organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Glycinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bKunthavai Naacchiyaar Govt. Arts College (W), Thanjavur 613 007, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: kan_uma6@yahoo.com, chakkaravarthi_2005@yahoo.com

(Received 21 February 2014; accepted 27 February 2014; online 5 March 2014)

In the anion of the title salt, C2H6NO2+·C7H5O6S, the dihedral angle between the carb­oxy­lic acid group and the benzene ring is 5.02 (12)°. In the crystal, the anions are linked into inversion dimers through pairs of O—H⋯O hydrogen bonds between the carb­oxy­lic acid groups and sulfonate O atoms. A pair of C—H⋯O inter­actions is also observed within each dimer. The anion dimers and the cations are linked into a three-dimensional network by N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to non-linear optical materials, see: Yang et al. (2005[Yang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072-1075.]); Kumar et al. (2009[Kumar, K., Rai, R. & Rai, S. (2009). Appl. Phys. B, 96, 85-94.]). For related structures, see: Krishnakumar et al. (2012[Krishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.]); Sudhahar et al. (2013[Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.]).

[Scheme 1]

Experimental

Crystal data
  • C2H6NO2+·C7H5O6S

  • Mr = 293.25

  • Monoclinic, P 21 /c

  • a = 5.3651 (3) Å

  • b = 24.7207 (15) Å

  • c = 8.6840 (5) Å

  • β = 90.170 (2)°

  • V = 1151.75 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.36 × 0.32 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.893, Tmax = 0.910

  • 21406 measured reflections

  • 3694 independent reflections

  • 3282 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.117

  • S = 1.20

  • 3694 reflections

  • 197 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6 0.82 (1) 1.89 (2) 2.631 (2) 150 (4)
N1—H1A⋯O6 0.86 (1) 2.27 (3) 2.878 (2) 127 (3)
N1—H1A⋯O7i 0.86 (1) 2.46 (3) 3.134 (2) 135 (3)
N1—H1B⋯O3ii 0.87 (1) 2.06 (2) 2.876 (2) 157 (3)
N1—H1C⋯O3iii 0.87 (1) 1.98 (2) 2.811 (2) 161 (3)
O5—H5A⋯O4iv 0.82 (1) 1.92 (2) 2.702 (2) 159 (3)
O7—H7⋯O2v 0.82 (1) 1.84 (1) 2.646 (2) 169 (3)
C2—H2⋯O5iv 0.93 2.45 3.370 (2) 168
C9—H9A⋯O4iv 0.97 2.33 3.292 (2) 172
C6—H6⋯O8vi 0.93 2.46 3.273 (2) 147
C9—H9B⋯O2vii 0.97 2.37 3.324 (2) 167
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) -x+2, -y+1, -z+2; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+1; (vii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Non-linear optical materials have recently invoked a large amount of interest due to their potential application in harmonic generation, optical information processing, optical storage and two photon pumped lasers (Yang et al., 2005; Kumar et al., 2009). We herein, report the crystal structure of the title compound (I), (Fig. 1). The geometric parameters of the title compound are comparable with the reported structures (Krishnakumar et al., 2012; Sudhahar et al., 2013).

In the molecular structure, the cation and anion are linked by N—H···O and O—H···O hydrogen bonds. In the anion, the dihedral angle between the carboxyl group and the benzene ring is 5.02 (12)°. The crystal structure exhibits intermolecular N—H···O, O—H···O and C—H···O (Table 1 & Fig. 2) interactions.

Related literature top

For background to non-linear optical materials, see: Yang et al. (2005); Kumar et al. (2009). For related structures, see: Krishnakumar et al. (2012); Sudhahar et al. (2013).

Experimental top

The title compound was obtained by slow evaporation from an aqueous solution of glycine (C2H5NO2, 0.75 g) and 3-carboxy-4-hydroxybenzenesulfonic acid (C7H6O6S, 2.18 g) at room temperature. The good quality crystals suitable for X-ray diffraction were collected in the period of 20 days.

Refinement top

H atoms of the NH3 and OH groups were located in a difference Fourier map and refined freely, with bond-length restraints of N—H = 0.86 (1) Å and O—H = 0.82 (1) Å. The C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and Uiso(H) = 1.2Ueq(C) for CH and C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Glycinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C2H6NO2+·C7H5O6SF(000) = 608
Mr = 293.25Dx = 1.691 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9634 reflections
a = 5.3651 (3) Åθ = 2.5–32.0°
b = 24.7207 (15) ŵ = 0.32 mm1
c = 8.6840 (5) ÅT = 295 K
β = 90.170 (2)°Block, colourless
V = 1151.75 (12) Å30.36 × 0.32 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3694 independent reflections
Radiation source: fine-focus sealed tube3282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 32.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.893, Tmax = 0.910k = 3636
21406 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0325P)2 + 1.2564P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
3694 reflectionsΔρmax = 0.49 e Å3
197 parametersΔρmin = 0.53 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.071 (3)
Crystal data top
C2H6NO2+·C7H5O6SV = 1151.75 (12) Å3
Mr = 293.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3651 (3) ŵ = 0.32 mm1
b = 24.7207 (15) ÅT = 295 K
c = 8.6840 (5) Å0.36 × 0.32 × 0.30 mm
β = 90.170 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3694 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3282 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.910Rint = 0.030
21406 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0496 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.49 e Å3
3694 reflectionsΔρmin = 0.53 e Å3
197 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5636 (3)0.41186 (7)0.7824 (2)0.0177 (3)
C20.6669 (3)0.46042 (7)0.8273 (2)0.0194 (3)
H20.80740.46070.89030.023*
C30.5608 (3)0.50936 (7)0.7784 (2)0.0198 (3)
C40.3495 (4)0.50846 (8)0.6831 (2)0.0244 (4)
C50.2445 (4)0.45897 (8)0.6403 (3)0.0283 (4)
H50.10270.45830.57850.034*
C60.3505 (4)0.41112 (8)0.6893 (2)0.0244 (4)
H60.28010.37830.66030.029*
C70.6683 (4)0.56133 (7)0.8269 (2)0.0248 (4)
C80.8846 (4)0.69748 (7)0.6240 (2)0.0213 (3)
C90.8379 (4)0.71637 (8)0.7865 (2)0.0221 (3)
H9A0.90960.69080.85890.026*
H9B0.91660.75120.80280.026*
N10.5669 (3)0.72092 (7)0.81273 (19)0.0219 (3)
O10.2384 (3)0.55374 (7)0.6301 (2)0.0398 (4)
O20.8214 (3)0.32854 (7)0.69766 (18)0.0377 (4)
O30.5004 (3)0.31390 (6)0.88206 (18)0.0305 (3)
O40.8755 (3)0.36047 (6)0.9590 (2)0.0364 (4)
O50.8540 (3)0.55664 (6)0.9256 (2)0.0364 (4)
O60.5921 (3)0.60513 (6)0.7813 (2)0.0380 (4)
O71.1214 (3)0.68486 (8)0.60241 (19)0.0386 (4)
O80.7240 (3)0.69592 (6)0.52779 (16)0.0278 (3)
S10.70129 (8)0.349884 (16)0.83495 (5)0.01747 (12)
H1A0.489 (6)0.6942 (10)0.771 (4)0.059 (10)*
H1B0.515 (6)0.7512 (8)0.774 (4)0.059 (10)*
H1C0.528 (6)0.7171 (14)0.9088 (15)0.059 (10)*
H5A0.910 (6)0.5865 (7)0.949 (4)0.051 (9)*
H71.134 (6)0.6766 (12)0.5112 (15)0.048 (9)*
H10.320 (6)0.5791 (10)0.665 (4)0.064 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0206 (8)0.0139 (7)0.0186 (8)0.0001 (6)0.0015 (6)0.0008 (6)
C20.0198 (8)0.0163 (7)0.0219 (8)0.0006 (6)0.0050 (6)0.0003 (6)
C30.0229 (8)0.0147 (7)0.0218 (8)0.0006 (6)0.0037 (6)0.0001 (6)
C40.0261 (9)0.0201 (8)0.0270 (9)0.0030 (7)0.0065 (7)0.0031 (7)
C50.0249 (9)0.0258 (9)0.0342 (11)0.0013 (7)0.0141 (8)0.0010 (8)
C60.0249 (9)0.0196 (8)0.0286 (9)0.0025 (6)0.0071 (7)0.0034 (7)
C70.0292 (10)0.0161 (7)0.0291 (9)0.0014 (6)0.0055 (8)0.0003 (7)
C80.0271 (9)0.0181 (7)0.0186 (8)0.0005 (6)0.0015 (7)0.0008 (6)
C90.0255 (9)0.0238 (8)0.0169 (8)0.0034 (7)0.0012 (6)0.0017 (6)
N10.0278 (8)0.0198 (7)0.0181 (7)0.0003 (6)0.0008 (6)0.0003 (6)
O10.0426 (9)0.0232 (7)0.0534 (11)0.0065 (7)0.0235 (8)0.0052 (7)
O20.0510 (10)0.0343 (8)0.0279 (8)0.0189 (7)0.0124 (7)0.0003 (6)
O30.0374 (8)0.0217 (6)0.0324 (8)0.0097 (6)0.0019 (6)0.0069 (6)
O40.0463 (9)0.0209 (7)0.0419 (9)0.0003 (6)0.0261 (8)0.0003 (6)
O50.0452 (9)0.0190 (7)0.0449 (9)0.0059 (6)0.0232 (8)0.0013 (6)
O60.0492 (10)0.0150 (6)0.0496 (10)0.0014 (6)0.0166 (8)0.0022 (6)
O70.0282 (8)0.0602 (11)0.0274 (8)0.0057 (7)0.0009 (6)0.0083 (7)
O80.0328 (8)0.0322 (7)0.0183 (6)0.0033 (6)0.0035 (5)0.0020 (5)
S10.0230 (2)0.01263 (18)0.0168 (2)0.00042 (14)0.00211 (14)0.00052 (13)
Geometric parameters (Å, º) top
C1—C21.378 (2)C8—O71.322 (2)
C1—C61.399 (3)C8—C91.508 (3)
C1—S11.7605 (17)C9—N11.477 (3)
C2—C31.402 (2)C9—H9A0.9700
C2—H20.9300C9—H9B0.9700
C3—C41.402 (3)N1—H1A0.863 (10)
C3—C71.470 (2)N1—H1B0.866 (10)
C4—O11.348 (2)N1—H1C0.865 (10)
C4—C51.397 (3)O1—H10.823 (10)
C5—C61.379 (3)O2—S11.4559 (15)
C5—H50.9300O3—S11.4570 (14)
C6—H60.9300O4—S11.4478 (15)
C7—O61.223 (2)O5—H5A0.822 (10)
C7—O51.317 (2)O7—H70.821 (10)
C8—O81.199 (2)
C2—C1—C6120.16 (16)O7—C8—C9111.59 (17)
C2—C1—S1121.11 (13)N1—C9—C8109.53 (15)
C6—C1—S1118.69 (13)N1—C9—H9A109.8
C1—C2—C3120.21 (16)C8—C9—H9A109.8
C1—C2—H2119.9N1—C9—H9B109.8
C3—C2—H2119.9C8—C9—H9B109.8
C4—C3—C2119.48 (16)H9A—C9—H9B108.2
C4—C3—C7119.94 (16)C9—N1—H1A111 (2)
C2—C3—C7120.58 (16)C9—N1—H1B109 (2)
O1—C4—C5117.33 (17)H1A—N1—H1B110 (3)
O1—C4—C3122.96 (17)C9—N1—H1C112 (2)
C5—C4—C3119.71 (17)H1A—N1—H1C102 (3)
C6—C5—C4120.24 (18)H1B—N1—H1C113 (3)
C6—C5—H5119.9C4—O1—H1106 (3)
C4—C5—H5119.9C7—O5—H5A111 (2)
C5—C6—C1120.18 (17)C8—O7—H7106 (2)
C5—C6—H6119.9O4—S1—O2112.85 (11)
C1—C6—H6119.9O4—S1—O3112.21 (10)
O6—C7—O5122.70 (18)O2—S1—O3109.77 (10)
O6—C7—C3123.42 (18)O4—S1—C1107.75 (8)
O5—C7—C3113.88 (16)O2—S1—C1106.85 (9)
O8—C8—O7125.65 (18)O3—S1—C1107.09 (9)
O8—C8—C9122.73 (18)
C6—C1—C2—C30.8 (3)C4—C3—C7—O64.4 (3)
S1—C1—C2—C3177.08 (14)C2—C3—C7—O6175.9 (2)
C1—C2—C3—C40.2 (3)C4—C3—C7—O5175.01 (19)
C1—C2—C3—C7179.42 (18)C2—C3—C7—O54.7 (3)
C2—C3—C4—O1179.32 (19)O8—C8—C9—N111.5 (2)
C7—C3—C4—O11.0 (3)O7—C8—C9—N1170.32 (16)
C2—C3—C4—C51.2 (3)C2—C1—S1—O416.02 (18)
C7—C3—C4—C5178.49 (19)C6—C1—S1—O4166.12 (16)
O1—C4—C5—C6179.4 (2)C2—C1—S1—O2105.50 (17)
C3—C4—C5—C61.1 (3)C6—C1—S1—O272.36 (17)
C4—C5—C6—C10.1 (3)C2—C1—S1—O3136.93 (15)
C2—C1—C6—C50.8 (3)C6—C1—S1—O345.21 (17)
S1—C1—C6—C5177.06 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.82 (1)1.89 (2)2.631 (2)150 (4)
N1—H1A···O60.86 (1)2.27 (3)2.878 (2)127 (3)
N1—H1A···O7i0.86 (1)2.46 (3)3.134 (2)135 (3)
N1—H1B···O3ii0.87 (1)2.06 (2)2.876 (2)157 (3)
N1—H1C···O3iii0.87 (1)1.98 (2)2.811 (2)161 (3)
O5—H5A···O4iv0.82 (1)1.92 (2)2.702 (2)159 (3)
O7—H7···O2v0.82 (1)1.84 (1)2.646 (2)169 (3)
C2—H2···O5iv0.932.453.370 (2)168
C9—H9A···O4iv0.972.333.292 (2)172
C6—H6···O8vi0.932.463.273 (2)147
C9—H9B···O2vii0.972.373.324 (2)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+2; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.823 (10)1.89 (2)2.631 (2)150 (4)
N1—H1A···O60.863 (10)2.27 (3)2.878 (2)127 (3)
N1—H1A···O7i0.863 (10)2.46 (3)3.134 (2)135 (3)
N1—H1B···O3ii0.866 (10)2.061 (16)2.876 (2)157 (3)
N1—H1C···O3iii0.865 (10)1.978 (15)2.811 (2)161 (3)
O5—H5A···O4iv0.822 (10)1.917 (15)2.702 (2)159 (3)
O7—H7···O2v0.821 (10)1.835 (12)2.646 (2)169 (3)
C2—H2···O5iv0.932.453.370 (2)168
C9—H9A···O4iv0.972.333.292 (2)172
C6—H6···O8vi0.932.463.273 (2)147
C9—H9B···O2vii0.972.373.324 (2)167
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x+2, y+1, z+2; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrishnakumar, M., Sudhahar, S., Silambarasan, A., Chakkaravarthi, G. & Mohankumar, R. (2012). Acta Cryst. E68, o3268.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, K., Rai, R. & Rai, S. (2009). Appl. Phys. B, 96, 85–94.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, Z., Aravazhi, S., Schneider, A., Seiler, P., Jazbinsek, M. & Günter, P. (2005). Adv. Funct. Mater. 15, 1072–1075.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds