organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o468-o469

Enrofloxacin hydro­chloride dihydrate

aDepartamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad 3000, Delegación Coyoacán, Ciudad de México, CP 04510, Mexico, bFacultad de Química, Universidad Nacional Autónoma de México, 04510 México D.F., Mexico, and cLaboratorio Divisional de Espectroscopia de Masas, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Delegación Iztapalapa, Ciudad de México, CP 09340, Mexico
*Correspondence e-mail: sumano@unam.mx

(Received 7 March 2014; accepted 18 March 2014; online 26 March 2014)

The asymmetric unit of the title compound, C19H23FN3O3+·Cl·2H2O [systematic name: 4-(3-carb­oxy-1-cyclo­propyl-6-fluoro-4-oxo-1,4-di­hydro­quin­o­lin-7-yl)-1-ethyl­piperazin-1-ium chloride dihydrate], consists of two independent monocations of the protonated enrofloxacin, two chloride anions and four water mol­ecules. In the cations, the piperazinium rings adopt chair conformations and the dihedral angles between the cyclo­propyl ring and the 10-membered quinoline ring system are 56.55 (2) and 51.11 (2)°. An intra­molecular O—H⋯O hydrogen bond is observed in each cation. In the crystal, the components are connected via O—H⋯Cl, N—H⋯Cl and O—H⋯O hydrogen bonds, and a ππ inter­action between the benzene rings [centroid–centroid distance = 3.6726 (13) Å], resulting in a three-dimensional array.

Related literature

For the biological activity of enrofloxacin, see: Sárközy (2001[Sárközy, G. (2001). Vet. Med. 46, 257-274.]); Sumano & Gutierrez (2013[Sumano, L. H. & Gutierrez, O. L. (2013). IMPI, Mex. Patent 472715 (in process).]). For a related structure, see: Yamuna et al. (2014[Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o200-o201.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Elliel & N. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23FN3O3+·Cl·2H2O

  • Mr = 431.88

  • Monoclinic, P 21 /c

  • a = 7.1874 (3) Å

  • b = 21.1475 (8) Å

  • c = 26.5106 (10) Å

  • β = 91.407 (4)°

  • V = 4028.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 130 K

  • 0.47 × 0.14 × 0.04 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.939, Tmax = 0.992

  • 18668 measured reflections

  • 9291 independent reflections

  • 5799 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.132

  • S = 1.02

  • 9291 reflections

  • 561 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H3D⋯Cl1 0.888 (18) 2.27 (2) 3.126 (2) 163 (3)
O2W—H2E⋯Cl1 0.859 (17) 2.363 (19) 3.207 (2) 167 (3)
O4W—H4E⋯O3Ai 0.895 (18) 2.015 (19) 2.899 (3) 169 (3)
O3W—H3E⋯Cl2 0.883 (18) 2.52 (2) 3.356 (3) 158 (3)
O1W—H1E⋯Cl2 0.866 (18) 2.350 (18) 3.215 (2) 179 (3)
O4W—H4D⋯Cl2ii 0.875 (17) 2.325 (19) 3.190 (2) 170 (3)
O1W—H1D⋯Cl1 0.858 (18) 2.45 (2) 3.285 (2) 163 (3)
O2W—H2D⋯O3Biii 0.886 (17) 1.940 (18) 2.819 (3) 172 (3)
O2A—H2F⋯O1A 0.876 (17) 1.68 (2) 2.523 (2) 160 (3)
O2B—H2G⋯O1B 0.871 (17) 1.73 (2) 2.532 (3) 152 (3)
N3B—H3G⋯Cl1 0.942 (16) 2.219 (17) 3.154 (2) 172 (2)
N3A—H3F⋯Cl2iv 0.946 (16) 2.204 (17) 3.149 (2) 177 (2)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Enrofloxacin is a synthetic antimicrobial agent that belongs to the group of synthetic 6-fluoroquinolones (Sárközy, 2001). Essential for the broad spectrum and the excellent antimicrobial efficacy is the fluorine substituent at position C6 and the piperazine ring at C7. The development of pharmaceutical derivatives of active principles such as salts, represent extensions of chemical space wherein enhanced or new chemical and physical properties may lead to extended use of a given drug as a therapeutic agent. Hence, the aim of this trial was produce enrofloxacin hydrochloride salt in order to improve its pharmacokinetic behavior (Sumano & Gutierrez, 2013).

The title compound crystallizes with two independent monocations (A and B) of the enrofloxacin protonated (EnrH+), two chloride anions and four water molecules solvent (Fig. 1). The piperazinium rings in both the cations adopt chair conformations. For A molecule, puckering parameters (Cremer & Pople, 1975) are Q = 0.588 (3) Å, θ = 178.42 (19), ϕ = 346 (12)° (if the calculation starts from N2A to C17A and proceeds in a counterclockwise direction) with asymmetry parameters (Duax et al., 1976): ΔC2(N2A—C14A) = 0.8 (3), ΔC2(C14A—C15A) = 0.6 (3), ΔC2(C15A—N3A) = 0.4 (3), ΔCs(N2A) = 0.6 (2), ΔCs(C14A) = 0.2 (2), ΔCs(C15A) = 0.7 (2) and ΔCs(C17A) = 0.7 (2)° with a weighted average absolute torsion angle of 58.20 (12)° and weighted average ring bond distance of 1.4931 (13) Å. For B molecule, puckering parameters are Q = 0.586 (3) Å, θ = 3.8 (2), ϕ= 200 (4)° (if the calculation starts from N2B to C17B and proceeds in a counterclockwise direction) with asymmetry parameters: ΔC2(N2B—C14B) = 0.4 (3), ΔC2(C14B—C15B) = 3.3 (3), ΔC2(C15B—N3B) = 3.5 (3), ΔCs(N2B) = 1.9 (2), ΔCs(C14B) = 1.4 (2), ΔCs(C15B) = 3.2 (2) and ΔCs(C17B) = 3.2 (2)° with a weighted average absolute torsion angle of 57.93 (12)° and weighted average ring bond distance of 1.4930 (13) Å. Bond lengths are in normal ranges (Allen et al., 1987) and to previously reported (Yamuna et al., 2014). The dihedral angles between the mean planes of the cyclopropyl ring and the 10-membered quinoline ring are 56.55 (2) and 51.11 (2)° for A and B molecules, respectively.

In each cation, an intramolecular O—H···O hydrogen bond is observed [O2A—H2F···O1A and O2B—H2G···O1B (Table 1 & Fig. 2)]. In the crystal, there are classic hydrogen bonds (Table 1) mainly between the N atoms of the EnrH+ and the O atoms of the water molecules as donor atoms, and the Cl- anions and the O atoms of the carboxyl groups as acceptors. The O1W—H1D···Cl1, O1W—H1E···Cl2, O3W—H3D···Cl1 and O3A—H3E···Cl2 hydrogen bonds form an R42(8) motif (Etter et al., 1990), while the N3A—H3F···Cl2, O4W—H4D···Cl2 and O4W—O4E···O3A hydrogen bonds form a C32(17) motif running along the crystallographic c axis. Finally, A and B molecules form a ππ interaction between Cg4···Cg9 [3.6726 (13) Å], where Cg4 and Cg9 are the centroids of the C1A–C6A, C1B–C6B benzene rings, respectively.

Related literature top

For the biological activity of enrofloxacin, see: Sárközy (2001); Sumano & Gutierrez (2013). For a related structure, see: Yamuna et al. (2014). For hydrogen-bond motifs, see: Etter et al. (1990). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975); Duax et al. (1976).

Experimental top

The enrofloxacin hydrochloride crystals (Sumano & Gutierrez, 2013) were formed after one month by slow evaporation at room temperature from saturated solution in a mixture of water-ethanol-acetone (3:2:1). Single crystals for X-ray determination were separated by filtration with 0.45 µm-pore membrane and vacuum. Mass spectrum of enrofloxaxin hydrochloride presents two principal signals around to m/z 394 and 753 (M-), four peaks at m/z 394.1313, 395.1336, 396.1285 and 397.1305 (M+) corresponding to the deprotonated molecular ion [M – H]- with the characteristic isotopic pattern (3:1) that confirms the presence of one chlorine atom.

Refinement top

H atoms of the hydroxy groups and the amine groups were located in a difference map and their positions were refined with bond-length restraints of O—H = 0.86 (2) Å and N—H = 0.92 (2) Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances of 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. Intramolecular O—H···O hydrogen bonds, intermolecular hydrogen bonds forming the R42(8) and C32(17) motifs and a ππ interaction between A and B molecules.
4-(3-Carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-ethylpiperazin-1-ium chloride dihydrate top
Crystal data top
C19H23FN3O3+·Cl·2H2OF(000) = 1824
Mr = 431.88Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3358 reflections
a = 7.1874 (3) Åθ = 3.3–29.2°
b = 21.1475 (8) ŵ = 0.24 mm1
c = 26.5106 (10) ÅT = 130 K
β = 91.407 (4)°Lamina, colourless
V = 4028.3 (3) Å30.47 × 0.14 × 0.04 mm
Z = 8
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
9291 independent reflections
Graphite monochromator5799 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.044
ω scansθmax = 29.2°, θmin = 3.3°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2012)
h = 99
Tmin = 0.939, Tmax = 0.992k = 2626
18668 measured reflectionsl = 3619
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.4843P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
9291 reflectionsΔρmax = 0.39 e Å3
561 parametersΔρmin = 0.29 e Å3
Crystal data top
C19H23FN3O3+·Cl·2H2OV = 4028.3 (3) Å3
Mr = 431.88Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.1874 (3) ŵ = 0.24 mm1
b = 21.1475 (8) ÅT = 130 K
c = 26.5106 (10) Å0.47 × 0.14 × 0.04 mm
β = 91.407 (4)°
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
9291 independent reflections
Absorption correction: analytical
(CrysAlis RED; Agilent, 2012)
5799 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.992Rint = 0.044
18668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05812 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
9291 reflectionsΔρmin = 0.29 e Å3
561 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.0945 (3)0.55957 (9)0.30895 (8)0.0409 (6)
H1D0.103 (5)0.5612 (15)0.2768 (7)0.061*
H1E0.170 (4)0.5291 (12)0.3170 (13)0.061*
O2W0.0169 (3)0.66979 (9)0.14791 (8)0.0337 (5)
H2D0.058 (4)0.6850 (13)0.1191 (8)0.051*
H2E0.072 (4)0.6345 (10)0.1545 (12)0.051*
O3W0.5109 (3)0.44605 (10)0.21637 (9)0.0458 (6)
H3D0.410 (4)0.4656 (15)0.2045 (13)0.069*
H3E0.502 (5)0.4386 (16)0.2490 (7)0.069*
O4W0.4734 (3)0.69206 (9)0.63793 (8)0.0382 (5)
H4D0.524 (4)0.6547 (10)0.6419 (13)0.057*
H4E0.541 (4)0.7093 (14)0.6137 (10)0.057*
Cl10.18451 (9)0.53861 (3)0.18924 (3)0.02716 (17)
Cl20.37940 (9)0.44701 (3)0.33696 (3)0.02945 (18)
C1A0.1149 (3)0.80909 (11)0.38678 (9)0.0148 (5)
C2A0.0759 (3)0.83710 (11)0.34018 (9)0.0149 (5)
H2A0.08570.88170.33650.018*
C3A0.0232 (3)0.80040 (10)0.29940 (9)0.0140 (5)
C4A0.0066 (3)0.73444 (11)0.30794 (9)0.0162 (5)
C5A0.0419 (3)0.70655 (11)0.35256 (9)0.0162 (5)
H5A0.02870.66210.35620.019*
C6A0.0981 (3)0.74348 (11)0.39352 (9)0.0149 (5)
C7A0.1400 (3)0.71392 (11)0.44110 (9)0.0167 (5)
C8A0.2098 (3)0.75514 (11)0.47927 (9)0.0170 (5)
C9A0.2239 (3)0.81822 (11)0.47027 (9)0.0176 (5)
H9A0.27180.84420.49620.021*
C10A0.1978 (3)0.91444 (10)0.42118 (9)0.0178 (5)
H10A0.30720.92830.39990.021*
C11A0.1480 (4)0.95613 (11)0.46508 (10)0.0234 (6)
H11A0.09740.93580.49610.028*
H11B0.22660.99380.47080.028*
C12A0.0293 (4)0.95565 (11)0.41910 (10)0.0238 (6)
H12A0.0350.9930.39660.029*
H12B0.09420.9350.42190.029*
C13A0.2698 (4)0.73054 (12)0.52858 (10)0.0223 (6)
C14A0.0844 (3)0.80015 (11)0.20864 (9)0.0179 (5)
H14A0.21270.81720.20840.021*
H14B0.09230.75360.21150.021*
C15A0.0075 (4)0.81741 (11)0.15984 (9)0.0190 (6)
H15A0.13340.79850.15910.023*
H15B0.06650.80040.13090.023*
C16A0.1289 (4)0.91296 (11)0.20045 (9)0.0209 (6)
H16A0.13680.95960.19830.025*
H16B0.25710.89580.20040.025*
C17A0.0361 (4)0.89440 (10)0.24917 (9)0.0199 (6)
H17A0.11020.91070.27840.024*
H17B0.08950.91350.25010.024*
C18A0.1043 (4)0.90731 (11)0.10654 (9)0.0224 (6)
H18A0.24040.90020.10850.027*
H18B0.05210.88030.07920.027*
C19A0.0673 (5)0.97526 (13)0.09384 (11)0.0445 (9)
H19A0.0670.98320.0940.067*
H19B0.11460.98460.06030.067*
H19C0.13011.00240.11890.067*
O1A0.1157 (2)0.65518 (7)0.44859 (6)0.0225 (4)
O2A0.2468 (3)0.66868 (9)0.53535 (7)0.0300 (5)
H2F0.190 (4)0.6560 (13)0.5082 (9)0.045*
O3A0.3382 (3)0.76322 (9)0.56093 (7)0.0295 (5)
F1A0.0539 (2)0.69805 (6)0.26952 (5)0.0221 (3)
N1A0.1745 (3)0.84621 (9)0.42712 (7)0.0155 (4)
N2A0.0212 (3)0.82566 (9)0.25263 (7)0.0162 (4)
N3A0.0213 (3)0.88804 (9)0.15558 (7)0.0173 (5)
H3F0.101 (2)0.9044 (10)0.1576 (9)0.021*
C1B0.3977 (3)0.70876 (11)0.39328 (9)0.0150 (5)
C2B0.4493 (3)0.67576 (11)0.34998 (9)0.0164 (5)
H2B0.45240.63090.35060.02*
C3B0.4960 (3)0.70751 (10)0.30629 (9)0.0153 (5)
C4B0.4858 (3)0.77417 (11)0.30757 (9)0.0168 (5)
C5B0.4369 (3)0.80739 (11)0.34893 (9)0.0163 (5)
H5B0.43230.85230.34780.02*
C6B0.3931 (3)0.77515 (11)0.39352 (9)0.0155 (5)
C7B0.3430 (3)0.80974 (11)0.43830 (9)0.0178 (5)
C8B0.2841 (3)0.77203 (12)0.47991 (9)0.0187 (5)
C9B0.2880 (3)0.70748 (11)0.47683 (9)0.0189 (5)
H9B0.24750.68390.5050.023*
C10B0.3296 (4)0.60660 (11)0.43491 (10)0.0226 (6)
H10B0.21980.58970.41530.027*
C11B0.3874 (4)0.56938 (12)0.48049 (10)0.0300 (7)
H11C0.31320.53150.48880.036*
H11D0.43910.59280.510.036*
C12B0.5007 (4)0.56722 (11)0.43374 (10)0.0258 (6)
H12C0.62220.58930.43450.031*
H12D0.49630.5280.41340.031*
C13B0.2142 (4)0.80098 (13)0.52658 (10)0.0241 (6)
C14B0.4501 (4)0.68711 (11)0.21643 (9)0.0187 (5)
H14C0.42770.7330.21190.022*
H14D0.32780.6660.21910.022*
C15B0.5496 (4)0.66151 (11)0.17080 (9)0.0206 (6)
H15C0.47040.66720.14010.025*
H15D0.66720.6850.16620.025*
C16B0.7079 (4)0.58492 (12)0.22539 (9)0.0223 (6)
H16C0.82610.60840.22190.027*
H16D0.73810.53970.23040.027*
C17B0.6058 (4)0.60954 (11)0.27052 (9)0.0205 (6)
H17C0.490.5850.27480.025*
H17D0.68470.60430.30140.025*
C18B0.6794 (4)0.56056 (12)0.13452 (10)0.0267 (6)
H18C0.80020.58120.1280.032*
H18D0.70460.51580.14330.032*
C19B0.5603 (4)0.56290 (14)0.08741 (10)0.0367 (7)
H19D0.43480.5480.09480.055*
H19E0.61440.53570.06170.055*
H19F0.55390.60650.0750.055*
O1B0.3504 (2)0.86958 (8)0.44026 (7)0.0243 (4)
O2B0.2142 (3)0.86369 (9)0.52735 (7)0.0320 (5)
H2G0.260 (4)0.8788 (13)0.4997 (9)0.048*
O3B0.1561 (3)0.77044 (9)0.56158 (7)0.0322 (5)
F1B0.5322 (2)0.80645 (6)0.26545 (5)0.0238 (3)
N1B0.3457 (3)0.67547 (9)0.43647 (7)0.0167 (4)
N2B0.5603 (3)0.67658 (9)0.26343 (7)0.0165 (4)
N3B0.5907 (3)0.59264 (9)0.17851 (8)0.0201 (5)
H3G0.475 (3)0.5729 (11)0.1830 (9)0.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0560 (15)0.0290 (11)0.0383 (13)0.0112 (10)0.0126 (12)0.0045 (10)
O2W0.0407 (13)0.0304 (11)0.0307 (12)0.0032 (10)0.0125 (10)0.0072 (9)
O3W0.0470 (15)0.0321 (12)0.0586 (16)0.0085 (10)0.0119 (13)0.0091 (11)
O4W0.0393 (13)0.0339 (12)0.0421 (14)0.0032 (10)0.0144 (11)0.0092 (10)
Cl10.0243 (4)0.0271 (3)0.0300 (4)0.0037 (3)0.0005 (3)0.0033 (3)
Cl20.0238 (4)0.0259 (4)0.0387 (4)0.0018 (3)0.0021 (3)0.0007 (3)
C1A0.0108 (12)0.0205 (12)0.0131 (12)0.0012 (10)0.0001 (10)0.0016 (10)
C2A0.0146 (12)0.0140 (11)0.0161 (13)0.0014 (10)0.0002 (10)0.0013 (10)
C3A0.0082 (12)0.0175 (12)0.0163 (13)0.0001 (10)0.0000 (10)0.0010 (10)
C4A0.0130 (12)0.0201 (12)0.0154 (13)0.0028 (10)0.0007 (10)0.0059 (10)
C5A0.0132 (13)0.0163 (12)0.0190 (13)0.0017 (10)0.0023 (10)0.0001 (10)
C6A0.0112 (12)0.0185 (12)0.0148 (13)0.0010 (10)0.0024 (10)0.0013 (10)
C7A0.0116 (12)0.0205 (13)0.0177 (13)0.0019 (10)0.0029 (10)0.0006 (10)
C8A0.0135 (12)0.0245 (13)0.0130 (13)0.0023 (11)0.0015 (10)0.0017 (10)
C9A0.0121 (12)0.0281 (14)0.0126 (12)0.0001 (11)0.0001 (10)0.0021 (10)
C10A0.0204 (14)0.0159 (12)0.0170 (13)0.0031 (10)0.0012 (11)0.0014 (10)
C11A0.0324 (16)0.0173 (13)0.0204 (14)0.0013 (11)0.0013 (12)0.0047 (11)
C12A0.0262 (15)0.0201 (13)0.0252 (15)0.0025 (11)0.0001 (12)0.0002 (11)
C13A0.0211 (14)0.0289 (15)0.0166 (14)0.0043 (12)0.0037 (12)0.0050 (11)
C14A0.0185 (14)0.0192 (13)0.0160 (13)0.0027 (10)0.0005 (11)0.0005 (10)
C15A0.0246 (14)0.0197 (13)0.0128 (13)0.0014 (11)0.0016 (11)0.0024 (10)
C16A0.0243 (15)0.0192 (13)0.0193 (14)0.0073 (11)0.0029 (12)0.0005 (11)
C17A0.0267 (15)0.0154 (12)0.0178 (14)0.0052 (11)0.0029 (12)0.0018 (10)
C18A0.0240 (15)0.0283 (14)0.0151 (13)0.0003 (12)0.0052 (11)0.0019 (11)
C19A0.066 (2)0.0362 (17)0.0326 (18)0.0047 (16)0.0245 (17)0.0125 (14)
O1A0.0251 (10)0.0211 (9)0.0214 (10)0.0008 (8)0.0015 (8)0.0038 (7)
O2A0.0404 (13)0.0302 (11)0.0197 (10)0.0025 (9)0.0057 (9)0.0072 (8)
O3A0.0358 (12)0.0375 (11)0.0155 (10)0.0019 (9)0.0080 (9)0.0012 (8)
F1A0.0310 (9)0.0198 (7)0.0158 (8)0.0054 (6)0.0047 (7)0.0039 (6)
N1A0.0145 (10)0.0183 (10)0.0137 (11)0.0002 (8)0.0003 (9)0.0018 (8)
N2A0.0182 (11)0.0179 (10)0.0126 (10)0.0016 (9)0.0023 (9)0.0013 (8)
N3A0.0178 (11)0.0187 (11)0.0155 (11)0.0013 (9)0.0034 (9)0.0010 (8)
C1B0.0116 (12)0.0191 (12)0.0142 (13)0.0001 (10)0.0008 (10)0.0008 (10)
C2B0.0154 (13)0.0144 (12)0.0195 (13)0.0013 (10)0.0002 (11)0.0006 (10)
C3B0.0126 (12)0.0168 (12)0.0166 (13)0.0010 (10)0.0008 (10)0.0021 (10)
C4B0.0150 (13)0.0204 (12)0.0151 (13)0.0023 (10)0.0023 (11)0.0027 (10)
C5B0.0147 (13)0.0144 (12)0.0199 (13)0.0007 (10)0.0018 (11)0.0012 (10)
C6B0.0100 (12)0.0207 (12)0.0158 (13)0.0005 (10)0.0014 (10)0.0038 (10)
C7B0.0090 (12)0.0228 (13)0.0214 (14)0.0016 (10)0.0030 (10)0.0045 (11)
C8B0.0132 (13)0.0280 (14)0.0148 (13)0.0009 (11)0.0005 (10)0.0027 (11)
C9B0.0145 (13)0.0295 (14)0.0128 (13)0.0005 (11)0.0008 (10)0.0004 (11)
C10B0.0253 (15)0.0200 (13)0.0227 (15)0.0016 (11)0.0043 (12)0.0034 (11)
C11B0.0393 (18)0.0242 (14)0.0268 (16)0.0014 (13)0.0062 (14)0.0076 (12)
C12B0.0309 (16)0.0209 (13)0.0259 (15)0.0027 (12)0.0033 (13)0.0010 (11)
C13B0.0182 (14)0.0351 (16)0.0188 (14)0.0046 (12)0.0038 (12)0.0057 (12)
C14B0.0195 (14)0.0216 (13)0.0150 (13)0.0003 (11)0.0014 (11)0.0024 (10)
C15B0.0232 (14)0.0235 (13)0.0152 (13)0.0014 (11)0.0018 (11)0.0013 (11)
C16B0.0243 (15)0.0219 (13)0.0207 (14)0.0031 (11)0.0007 (12)0.0047 (11)
C17B0.0218 (14)0.0217 (13)0.0182 (14)0.0021 (11)0.0029 (11)0.0020 (11)
C18B0.0291 (16)0.0302 (15)0.0212 (14)0.0004 (12)0.0079 (12)0.0086 (12)
C19B0.0393 (19)0.0488 (19)0.0222 (16)0.0016 (15)0.0030 (14)0.0124 (13)
O1B0.0275 (11)0.0197 (9)0.0257 (10)0.0005 (8)0.0028 (8)0.0066 (8)
O2B0.0401 (13)0.0320 (11)0.0242 (11)0.0035 (9)0.0052 (10)0.0112 (9)
O3B0.0371 (12)0.0428 (12)0.0171 (10)0.0044 (9)0.0072 (9)0.0031 (9)
F1B0.0338 (9)0.0209 (7)0.0169 (8)0.0037 (6)0.0085 (7)0.0028 (6)
N1B0.0153 (11)0.0195 (11)0.0154 (11)0.0006 (9)0.0014 (9)0.0032 (9)
N2B0.0176 (11)0.0177 (10)0.0145 (11)0.0025 (9)0.0034 (9)0.0012 (8)
N3B0.0196 (12)0.0206 (11)0.0204 (12)0.0032 (9)0.0061 (10)0.0056 (9)
Geometric parameters (Å, º) top
O1W—H1D0.858 (18)C19A—H19B0.98
O1W—H1E0.866 (18)C19A—H19C0.98
O2W—H2D0.886 (17)O2A—H2F0.876 (17)
O2W—H2E0.859 (17)N3A—H3F0.946 (16)
O3W—H3D0.888 (18)C1B—C2B1.401 (3)
O3W—H3E0.883 (18)C1B—N1B1.403 (3)
O4W—H4D0.875 (17)C1B—C6B1.404 (3)
O4W—H4E0.895 (18)C2B—C3B1.387 (3)
C1A—N1A1.402 (3)C2B—H2B0.95
C1A—C6A1.404 (3)C3B—N2B1.399 (3)
C1A—C2A1.404 (3)C3B—C4B1.412 (3)
C2A—C3A1.391 (3)C4B—C5B1.356 (3)
C2A—H2A0.95C4B—F1B1.358 (3)
C3A—N2A1.394 (3)C5B—C6B1.407 (3)
C3A—C4A1.418 (3)C5B—H5B0.95
C4A—C5A1.352 (3)C6B—C7B1.447 (3)
C4A—F1A1.357 (3)C7B—O1B1.268 (3)
C5A—C6A1.405 (3)C7B—C8B1.433 (3)
C5A—H5A0.95C8B—C9B1.368 (3)
C6A—C7A1.446 (3)C8B—C13B1.479 (3)
C7A—O1A1.269 (3)C9B—N1B1.340 (3)
C7A—C8A1.436 (3)C9B—H9B0.95
C8A—C9A1.358 (3)C10B—N1B1.462 (3)
C8A—C13A1.481 (3)C10B—C12B1.486 (4)
C9A—N1A1.344 (3)C10B—C11B1.492 (3)
C9A—H9A0.95C10B—H10B1
C10A—N1A1.461 (3)C11B—C12B1.500 (3)
C10A—C12A1.494 (3)C11B—H11C0.99
C10A—C11A1.496 (3)C11B—H11D0.99
C10A—H10A1C12B—H12C0.99
C11A—C12A1.505 (3)C12B—H12D0.99
C11A—H11A0.99C13B—O3B1.213 (3)
C11A—H11B0.99C13B—O2B1.326 (3)
C12A—H12A0.99C14B—N2B1.477 (3)
C12A—H12B0.99C14B—C15B1.520 (3)
C13A—O3A1.215 (3)C14B—H14C0.99
C13A—O2A1.330 (3)C14B—H14D0.99
C14A—N2A1.478 (3)C15B—N3B1.499 (3)
C14A—C15A1.512 (3)C15B—H15C0.99
C14A—H14A0.99C15B—H15D0.99
C14A—H14B0.99C16B—N3B1.493 (3)
C15A—N3A1.501 (3)C16B—C17B1.511 (3)
C15A—H15A0.99C16B—H16C0.99
C15A—H15B0.99C16B—H16D0.99
C16A—N3A1.499 (3)C17B—N2B1.466 (3)
C16A—C17A1.519 (3)C17B—H17C0.99
C16A—H16A0.99C17B—H17D0.99
C16A—H16B0.99C18B—C19B1.498 (4)
C17A—N2A1.461 (3)C18B—N3B1.505 (3)
C17A—H17A0.99C18B—H18C0.99
C17A—H17B0.99C18B—H18D0.99
C18A—C19A1.498 (4)C19B—H19D0.98
C18A—N3A1.500 (3)C19B—H19E0.98
C18A—H18A0.99C19B—H19F0.98
C18A—H18B0.99O2B—H2G0.871 (17)
C19A—H19A0.98N3B—H3G0.942 (16)
H1D—O1W—H1E102 (3)C18A—N3A—H3F109.9 (15)
H2D—O2W—H2E109 (3)C15A—N3A—H3F107.2 (14)
H3D—O3W—H3E110 (4)C2B—C1B—N1B120.0 (2)
H4D—O4W—H4E103 (3)C2B—C1B—C6B120.6 (2)
N1A—C1A—C6A118.9 (2)N1B—C1B—C6B119.4 (2)
N1A—C1A—C2A120.4 (2)C3B—C2B—C1B121.2 (2)
C6A—C1A—C2A120.7 (2)C3B—C2B—H2B119.4
C3A—C2A—C1A120.8 (2)C1B—C2B—H2B119.4
C3A—C2A—H2A119.6C2B—C3B—N2B122.9 (2)
C1A—C2A—H2A119.6C2B—C3B—C4B116.7 (2)
C2A—C3A—N2A123.4 (2)N2B—C3B—C4B120.3 (2)
C2A—C3A—C4A116.6 (2)C5B—C4B—F1B118.6 (2)
N2A—C3A—C4A119.9 (2)C5B—C4B—C3B123.5 (2)
C5A—C4A—F1A118.7 (2)F1B—C4B—C3B117.9 (2)
C5A—C4A—C3A123.5 (2)C4B—C5B—C6B119.8 (2)
F1A—C4A—C3A117.8 (2)C4B—C5B—H5B120.1
C4A—C5A—C6A119.8 (2)C6B—C5B—H5B120.1
C4A—C5A—H5A120.1C1B—C6B—C5B118.3 (2)
C6A—C5A—H5A120.1C1B—C6B—C7B121.0 (2)
C1A—C6A—C5A118.5 (2)C5B—C6B—C7B120.6 (2)
C1A—C6A—C7A121.3 (2)O1B—C7B—C8B122.4 (2)
C5A—C6A—C7A120.2 (2)O1B—C7B—C6B121.8 (2)
O1A—C7A—C8A122.2 (2)C8B—C7B—C6B115.7 (2)
O1A—C7A—C6A121.9 (2)C9B—C8B—C7B120.1 (2)
C8A—C7A—C6A115.9 (2)C9B—C8B—C13B118.1 (2)
C9A—C8A—C7A119.9 (2)C7B—C8B—C13B121.8 (2)
C9A—C8A—C13A118.5 (2)N1B—C9B—C8B124.0 (2)
C7A—C8A—C13A121.6 (2)N1B—C9B—H9B118
N1A—C9A—C8A124.2 (2)C8B—C9B—H9B118
N1A—C9A—H9A117.9N1B—C10B—C12B119.6 (2)
C8A—C9A—H9A117.9N1B—C10B—C11B118.8 (2)
N1A—C10A—C12A119.3 (2)C12B—C10B—C11B60.49 (17)
N1A—C10A—C11A118.3 (2)N1B—C10B—H10B115.6
C12A—C10A—C11A60.44 (16)C12B—C10B—H10B115.6
N1A—C10A—H10A115.8C11B—C10B—H10B115.6
C12A—C10A—H10A115.8C10B—C11B—C12B59.53 (17)
C11A—C10A—H10A115.8C10B—C11B—H11C117.8
C10A—C11A—C12A59.70 (16)C12B—C11B—H11C117.8
C10A—C11A—H11A117.8C10B—C11B—H11D117.8
C12A—C11A—H11A117.8C12B—C11B—H11D117.8
C10A—C11A—H11B117.8H11C—C11B—H11D115
C12A—C11A—H11B117.8C10B—C12B—C11B59.98 (17)
H11A—C11A—H11B114.9C10B—C12B—H12C117.8
C10A—C12A—C11A59.86 (16)C11B—C12B—H12C117.8
C10A—C12A—H12A117.8C10B—C12B—H12D117.8
C11A—C12A—H12A117.8C11B—C12B—H12D117.8
C10A—C12A—H12B117.8H12C—C12B—H12D114.9
C11A—C12A—H12B117.8O3B—C13B—O2B121.4 (2)
H12A—C12A—H12B114.9O3B—C13B—C8B123.4 (2)
O3A—C13A—O2A121.0 (2)O2B—C13B—C8B115.3 (2)
O3A—C13A—C8A123.7 (2)N2B—C14B—C15B111.4 (2)
O2A—C13A—C8A115.3 (2)N2B—C14B—H14C109.4
N2A—C14A—C15A111.13 (19)C15B—C14B—H14C109.4
N2A—C14A—H14A109.4N2B—C14B—H14D109.4
C15A—C14A—H14A109.4C15B—C14B—H14D109.4
N2A—C14A—H14B109.4H14C—C14B—H14D108
C15A—C14A—H14B109.4N3B—C15B—C14B109.41 (19)
H14A—C14A—H14B108N3B—C15B—H15C109.8
N3A—C15A—C14A109.61 (18)C14B—C15B—H15C109.8
N3A—C15A—H15A109.7N3B—C15B—H15D109.8
C14A—C15A—H15A109.7C14B—C15B—H15D109.8
N3A—C15A—H15B109.7H15C—C15B—H15D108.2
C14A—C15A—H15B109.7N3B—C16B—C17B110.3 (2)
H15A—C15A—H15B108.2N3B—C16B—H16C109.6
N3A—C16A—C17A110.8 (2)C17B—C16B—H16C109.6
N3A—C16A—H16A109.5N3B—C16B—H16D109.6
C17A—C16A—H16A109.5C17B—C16B—H16D109.6
N3A—C16A—H16B109.5H16C—C16B—H16D108.1
C17A—C16A—H16B109.5N2B—C17B—C16B110.04 (19)
H16A—C16A—H16B108.1N2B—C17B—H17C109.7
N2A—C17A—C16A110.18 (18)C16B—C17B—H17C109.7
N2A—C17A—H17A109.6N2B—C17B—H17D109.7
C16A—C17A—H17A109.6C16B—C17B—H17D109.7
N2A—C17A—H17B109.6H17C—C17B—H17D108.2
C16A—C17A—H17B109.6C19B—C18B—N3B112.8 (2)
H17A—C17A—H17B108.1C19B—C18B—H18C109
C19A—C18A—N3A112.5 (2)N3B—C18B—H18C109
C19A—C18A—H18A109.1C19B—C18B—H18D109
N3A—C18A—H18A109.1N3B—C18B—H18D109
C19A—C18A—H18B109.1H18C—C18B—H18D107.8
N3A—C18A—H18B109.1C18B—C19B—H19D109.5
H18A—C18A—H18B107.8C18B—C19B—H19E109.5
C18A—C19A—H19A109.5H19D—C19B—H19E109.5
C18A—C19A—H19B109.5C18B—C19B—H19F109.5
H19A—C19A—H19B109.5H19D—C19B—H19F109.5
C18A—C19A—H19C109.5H19E—C19B—H19F109.5
H19A—C19A—H19C109.5C13B—O2B—H2G111 (2)
H19B—C19A—H19C109.5C9B—N1B—C1B119.5 (2)
C13A—O2A—H2F104.4 (19)C9B—N1B—C10B120.02 (19)
C9A—N1A—C1A119.7 (2)C1B—N1B—C10B119.96 (18)
C9A—N1A—C10A119.66 (19)C3B—N2B—C17B115.15 (18)
C1A—N1A—C10A120.48 (19)C3B—N2B—C14B115.70 (19)
C3A—N2A—C17A117.13 (18)C17B—N2B—C14B111.56 (18)
C3A—N2A—C14A115.95 (19)C16B—N3B—C15B108.96 (18)
C17A—N2A—C14A110.55 (18)C16B—N3B—C18B110.78 (19)
C16A—N3A—C18A112.58 (19)C15B—N3B—C18B114.72 (19)
C16A—N3A—C15A108.90 (18)C16B—N3B—H3G109.2 (16)
C18A—N3A—C15A111.34 (17)C15B—N3B—H3G106.0 (15)
C16A—N3A—H3F106.7 (15)C18B—N3B—H3G106.9 (16)
N1A—C1A—C2A—C3A177.7 (2)N1B—C1B—C2B—C3B178.0 (2)
C6A—C1A—C2A—C3A1.2 (3)C6B—C1B—C2B—C3B0.3 (4)
C1A—C2A—C3A—N2A178.5 (2)C1B—C2B—C3B—N2B175.5 (2)
C1A—C2A—C3A—C4A1.6 (3)C1B—C2B—C3B—C4B1.0 (3)
C2A—C3A—C4A—C5A1.1 (4)C2B—C3B—C4B—C5B1.2 (4)
N2A—C3A—C4A—C5A178.1 (2)N2B—C3B—C4B—C5B175.4 (2)
C2A—C3A—C4A—F1A176.7 (2)C2B—C3B—C4B—F1B179.4 (2)
N2A—C3A—C4A—F1A0.3 (3)N2B—C3B—C4B—F1B2.8 (3)
F1A—C4A—C5A—C6A177.7 (2)F1B—C4B—C5B—C6B178.3 (2)
C3A—C4A—C5A—C6A0.1 (4)C3B—C4B—C5B—C6B0.1 (4)
N1A—C1A—C6A—C5A178.7 (2)C2B—C1B—C6B—C5B1.5 (3)
C2A—C1A—C6A—C5A0.1 (3)N1B—C1B—C6B—C5B176.9 (2)
N1A—C1A—C6A—C7A0.4 (3)C2B—C1B—C6B—C7B179.0 (2)
C2A—C1A—C6A—C7A179.2 (2)N1B—C1B—C6B—C7B2.6 (3)
C4A—C5A—C6A—C1A0.4 (3)C4B—C5B—C6B—C1B1.3 (4)
C4A—C5A—C6A—C7A178.7 (2)C4B—C5B—C6B—C7B179.2 (2)
C1A—C6A—C7A—O1A176.1 (2)C1B—C6B—C7B—O1B175.1 (2)
C5A—C6A—C7A—O1A4.9 (4)C5B—C6B—C7B—O1B5.4 (4)
C1A—C6A—C7A—C8A3.7 (3)C1B—C6B—C7B—C8B5.2 (3)
C5A—C6A—C7A—C8A175.4 (2)C5B—C6B—C7B—C8B174.3 (2)
O1A—C7A—C8A—C9A176.5 (2)O1B—C7B—C8B—C9B176.5 (2)
C6A—C7A—C8A—C9A3.3 (3)C6B—C7B—C8B—C9B3.8 (3)
O1A—C7A—C8A—C13A4.2 (4)O1B—C7B—C8B—C13B4.8 (4)
C6A—C7A—C8A—C13A176.0 (2)C6B—C7B—C8B—C13B174.9 (2)
C7A—C8A—C9A—N1A0.6 (4)C7B—C8B—C9B—N1B0.3 (4)
C13A—C8A—C9A—N1A179.9 (2)C13B—C8B—C9B—N1B179.1 (2)
N1A—C10A—C11A—C12A109.5 (2)N1B—C10B—C11B—C12B109.7 (3)
N1A—C10A—C12A—C11A107.8 (2)N1B—C10B—C12B—C11B108.4 (3)
C9A—C8A—C13A—O3A3.1 (4)C9B—C8B—C13B—O3B1.9 (4)
C7A—C8A—C13A—O3A176.2 (2)C7B—C8B—C13B—O3B176.8 (2)
C9A—C8A—C13A—O2A178.0 (2)C9B—C8B—C13B—O2B179.8 (2)
C7A—C8A—C13A—O2A2.7 (3)C7B—C8B—C13B—O2B1.4 (4)
N2A—C14A—C15A—N3A58.5 (3)N2B—C14B—C15B—N3B56.7 (3)
N3A—C16A—C17A—N2A58.4 (3)N3B—C16B—C17B—N2B59.2 (3)
C8A—C9A—N1A—C1A4.2 (4)C8B—C9B—N1B—C1B3.1 (4)
C8A—C9A—N1A—C10A179.2 (2)C8B—C9B—N1B—C10B174.6 (2)
C6A—C1A—N1A—C9A3.6 (3)C2B—C1B—N1B—C9B176.8 (2)
C2A—C1A—N1A—C9A175.3 (2)C6B—C1B—N1B—C9B1.6 (3)
C6A—C1A—N1A—C10A178.6 (2)C2B—C1B—N1B—C10B5.3 (3)
C2A—C1A—N1A—C10A0.3 (3)C6B—C1B—N1B—C10B173.1 (2)
C12A—C10A—N1A—C9A111.5 (3)C12B—C10B—N1B—C9B115.5 (3)
C11A—C10A—N1A—C9A41.4 (3)C11B—C10B—N1B—C9B45.0 (3)
C12A—C10A—N1A—C1A73.5 (3)C12B—C10B—N1B—C1B73.0 (3)
C11A—C10A—N1A—C1A143.6 (2)C11B—C10B—N1B—C1B143.5 (2)
C2A—C3A—N2A—C17A8.4 (3)C2B—C3B—N2B—C17B10.1 (3)
C4A—C3A—N2A—C17A168.4 (2)C4B—C3B—N2B—C17B166.4 (2)
C2A—C3A—N2A—C14A125.1 (2)C2B—C3B—N2B—C14B122.5 (2)
C4A—C3A—N2A—C14A58.1 (3)C4B—C3B—N2B—C14B61.1 (3)
C16A—C17A—N2A—C3A166.5 (2)C16B—C17B—N2B—C3B168.9 (2)
C16A—C17A—N2A—C14A57.7 (3)C16B—C17B—N2B—C14B56.6 (3)
C15A—C14A—N2A—C3A165.0 (2)C15B—C14B—N2B—C3B169.8 (2)
C15A—C14A—N2A—C17A58.6 (2)C15B—C14B—N2B—C17B56.0 (2)
C17A—C16A—N3A—C18A177.90 (19)C17B—C16B—N3B—C15B60.5 (2)
C17A—C16A—N3A—C15A58.1 (2)C17B—C16B—N3B—C18B172.4 (2)
C19A—C18A—N3A—C16A75.0 (3)C14B—C15B—N3B—C16B58.6 (3)
C19A—C18A—N3A—C15A162.4 (2)C14B—C15B—N3B—C18B176.6 (2)
C14A—C15A—N3A—C16A57.8 (2)C19B—C18B—N3B—C16B175.8 (2)
C14A—C15A—N3A—C18A177.5 (2)C19B—C18B—N3B—C15B60.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3D···Cl10.888 (18)2.27 (2)3.126 (2)163 (3)
O2W—H2E···Cl10.859 (17)2.363 (19)3.207 (2)167 (3)
O4W—H4E···O3Ai0.895 (18)2.015 (19)2.899 (3)169 (3)
O3W—H3E···Cl20.883 (18)2.52 (2)3.356 (3)158 (3)
O1W—H1E···Cl20.866 (18)2.350 (18)3.215 (2)179 (3)
O4W—H4D···Cl2ii0.875 (17)2.325 (19)3.190 (2)170 (3)
O1W—H1D···Cl10.858 (18)2.45 (2)3.285 (2)163 (3)
O2W—H2D···O3Biii0.886 (17)1.940 (18)2.819 (3)172 (3)
O2A—H2F···O1A0.876 (17)1.68 (2)2.523 (2)160 (3)
O2B—H2G···O1B0.871 (17)1.73 (2)2.532 (3)152 (3)
N3B—H3G···Cl10.942 (16)2.219 (17)3.154 (2)172 (2)
N3A—H3F···Cl2iv0.946 (16)2.204 (17)3.149 (2)177 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3D···Cl10.888 (18)2.27 (2)3.126 (2)163 (3)
O2W—H2E···Cl10.859 (17)2.363 (19)3.207 (2)167 (3)
O4W—H4E···O3Ai0.895 (18)2.015 (19)2.899 (3)169 (3)
O3W—H3E···Cl20.883 (18)2.52 (2)3.356 (3)158 (3)
O1W—H1E···Cl20.866 (18)2.350 (18)3.215 (2)179 (3)
O4W—H4D···Cl2ii0.875 (17)2.325 (19)3.190 (2)170 (3)
O1W—H1D···Cl10.858 (18)2.45 (2)3.285 (2)163 (3)
O2W—H2D···O3Biii0.886 (17)1.940 (18)2.819 (3)172 (3)
O2A—H2F···O1A0.876 (17)1.68 (2)2.523 (2)160 (3)
O2B—H2G···O1B0.871 (17)1.73 (2)2.532 (3)152 (3)
N3B—H3G···Cl10.942 (16)2.219 (17)3.154 (2)172 (2)
N3A—H3F···Cl2iv0.946 (16)2.204 (17)3.149 (2)177 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

We are grateful for the financial support received from the DGAPA–UNAM Program of Post-Doctoral Scholarships in the UNAM and from PROINNOVA/CONACYT in Mexico. MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Elliel & N. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSárközy, G. (2001). Vet. Med. 46, 257–274.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumano, L. H. & Gutierrez, O. L. (2013). IMPI, Mex. Patent 472715 (in process).  Google Scholar
First citationYamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014). Acta Cryst. E70, o200–o201.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o468-o469
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds