51—C52120.0
C22—C23—C24119.8 (3)C48—C52—C51122.2 (3)
H23—C23—C24120.0C48—C52—H52119.0
O24—C24—C23122.4 (3)C51—C52—H52119.0
O24—C24—C25118.1 (3)H61A—O61—H61B108 (3)
C23—C24—C25119.5 (3)H62A—O62—H62B116 (3)
C24—C25—H25119.0
O5—B1—O1—C184.3 (3)B21—O22—C27—O23172.6 (2)
O2—B1—O1—C136.0 (3)B21—O22—C27—C228.1 (3)
C8—B1—O1—C1154.2 (2)C21—C22—C27—O23167.6 (2)
O5—B1—O2—C792.1 (3)C23—C22—C27—O2311.3 (4)
O1—B1—O2—C730.6 (3)C21—C22—C27—O2211.6 (4)
C8—B1—O2—C7149.4 (2)C23—C22—C27—O22169.5 (2)
B1—O1—C1—C223.2 (4)O25—B21—C28—C2994.2 (3)
B1—O1—C1—C6159.4 (2)O21—B21—C28—C29146.0 (3)
O1—C1—C2—C3178.6 (2)O22—B21—C28—C2926.2 (4)
C6—C1—C2—C31.3 (4)O25—B21—C28—C3283.3 (3)
O1—C1—C2—C70.4 (4)O21—B21—C28—C3236.4 (4)
C6—C1—C2—C7177.8 (2)O22—B21—C28—C32156.3 (2)
C1—C2—C3—C41.0 (4)C30—N21—C29—C280.5 (4)
C7—C2—C3—C4178.0 (2)C32—C28—C29—N211.9 (4)
C2—C3—C4—O4178.0 (2)B21—C28—C29—N21175.8 (3)
C2—C3—C4—C50.3 (4)C29—N21—C30—C311.8 (4)
O4—C4—C5—C6177.7 (2)N21—C30—C31—C320.8 (4)
C3—C4—C5—C60.1 (4)C29—C28—C32—C312.9 (4)
C4—C5—C6—C10.1 (4)B21—C28—C32—C31174.8 (2)
O1—C1—C6—C5178.2 (2)C30—C31—C32—C281.6 (4)
C2—C1—C6—C50.8 (4)O45—B41—O41—C4169.1 (3)
B1—O2—C7—O3169.4 (2)O42—B41—O41—C4145.8 (3)
B1—O2—C7—C210.5 (4)C48—B41—O41—C41165.2 (2)
C1—C2—C7—O3174.1 (2)O45—B41—O42—C4777.1 (3)
C3—C2—C7—O34.9 (4)O41—B41—O42—C4742.8 (4)
C1—C2—C7—O26.0 (4)C48—B41—O42—C47162.2 (2)
C3—C2—C7—O2175.0 (2)B41—O41—C41—C4221.8 (4)
O5—B1—C8—C974.1 (3)B41—O41—C41—C46159.4 (3)
O1—B1—C8—C9163.0 (2)O41—C41—C42—C43176.7 (3)
O2—B1—C8—C943.1 (3)C46—C41—C42—C434.6 (4)
O5—B1—C8—C12102.5 (3)O41—C41—C42—C479.1 (4)
O1—B1—C8—C1220.4 (4)C46—C41—C42—C47169.7 (3)
O2—B1—C8—C12140.3 (3)C41—C42—C43—C441.9 (4)
C10—N1—C9—C81.8 (4)C47—C42—C43—C44172.4 (3)
C12—C8—C9—N10.8 (4)C42—C43—C44—O44179.3 (3)
B1—C8—C9—N1177.6 (3)C42—C43—C44—C451.9 (4)
C9—N1—C10—C111.2 (4)O44—C44—C45—C46178.2 (2)
N1—C10—C11—C120.5 (4)C43—C44—C45—C463.0 (4)
C10—C11—C12—C81.6 (4)C44—C45—C46—C410.2 (4)
C9—C8—C12—C110.9 (4)O41—C41—C46—C45177.7 (2)
B1—C8—C12—C11175.9 (3)C42—C41—C46—C453.5 (4)
O25—B21—O21—C2176.3 (3)B41—O42—C47—O43169.5 (2)
O22—B21—O21—C2142.6 (3)B41—O42—C47—C4214.0 (4)
C28—B21—O21—C21160.5 (2)C41—C42—C47—O43163.3 (3)
O25—B21—O22—C2783.4 (3)C43—C42—C47—O4311.1 (4)
O21—B21—O22—C2734.4 (3)C41—C42—C47—O4213.1 (4)
C28—B21—O22—C27153.7 (2)C43—C42—C47—O42172.5 (2)
B21—O21—C21—C2226.6 (4)O45—B41—C48—C5298.1 (3)
B21—O21—C21—C26154.9 (3)O41—B41—C48—C5226.9 (4)
O21—C21—C22—C23179.0 (2)O42—B41—C48—C52147.2 (3)
C26—C21—C22—C232.5 (4)O45—B41—C48—C4979.6 (4)
O21—C21—C22—C272.1 (4)O41—B41—C48—C49155.4 (3)
C26—C21—C22—C27176.4 (2)O42—B41—C48—C4935.0 (4)
C21—C22—C23—C240.9 (4)C50—N41—C49—C482.0 (5)
C27—C22—C23—C24179.8 (3)C52—C48—C49—N410.8 (4)
C22—C23—C24—O24177.1 (2)B41—C48—C49—N41177.2 (3)
C22—C23—C24—C253.8 (4)C49—N41—C50—C513.3 (5)
O24—C24—C25—C26177.5 (2)N41—C50—C51—C521.8 (5)
C23—C24—C25—C263.3 (4)C50—C51—C52—C481.0 (5)
C24—C25—C26—C210.1 (4)C49—C48—C52—C512.2 (4)
O21—C21—C26—C25178.4 (2)B41—C48—C52—C51175.6 (3)
C22—C21—C26—C253.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O62—H62A···O250.841.862.702 (4)174
O45—H45···O23i0.841.942.777 (2)177
O4—H4···O45ii0.841.772.579 (3)162
O61—H61A···O43ii0.841.952.749 (3)159
O5—H5···O3iii0.841.932.773 (2)178
O24—H24···O5iv0.841.82.638 (3)179
O25—H25···O4v0.841.952.791 (3)173
O62—H62B···O24vi0.842.022.810 (4)157
O44—H44···O61vii0.841.822.656 (3)177
O61—H61B···O62viii0.841.832.673 (3)178
N1—H1···O23i0.841.892.725 (4)176
N21—H21···O3ix0.841.892.727 (4)170
N41—H41···O43x0.841.922.749 (5)169
C11—H11···O62iv0.952.573.348 (4)140
C23—H23···O5iv0.952.593.215 (4)123
C43—H43···O61vii0.952.573.201 (4)124
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x, y+2, z+1; (vii) x+1, y, z+1; (viii) x, y1, z; (ix) x1, y, z; (x) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O62—H62A···O250.841.862.702 (4)174
O45—H45'···O23i0.841.942.777 (2)177
O4—H4'···O45ii0.841.772.579 (3)162
O61—H61A···O43ii0.841.952.749 (3)159
O5—H5'···O3iii0.841.932.773 (2)178
O24—H24'···O5iv0.841.82.638 (3)179
O25—H25'···O4v0.841.952.791 (3)173
O62—H62B···O24vi0.842.022.810 (4)157
O44—H44'···O61vii0.841.822.656 (3)177
O61—H61B···O62viii0.841.832.673 (3)178
N1—H1'···O23i0.841.892.725 (4)176
N21—H21'···O3ix0.841.892.727 (4)170
N41—H41'···O43x0.841.922.749 (5)169
C11—H11···O62iv0.952.573.348 (4)140
C23—H23···O5iv0.952.593.215 (4)123
C43—H43···O61vii0.952.573.201 (4)124
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x, y+2, z+1; (vii) x+1, y, z+1; (viii) x, y1, z; (ix) x1, y, z; (x) x+1, y+1, z+2.
 

Acknowledgements

This work was supported financially by the Consejo Nacional de Ciencia y Tecnología (CONACyT, project No. 177616). The authors gratefully acknowledge access to the X-ray facilities in the Chemical Research Center at the Autonomous State University of Morelos (CIQ–UAEM).

References

First citationBarba, V., Hernández, R., Santillan, R. & Farfán, R. (2010). Inorg. Chim. Acta, 363, 4112–4116.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujita, N., Shinkai, S. & James, T. D. (2008). Chem. Asian J. 3, 1076–1091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHöpfl, H. (2002). Struct. Bond. 103, 1–56.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSeverin, K. (2009). Dalton Trans. pp. 5254–5264.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o388-o389
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds