organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­­oxy-2-[5-(naphthalen-2-yl)-4,5-di­hydro-1H-pyrazol-3-yl]phenol

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea, bDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea, and cDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
*Correspondence e-mail: dskoh@dongduk.ac.kr

(Received 5 March 2014; accepted 18 March 2014; online 22 March 2014)

The asymmetric unit of the title compound, C20H18N2O2, contains two independent mol­ecules in which the dihedral angles between the naphthalene ring system [r.m.s. deviations = 0.012 (1) and 0.015 (1) Å] and the benzene ring are 71.65 (6) and 74.51 (6)°. In the crystal, pairs of N—H⋯O hydrogen bonds form two independent inversion dimers with graph-set notation R22(14). In addition, each mol­ecule contains an intra­molecular O—H⋯N hydrogen bond with an S(6) motif.

Related literature

For the synthesis and biological properties of pyrazoline derivatives, see: Hwang et al. (2013[Hwang, D., Yoon, H., Ahn, S., Kim, D.-W., Bae, D.-H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 593-599.]); Sharifzadeh et al. (2013[Sharifzadeh, B., Mahmoodi, N. O., Mamaghani, M., Tabatabaeian, K., Chirani, A. S. & Nikokar, I. (2013). Bioorg. Med. Chem. Lett. 23, 548-551.]); Congiu et al. (2010[Congiu, C., Onnis, V., Vesci, L., Castorina, M. & Pisano, C. (2010). Bioorg. Med. Chem. 18, 6238-6248.]); Khode et al. (2009[Khode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. & Satyanarayana, D. (2009). Eur. J. Med. Chem. 44, 1682-1688.]); Karthikeyan et al. (2007[Karthikeyan, M. S., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 30-36.]). For related structures, see: Fun et al. (2012[Fun, H.-K., Ooi, C. W., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2634.]); Jasinski et al. (2010[Jasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1950-o1951.]). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N2O2

  • Mr = 318.36

  • Monoclinic, P 2/c

  • a = 21.0215 (15) Å

  • b = 5.6564 (5) Å

  • c = 28.785 (2) Å

  • β = 110.543 (3)°

  • V = 3205.1 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 147 K

  • 0.17 × 0.10 × 0.07 mm

Data collection
  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.753

  • 43387 measured reflections

  • 5506 independent reflections

  • 4776 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.05

  • 5506 reflections

  • 451 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1OA⋯N1A 0.97 (2) 1.71 (2) 2.5754 (15) 145 (2)
O1B—H1OB⋯N1B 0.91 (2) 1.71 (2) 2.5377 (15) 149 (2)
N2A—H2NA⋯O1Ai 0.914 (18) 2.234 (18) 3.0470 (16) 147.7 (15)
N2B—H2NB⋯O1Bii 0.911 (19) 2.131 (19) 2.9787 (16) 154.4 (15)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y-2, -z+1.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Pyrazolines have been reported to show a broad spectrum of biological activities including antibacterial (Sharifzadeh et al., 2013), anticonvulsant (Karthikeyan et al., 2007), analgesic (Khode et al., 2009) and antitumor properties (Congiu et al., 2010). In continuation of our research interest to develop novel pyrazoline derivatives which show broad range of biological activities (Hwang et al., 2013), the title compound (I) was synthesized and its crystal structure was determined.

The asymmetric unit of (I) contains two indepencent molecules (A and B in Fig. 1). The dihedral angles between the naphthalene ring system [r.m.s. deviations 0.012 (1) Å for A and 0.015 (1) Å for B] and the benzene ring are 71.65 (6) and 74.51 (6)° for molecules A and B, respectively. In the crystal, pairs of N—H···O hydrogen bonds form two independent inversion dimers (Fig. 2) with graph-set notations R22(14) (Bernstein et al., 1995). In addition, each molecule contains an intramolecular O—H···N hydrogen bond with an S(6) notation. Some examples of pyrazoline structures have been published (Fun et al., 2012; Jasinski et al., 2010).

Related literature top

For the synthesis and biological properties of pyrazoline derivatives, see: Hwang et al. (2013); Sharifzadeh et al. (2013); Congiu et al. (2010); Khode et al. (2009); Karthikeyan et al. (2007). For related structures, see: Fun et al. (2012); Jasinski et al. (2010). For hydrogen-bond graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a solution of 6-methoxy-2-hydroxyacetophenone (10 mmol, 1.66 g) in 50 ml of ethanol was added 2-naphthaldehyde (10 mmol, 1.56 g) and the temperature was adjusted to around 276–277 K in an ice-bath. To the reaction mixture was added 10 ml of 50% (w/v) aqueous KOH solution and reaction mixture was stirred at room temperature for 60 h. At the end of the reaction, ice water was added to the mixture and acidified with 6 N HCl (pH = 3–4). The resulting precipitate was filtered and washed with water and ethanol. The crude solid was purified by recrystallization from ethanol to give pure chalcone (m.p.; 403–403 K, yield; 63%). Excess hydrazine monohydrate (1 ml of 64–65% solution, 13 mmol) was added to chalcone compound (5 mmol, 1.52 g) in 30 ml anhydrous ethanol, and the solution was refluxed at 363 K for 3 h. The reaction mixture was cooled to room temperature to yield a solid that was then filtered. The crude solids were purified by recrystallization from ethanol to afford pure pyrazolines (m.p.; 403–403 K, yield; 93%). How were the X-ray quality crystals grown. Repeated recrystallization in ethanol gave colourless needle shape crystals suitable for X-ray diffraction.

Refinement top

Hydrogen atoms bonded to C atoms were placed in calculated positions with C—H distances ranging from 0.95–1.00 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to N and O atoms were refined independently with isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of title compound showing 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
3-Methoxy-2-[5-(naphthalen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl]phenol top
Crystal data top
C20H18N2O2F(000) = 1344
Mr = 318.36Dx = 1.320 Mg m3
Monoclinic, P2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ycCell parameters from 857 reflections
a = 21.0215 (15) Åθ = 3.3–56.5°
b = 5.6564 (5) ŵ = 0.69 mm1
c = 28.785 (2) ÅT = 147 K
β = 110.543 (3)°Needle, colourless
V = 3205.1 (4) Å30.17 × 0.10 × 0.07 mm
Z = 8
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
5506 independent reflections
Radiation source: Bruker ImuS4776 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.045
ϕ and ω scansθmax = 66.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2423
Tmin = 0.695, Tmax = 0.753k = 66
43387 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.6182P]
where P = (Fo2 + 2Fc2)/3
5506 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H18N2O2V = 3205.1 (4) Å3
Mr = 318.36Z = 8
Monoclinic, P2/cCu Kα radiation
a = 21.0215 (15) ŵ = 0.69 mm1
b = 5.6564 (5) ÅT = 147 K
c = 28.785 (2) Å0.17 × 0.10 × 0.07 mm
β = 110.543 (3)°
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
5506 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
4776 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.753Rint = 0.045
43387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
5506 reflectionsΔρmin = 0.20 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.49628 (5)0.5886 (2)0.56791 (4)0.0409 (3)
O2A0.34244 (6)1.2274 (2)0.54722 (4)0.0440 (3)
N1A0.41312 (6)0.7105 (2)0.48182 (4)0.0315 (3)
N2A0.38431 (6)0.7224 (2)0.42980 (4)0.0326 (3)
C1A0.39789 (6)0.8982 (2)0.50121 (5)0.0246 (3)
C2A0.35765 (6)1.0709 (2)0.46192 (5)0.0254 (3)
H2AA0.37481.23440.46980.030*
H2AB0.30871.06660.45720.030*
C3A0.37111 (6)0.9740 (2)0.41647 (5)0.0277 (3)
H3AA0.41361.04760.41490.033*
C4A0.31402 (6)1.0150 (2)0.36773 (5)0.0252 (3)
C5A0.31489 (7)1.2249 (2)0.34150 (5)0.0297 (3)
H5AA0.35161.33230.35440.036*
C6A0.26385 (7)1.2767 (2)0.29782 (5)0.0304 (3)
H6AA0.26571.41920.28090.036*
C7A0.20822 (7)1.1210 (2)0.27751 (5)0.0267 (3)
C8A0.15504 (7)1.1653 (3)0.23166 (5)0.0335 (3)
H8AA0.15601.30550.21370.040*
C9A0.10281 (7)1.0100 (3)0.21309 (5)0.0379 (4)
H9AA0.06791.04210.18230.045*
C10A0.10019 (7)0.8025 (3)0.23919 (5)0.0361 (3)
H10A0.06320.69610.22610.043*
C11A0.15082 (7)0.7530 (3)0.28344 (5)0.0305 (3)
H11A0.14850.61220.30080.037*
C12A0.20652 (6)0.9091 (2)0.30362 (5)0.0250 (3)
C13A0.26073 (6)0.8605 (2)0.34863 (5)0.0249 (3)
H13A0.26020.71800.36590.030*
C14A0.42050 (6)0.9222 (2)0.55531 (5)0.0267 (3)
C15A0.39484 (7)1.0994 (3)0.57825 (5)0.0312 (3)
C16A0.42105 (7)1.1334 (3)0.62929 (5)0.0381 (4)
H16A0.40401.25610.64420.046*
C17A0.47218 (7)0.9862 (3)0.65800 (5)0.0440 (4)
H17A0.49071.01070.69280.053*
C18A0.49680 (7)0.8056 (3)0.63740 (6)0.0437 (4)
H18A0.53150.70490.65790.052*
C19A0.47060 (6)0.7707 (3)0.58629 (5)0.0320 (3)
C20A0.31232 (10)1.4005 (3)0.56934 (6)0.0507 (5)
H20A0.27431.47660.54350.076*
H20B0.34631.51990.58630.076*
H20C0.29571.32350.59340.076*
O1B0.09997 (5)0.95204 (18)0.51393 (4)0.0354 (2)
O2B0.06378 (5)0.28470 (19)0.62119 (4)0.0374 (3)
N1B0.01760 (6)0.7754 (2)0.55421 (5)0.0369 (3)
N2B0.08805 (6)0.7481 (2)0.56768 (5)0.0386 (3)
C1B0.00720 (6)0.6051 (2)0.57246 (5)0.0272 (3)
C2B0.04742 (6)0.4300 (2)0.59985 (5)0.0273 (3)
H2BA0.06170.45040.63620.033*
H2BB0.03230.26490.59110.033*
C3B0.10441 (6)0.4987 (3)0.58063 (5)0.0302 (3)
H3BA0.09920.40670.54980.036*
C4B0.17604 (6)0.4685 (2)0.61734 (5)0.0254 (3)
C5B0.21368 (7)0.2659 (2)0.61442 (5)0.0299 (3)
H5BA0.19360.14990.58970.036*
C6B0.27874 (7)0.2345 (2)0.64672 (5)0.0305 (3)
H6BA0.30320.09680.64410.037*
C7B0.31015 (6)0.4033 (2)0.68385 (5)0.0257 (3)
C8B0.37838 (7)0.3815 (3)0.71720 (5)0.0336 (3)
H8BA0.40440.24730.71510.040*
C9B0.40695 (7)0.5509 (3)0.75216 (5)0.0365 (4)
H9BA0.45280.53500.77370.044*
C10B0.36893 (7)0.7484 (3)0.75651 (5)0.0349 (3)
H10B0.38870.86310.78150.042*
C11B0.30344 (7)0.7755 (3)0.72472 (5)0.0294 (3)
H11B0.27830.91070.72770.035*
C12B0.27239 (6)0.6065 (2)0.68752 (5)0.0234 (3)
C13B0.20506 (6)0.6342 (2)0.65330 (5)0.0249 (3)
H13B0.17970.77020.65540.030*
C14B0.07952 (6)0.6070 (2)0.56665 (5)0.0260 (3)
C15B0.10804 (6)0.4417 (3)0.59036 (5)0.0289 (3)
C16B0.17715 (7)0.4442 (3)0.58272 (5)0.0328 (3)
H16B0.19590.33040.59850.039*
C17B0.21851 (7)0.6140 (3)0.55187 (5)0.0362 (3)
H17B0.26580.61370.54640.043*
C18B0.19260 (7)0.7822 (3)0.52909 (5)0.0344 (3)
H18B0.22150.89830.50840.041*
C19B0.12339 (7)0.7809 (3)0.53664 (5)0.0293 (3)
C20B0.09006 (7)0.1221 (3)0.64781 (6)0.0381 (4)
H20D0.05340.01950.66830.057*
H20E0.10930.20960.66910.057*
H20F0.12560.02540.62430.057*
H1OA0.4697 (11)0.574 (4)0.5327 (9)0.078 (7)*
H1OB0.0542 (11)0.935 (4)0.5237 (8)0.069 (6)*
H2NA0.4147 (8)0.653 (3)0.4179 (6)0.043 (5)*
H2NB0.1010 (8)0.803 (3)0.5426 (7)0.049 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0324 (5)0.0480 (7)0.0397 (6)0.0140 (5)0.0092 (5)0.0120 (5)
O2A0.0597 (7)0.0477 (7)0.0276 (5)0.0247 (6)0.0192 (5)0.0042 (5)
N1A0.0282 (6)0.0323 (7)0.0286 (6)0.0055 (5)0.0032 (5)0.0009 (5)
N2A0.0313 (6)0.0335 (7)0.0279 (6)0.0108 (5)0.0041 (5)0.0042 (5)
C1A0.0209 (6)0.0250 (7)0.0276 (7)0.0002 (5)0.0083 (5)0.0007 (6)
C2A0.0281 (6)0.0246 (7)0.0240 (7)0.0012 (5)0.0097 (5)0.0007 (5)
C3A0.0254 (6)0.0298 (7)0.0288 (7)0.0006 (6)0.0106 (5)0.0019 (6)
C4A0.0269 (6)0.0286 (7)0.0240 (6)0.0037 (6)0.0137 (5)0.0019 (5)
C5A0.0317 (7)0.0281 (7)0.0327 (7)0.0012 (6)0.0157 (6)0.0026 (6)
C6A0.0374 (7)0.0254 (7)0.0325 (7)0.0032 (6)0.0176 (6)0.0051 (6)
C7A0.0314 (7)0.0277 (7)0.0245 (7)0.0086 (6)0.0142 (6)0.0024 (5)
C8A0.0377 (8)0.0341 (8)0.0301 (7)0.0111 (7)0.0137 (6)0.0091 (6)
C9A0.0339 (7)0.0470 (9)0.0279 (7)0.0123 (7)0.0047 (6)0.0058 (7)
C10A0.0296 (7)0.0398 (9)0.0354 (8)0.0012 (6)0.0067 (6)0.0025 (7)
C11A0.0319 (7)0.0287 (7)0.0308 (7)0.0038 (6)0.0109 (6)0.0022 (6)
C12A0.0284 (6)0.0259 (7)0.0236 (6)0.0061 (5)0.0129 (5)0.0002 (5)
C13A0.0288 (7)0.0256 (7)0.0226 (6)0.0051 (6)0.0121 (5)0.0039 (5)
C14A0.0227 (6)0.0321 (7)0.0255 (7)0.0040 (6)0.0085 (5)0.0037 (6)
C15A0.0335 (7)0.0348 (8)0.0273 (7)0.0019 (6)0.0134 (6)0.0036 (6)
C16A0.0374 (8)0.0508 (10)0.0294 (8)0.0096 (7)0.0159 (6)0.0042 (7)
C17A0.0285 (7)0.0790 (13)0.0237 (7)0.0118 (8)0.0083 (6)0.0015 (8)
C18A0.0243 (7)0.0737 (12)0.0314 (8)0.0018 (7)0.0076 (6)0.0163 (8)
C19A0.0205 (6)0.0432 (9)0.0327 (7)0.0008 (6)0.0097 (6)0.0087 (6)
C20A0.0778 (12)0.0473 (10)0.0380 (9)0.0246 (9)0.0341 (9)0.0059 (8)
O1B0.0328 (5)0.0364 (6)0.0346 (6)0.0051 (5)0.0088 (4)0.0119 (5)
O2B0.0270 (5)0.0447 (6)0.0431 (6)0.0023 (4)0.0156 (4)0.0194 (5)
N1B0.0234 (6)0.0434 (8)0.0384 (7)0.0017 (5)0.0038 (5)0.0168 (6)
N2B0.0217 (6)0.0481 (8)0.0415 (7)0.0025 (5)0.0054 (5)0.0238 (6)
C1B0.0258 (6)0.0315 (8)0.0229 (7)0.0026 (6)0.0067 (5)0.0045 (6)
C2B0.0232 (6)0.0295 (7)0.0289 (7)0.0012 (5)0.0085 (5)0.0054 (6)
C3B0.0254 (7)0.0395 (8)0.0250 (7)0.0027 (6)0.0079 (6)0.0047 (6)
C4B0.0235 (6)0.0317 (7)0.0228 (6)0.0033 (6)0.0105 (5)0.0058 (6)
C5B0.0353 (7)0.0260 (7)0.0293 (7)0.0046 (6)0.0123 (6)0.0001 (6)
C6B0.0355 (7)0.0238 (7)0.0350 (8)0.0037 (6)0.0160 (6)0.0033 (6)
C7B0.0268 (6)0.0262 (7)0.0272 (7)0.0020 (5)0.0135 (5)0.0076 (5)
C8B0.0286 (7)0.0359 (8)0.0365 (8)0.0088 (6)0.0116 (6)0.0122 (7)
C9B0.0257 (7)0.0480 (9)0.0314 (8)0.0018 (7)0.0044 (6)0.0130 (7)
C10B0.0352 (7)0.0426 (9)0.0252 (7)0.0086 (7)0.0087 (6)0.0014 (6)
C11B0.0324 (7)0.0308 (8)0.0277 (7)0.0012 (6)0.0140 (6)0.0006 (6)
C12B0.0244 (6)0.0264 (7)0.0225 (6)0.0006 (5)0.0121 (5)0.0056 (5)
C13B0.0241 (6)0.0278 (7)0.0264 (7)0.0042 (5)0.0132 (5)0.0055 (6)
C14B0.0242 (6)0.0311 (7)0.0221 (6)0.0002 (6)0.0073 (5)0.0003 (5)
C15B0.0266 (7)0.0350 (8)0.0248 (7)0.0008 (6)0.0088 (5)0.0012 (6)
C16B0.0267 (7)0.0436 (9)0.0306 (7)0.0030 (6)0.0133 (6)0.0022 (6)
C17B0.0251 (7)0.0525 (10)0.0311 (7)0.0027 (7)0.0101 (6)0.0048 (7)
C18B0.0294 (7)0.0445 (9)0.0270 (7)0.0084 (6)0.0069 (6)0.0001 (6)
C19B0.0317 (7)0.0327 (8)0.0233 (7)0.0017 (6)0.0093 (6)0.0013 (6)
C20B0.0360 (8)0.0412 (9)0.0420 (9)0.0031 (7)0.0198 (7)0.0120 (7)
Geometric parameters (Å, º) top
O1A—C19A1.3539 (19)O1B—C19B1.3536 (17)
O1A—H1OA0.97 (2)O1B—H1OB0.91 (2)
O2A—C15A1.3582 (17)O2B—C15B1.3648 (17)
O2A—C20A1.4313 (18)O2B—C20B1.4269 (17)
N1A—C1A1.2910 (18)N1B—C1B1.2915 (18)
N1A—N2A1.4059 (16)N1B—N2B1.4016 (16)
N2A—C3A1.4745 (18)N2B—C3B1.469 (2)
N2A—H2NA0.914 (18)N2B—H2NB0.911 (19)
C1A—C14A1.4664 (18)C1B—C14B1.4699 (18)
C1A—C2A1.5091 (18)C1B—C2B1.5121 (18)
C2A—C3A1.5338 (18)C2B—C3B1.5354 (18)
C2A—H2AA0.9900C2B—H2BA0.9900
C2A—H2AB0.9900C2B—H2BB0.9900
C3A—C4A1.5104 (18)C3B—C4B1.5155 (18)
C3A—H3AA1.0000C3B—H3BA1.0000
C4A—C13A1.3742 (19)C4B—C13B1.3706 (19)
C4A—C5A1.4104 (19)C4B—C5B1.412 (2)
C5A—C6A1.368 (2)C5B—C6B1.369 (2)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.416 (2)C6B—C7B1.413 (2)
C6A—H6AA0.9500C6B—H6BA0.9500
C7A—C8A1.4210 (19)C7B—C12B1.4216 (19)
C7A—C12A1.4218 (19)C7B—C8B1.4239 (19)
C8A—C9A1.361 (2)C8B—C9B1.366 (2)
C8A—H8AA0.9500C8B—H8BA0.9500
C9A—C10A1.405 (2)C9B—C10B1.404 (2)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.372 (2)C10B—C11B1.368 (2)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.4181 (19)C11B—C12B1.4128 (19)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.4200 (18)C12B—C13B1.4211 (18)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C19A1.4070 (19)C14B—C15B1.4096 (19)
C14A—C15A1.408 (2)C14B—C19B1.4159 (19)
C15A—C16A1.390 (2)C15B—C16B1.3909 (18)
C16A—C17A1.381 (2)C16B—C17B1.387 (2)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.371 (3)C17B—C18B1.372 (2)
C17A—H17A0.9500C17B—H17B0.9500
C18A—C19A1.392 (2)C18B—C19B1.3936 (19)
C18A—H18A0.9500C18B—H18B0.9500
C20A—H20A0.9800C20B—H20D0.9800
C20A—H20B0.9800C20B—H20E0.9800
C20A—H20C0.9800C20B—H20F0.9800
C19A—O1A—H1OA108.1 (13)C19B—O1B—H1OB107.5 (14)
C15A—O2A—C20A117.08 (12)C15B—O2B—C20B117.68 (10)
C1A—N1A—N2A109.97 (11)C1B—N1B—N2B110.08 (11)
N1A—N2A—C3A107.15 (11)N1B—N2B—C3B107.86 (11)
N1A—N2A—H2NA106.4 (11)N1B—N2B—H2NB108.9 (11)
C3A—N2A—H2NA114.3 (11)C3B—N2B—H2NB114.9 (12)
N1A—C1A—C14A119.87 (12)N1B—C1B—C14B119.81 (12)
N1A—C1A—C2A111.55 (11)N1B—C1B—C2B111.08 (11)
C14A—C1A—C2A128.58 (12)C14B—C1B—C2B129.05 (11)
C1A—C2A—C3A100.66 (10)C1B—C2B—C3B101.06 (10)
C1A—C2A—H2AA111.6C1B—C2B—H2BA111.6
C3A—C2A—H2AA111.6C3B—C2B—H2BA111.6
C1A—C2A—H2AB111.6C1B—C2B—H2BB111.6
C3A—C2A—H2AB111.6C3B—C2B—H2BB111.6
H2AA—C2A—H2AB109.4H2BA—C2B—H2BB109.4
N2A—C3A—C4A113.94 (11)N2B—C3B—C4B111.84 (11)
N2A—C3A—C2A101.37 (11)N2B—C3B—C2B101.06 (11)
C4A—C3A—C2A114.39 (11)C4B—C3B—C2B115.47 (11)
N2A—C3A—H3AA108.9N2B—C3B—H3BA109.4
C4A—C3A—H3AA108.9C4B—C3B—H3BA109.4
C2A—C3A—H3AA108.9C2B—C3B—H3BA109.4
C13A—C4A—C5A118.88 (12)C13B—C4B—C5B119.33 (12)
C13A—C4A—C3A122.98 (12)C13B—C4B—C3B121.31 (12)
C5A—C4A—C3A118.12 (12)C5B—C4B—C3B119.36 (12)
C6A—C5A—C4A121.26 (13)C6B—C5B—C4B120.80 (13)
C6A—C5A—H5AA119.4C6B—C5B—H5BA119.6
C4A—C5A—H5AA119.4C4B—C5B—H5BA119.6
C5A—C6A—C7A120.92 (13)C5B—C6B—C7B121.10 (13)
C5A—C6A—H6AA119.5C5B—C6B—H6BA119.5
C7A—C6A—H6AA119.5C7B—C6B—H6BA119.5
C6A—C7A—C8A122.70 (13)C6B—C7B—C12B118.54 (12)
C6A—C7A—C12A118.45 (12)C6B—C7B—C8B122.99 (13)
C8A—C7A—C12A118.83 (13)C12B—C7B—C8B118.46 (13)
C9A—C8A—C7A120.96 (13)C9B—C8B—C7B120.95 (14)
C9A—C8A—H8AA119.5C9B—C8B—H8BA119.5
C7A—C8A—H8AA119.5C7B—C8B—H8BA119.5
C8A—C9A—C10A120.46 (13)C8B—C9B—C10B120.43 (13)
C8A—C9A—H9AA119.8C8B—C9B—H9BA119.8
C10A—C9A—H9AA119.8C10B—C9B—H9BA119.8
C11A—C10A—C9A120.27 (14)C11B—C10B—C9B120.01 (14)
C11A—C10A—H10A119.9C11B—C10B—H10B120.0
C9A—C10A—H10A119.9C9B—C10B—H10B120.0
C10A—C11A—C12A120.87 (13)C10B—C11B—C12B121.32 (13)
C10A—C11A—H11A119.6C10B—C11B—H11B119.3
C12A—C11A—H11A119.6C12B—C11B—H11B119.3
C11A—C12A—C13A122.43 (12)C11B—C12B—C13B122.25 (12)
C11A—C12A—C7A118.60 (12)C11B—C12B—C7B118.81 (12)
C13A—C12A—C7A118.97 (12)C13B—C12B—C7B118.94 (12)
C4A—C13A—C12A121.50 (12)C4B—C13B—C12B121.28 (12)
C4A—C13A—H13A119.2C4B—C13B—H13B119.4
C12A—C13A—H13A119.2C12B—C13B—H13B119.4
C19A—C14A—C15A117.46 (13)C15B—C14B—C19B117.35 (12)
C19A—C14A—C1A120.57 (12)C15B—C14B—C1B122.59 (12)
C15A—C14A—C1A121.95 (12)C19B—C14B—C1B120.05 (12)
O2A—C15A—C16A123.43 (13)O2B—C15B—C16B123.04 (12)
O2A—C15A—C14A115.27 (12)O2B—C15B—C14B115.96 (11)
C16A—C15A—C14A121.28 (14)C16B—C15B—C14B120.99 (13)
C17A—C16A—C15A119.08 (15)C17B—C16B—C15B119.57 (13)
C17A—C16A—H16A120.5C17B—C16B—H16B120.2
C15A—C16A—H16A120.5C15B—C16B—H16B120.2
C18A—C17A—C16A121.53 (14)C18B—C17B—C16B121.40 (13)
C18A—C17A—H17A119.2C18B—C17B—H17B119.3
C16A—C17A—H17A119.2C16B—C17B—H17B119.3
C17A—C18A—C19A119.57 (14)C17B—C18B—C19B119.32 (14)
C17A—C18A—H18A120.2C17B—C18B—H18B120.3
C19A—C18A—H18A120.2C19B—C18B—H18B120.3
O1A—C19A—C18A117.18 (13)O1B—C19B—C18B117.24 (12)
O1A—C19A—C14A121.87 (13)O1B—C19B—C14B121.46 (12)
C18A—C19A—C14A120.94 (14)C18B—C19B—C14B121.30 (13)
O2A—C20A—H20A109.5O2B—C20B—H20D109.5
O2A—C20A—H20B109.5O2B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
O2A—C20A—H20C109.5O2B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.97 (2)1.71 (2)2.5754 (15)145 (2)
O1B—H1OB···N1B0.91 (2)1.71 (2)2.5377 (15)149 (2)
N2A—H2NA···O1Ai0.914 (18)2.234 (18)3.0470 (16)147.7 (15)
N2B—H2NB···O1Bii0.911 (19)2.131 (19)2.9787 (16)154.4 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1OA···N1A0.97 (2)1.71 (2)2.5754 (15)145 (2)
O1B—H1OB···N1B0.91 (2)1.71 (2)2.5377 (15)149 (2)
N2A—H2NA···O1Ai0.914 (18)2.234 (18)3.0470 (16)147.7 (15)
N2B—H2NB···O1Bii0.911 (19)2.131 (19)2.9787 (16)154.4 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y2, z+1.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCongiu, C., Onnis, V., Vesci, L., Castorina, M. & Pisano, C. (2010). Bioorg. Med. Chem. 18, 6238–6248.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Ooi, C. W., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2634.  CSD CrossRef IUCr Journals Google Scholar
First citationHwang, D., Yoon, H., Ahn, S., Kim, D.-W., Bae, D.-H., Koh, D. & Lim, Y. (2013). Magn. Reson. Chem. 51, 593–599.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1950–o1951.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 30–36.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. & Satyanarayana, D. (2009). Eur. J. Med. Chem. 44, 1682–1688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSharifzadeh, B., Mahmoodi, N. O., Mamaghani, M., Tabatabaeian, K., Chirani, A. S. & Nikokar, I. (2013). Bioorg. Med. Chem. Lett. 23, 548–551.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds