organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o473-o474

2-Amino-5-nitro­pyridinium hydrogen oxalate

aPhysics Research Centre, Department of Physics, St Xavier's College (Autonomous), Palayamkottai 627 002, Tamil Nadu, India, bDepartment of Chemistry, St Xavier's College (Autonomous), Palayamkottai 627 002, Tamil Nadu, India, and cDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: devarajanpremanand@gmail.com, mnizam_new@yahoo.in

(Received 6 February 2014; accepted 7 March 2014; online 26 March 2014)

In the cation of the title mol­ecular salt, C5H6N3O2+·C2HO4, the dihedral angle between the aromatic ring and the nitro group is 3.5 (3)°; in the anion, the dihedral angle between the CO2 and CO2H planes is 10.5 (2)°. In the crystal, the anions are linked into [100] chains by O—H⋯O hydrogen bonds. The cations cross-link the chains by way of N—H⋯O hydrogen bonds and the structure is consolidated by C—H⋯O inter­actions.

Related literature

For the crystal structures of related pyridine derivatives, see: Babu et al. (2014[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391-o392.]); Anderson et al. (2005[Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350-o1353.]); Karle et al. (2003[Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727-749.]). For simple organic–inorganic salts containing strong inter­molecular hydrogen bonds, see: Fu et al. (2011[Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658-5662.]); Sethuram et al. (2013a[Sethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301-o1302.],b[Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957-o958.]); Shihabuddeen Syed et al. (2013[Shihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33.]); Showrilu et al. (2013[Showrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469-m470.]); Huq et al. (2013[Huq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766-o1767.]). For the structure of oxalic acid, see: Derissen & Smith (1974[Derissen, J. L. & Smith, P. H. (1974). Acta Cryst. B30, 2240-2242.]). For graph-set analysis, see: Bernstein et al.(1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·C2HO4

  • Mr = 229.16

  • Triclinic, [P \overline 1]

  • a = 5.5609 (2) Å

  • b = 9.2012 (4) Å

  • c = 9.2305 (4) Å

  • α = 90.245 (2)°

  • β = 98.500 (2)°

  • γ = 100.038 (2)°

  • V = 459.74 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.957

  • 10142 measured reflections

  • 1615 independent reflections

  • 1417 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.07

  • 1615 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.93 2.48 3.323 (2) 152
C3—H3⋯O2ii 0.93 2.37 3.296 (2) 178
C5—H5⋯O1iii 0.93 2.42 3.186 (2) 140
C5—H5⋯O4iv 0.93 2.44 2.970 (2) 116
N1—H1⋯O6iv 0.86 1.94 2.7697 (18) 160
O4—H4⋯O5v 0.82 1.64 2.4486 (16) 170
N2—H2A⋯O3v 0.89 (3) 2.16 (3) 2.959 (2) 149 (2)
N2—H2A⋯O5v 0.89 (3) 2.36 (3) 3.007 (2) 130 (2)
N2—H2B⋯O3vi 0.89 (3) 1.99 (3) 2.870 (2) 173 (2)
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y, -z+2; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Simple organic–inorganic salts containing strong intermolecular hydrogen bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu et al., 2011; Sethuram, et al., 2013a,b; Huq, et al., 2013; Shihabuddeen Syed, et al., 2013; Showrilu, et al., 2013). As part of our ongoing investigations of pyridine derivatives (Babu et al., 2014), the title compound was synthesized and we report herein on its crystal structure.

In the title salt, (C5H6N3O2)+, (C2HO4)-, the asymmetric unit consists of an independent 2-amino-5-nitropyridinium cation, and oxalic actetate anion, which lie on an inversion symmetry. A proton transfer from the carboxyl group of oxalic acid to atom N1 of 2-amino-5-nitro pyridinine resulted in the formation of a salt. This protonation lead to the widening of the C5-N1-C1 angle of the pyridine ring to 122.79 (14)°, compared to 115.25 (13)° in the unprotonated aminopyridine (Anderson et al., 2005). This type of protonation is observed in various aminopyridine acid complexes (Babu et al., 2014; Karle et al., 2003).

The bond lengths and bond angles of the aminopyridine are comparable to the values reported earlier for aminopyridine (Babu et al., 2014; Anderson et al., 2005). The bond lengths and bond angles of the oxalate are comparable to the values reported for oxalic acid (Derissen & Smith, 1974). The non hydrogen pyridine ring, C1/C2/C3/C4/C5/N1, is planar with a maximum deviation of 0.006 (1)Å from the least squares plane for the C3 atom, with the endocyclic angles covering range of 117.88 (16) - 122.79 (14)°. The hydrogen oxalate anion O3/O4/O5/O6/C6/C7, is less planar with a maximum deviation of -0.131 (1)Å for the O3 and O6 atoms.

The crystal packing is consolidated by intermolecular N—H···O and O—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Table 1 and Fig. 2). In the crystal structure, the 2-Amino-5-nitropyridinium unit is bound to acetate anions by five distinct N—H···O hydrogen bonds. The ion pairs are joined by two N—H···O hydrogen bonds in which the N atom of the 2-amino-5-nitroPyridinium unit acts as a bifurcated donor, thus generating R12(5) ring motifs (Bernstein et al., 1995). The hydroxyl group hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through strong intermolecular O—H···O hydrogen bonds, with the O···O distance of 2.4486 (16)Å, which is from a chain, C(5), running along the b axis (Bernstein et al., 1995). The structure is further stabilized by weak C—H···O intermolecular inteactions, forming a three-dimensional network.

Related literature top

For the crystal structures of related pyridine derivatives, see: Babu et al. (2014); Anderson et al. (2005); Karle et al. (2003). For simple organic–inorganic salts containing strong intermolecular hydrogen bonds, see: Fu et al. (2011); Sethuram et al. (2013a,b); Shihabuddeen Syed et al. (2013); Showrilu et al. (2013); Huq et al. (2013). For the structure of oxalic acid, see: Derissen & Smith (1974). For graph-set analysis, see: Bernstein et al.(1995).

Experimental top

Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of 2-amino-5-nitropyridine and oxalic acid in methanol at room temperature.

Refinement top

The amino group NH2 H atoms of the pyridine derivatives were located in difference Fourier maps and refined in the riding mode approximation. The OH, NH(Protonated) and C-bound H-atoms were placed in calculated positions and treated as riding atoms: O-H = 0.82Å, N-H = 0.86Å, C-H = 0.93Å with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along a axis. N—H···O, O—H···O hydrogen bonds and weak C—H···O intermolecular inteeractions are shown as dashed lines, forming a three-dimensional network. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-Amino-5-nitropyridinium hydrogen oxalate top
Crystal data top
C5H6N3O2+·C2HO4Z = 2
Mr = 229.16F(000) = 236
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5609 (2) ÅCell parameters from 2794 reflections
b = 9.2012 (4) Åθ = 2.4–31.1°
c = 9.2305 (4) ŵ = 0.15 mm1
α = 90.245 (2)°T = 293 K
β = 98.500 (2)°Block, colourless
γ = 100.038 (2)°0.35 × 0.30 × 0.30 mm
V = 459.74 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1615 independent reflections
Radiation source: fine-focus sealed tube1417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 0.1000 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω and ϕ scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1010
Tmin = 0.950, Tmax = 0.957l = 1010
10142 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2329P]
where P = (Fo2 + 2Fc2)/3
1615 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C5H6N3O2+·C2HO4γ = 100.038 (2)°
Mr = 229.16V = 459.74 (3) Å3
Triclinic, P1Z = 2
a = 5.5609 (2) ÅMo Kα radiation
b = 9.2012 (4) ŵ = 0.15 mm1
c = 9.2305 (4) ÅT = 293 K
α = 90.245 (2)°0.35 × 0.30 × 0.30 mm
β = 98.500 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1615 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1417 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.957Rint = 0.020
10142 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
1615 reflectionsΔρmin = 0.32 e Å3
153 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3486 (3)0.30577 (19)0.87248 (18)0.0302 (4)
C20.5136 (3)0.2468 (2)0.97783 (19)0.0361 (4)
H20.52060.26951.07680.043*
C30.6606 (3)0.1580 (2)0.9356 (2)0.0380 (4)
H30.77110.12011.00460.046*
C40.6446 (3)0.12349 (19)0.78639 (19)0.0338 (4)
C50.4879 (3)0.18053 (19)0.68547 (19)0.0332 (4)
H50.47960.15820.58630.040*
C60.8206 (3)0.61691 (18)0.66445 (17)0.0270 (4)
C71.0607 (3)0.64305 (19)0.59536 (17)0.0269 (4)
N10.3441 (3)0.26987 (16)0.72996 (15)0.0323 (4)
H10.24510.30570.66490.039*
N20.2009 (3)0.39211 (19)0.90933 (19)0.0408 (4)
N30.7996 (3)0.02858 (19)0.73614 (19)0.0450 (4)
O10.7803 (3)0.0001 (2)0.60645 (19)0.0674 (5)
O20.9490 (4)0.0148 (3)0.8270 (2)0.0882 (7)
O30.8197 (2)0.56345 (16)0.78510 (13)0.0410 (4)
O40.6388 (2)0.65291 (16)0.58166 (14)0.0409 (4)
H40.51590.63720.62260.061*
O51.2521 (2)0.62615 (16)0.68401 (13)0.0395 (4)
O61.0537 (2)0.67353 (14)0.46624 (12)0.0342 (3)
H2A0.114 (5)0.439 (3)0.842 (3)0.060 (7)*
H2B0.208 (4)0.407 (2)1.005 (3)0.051 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (9)0.0336 (9)0.0242 (8)0.0042 (7)0.0024 (7)0.0058 (7)
C20.0424 (10)0.0428 (10)0.0217 (8)0.0085 (8)0.0013 (7)0.0051 (7)
C30.0379 (10)0.0426 (10)0.0313 (9)0.0111 (8)0.0070 (7)0.0093 (8)
C40.0324 (9)0.0333 (9)0.0351 (10)0.0082 (7)0.0002 (7)0.0039 (7)
C50.0387 (10)0.0347 (9)0.0253 (9)0.0074 (7)0.0010 (7)0.0015 (7)
C60.0212 (8)0.0392 (9)0.0216 (8)0.0085 (7)0.0027 (6)0.0034 (6)
C70.0205 (8)0.0390 (9)0.0221 (8)0.0082 (6)0.0022 (6)0.0029 (6)
N10.0344 (8)0.0391 (8)0.0231 (7)0.0118 (6)0.0027 (6)0.0064 (6)
N20.0464 (10)0.0537 (10)0.0275 (9)0.0224 (8)0.0064 (7)0.0078 (7)
N30.0458 (10)0.0423 (9)0.0481 (11)0.0169 (8)0.0003 (8)0.0007 (7)
O10.0832 (12)0.0683 (11)0.0567 (10)0.0355 (9)0.0044 (9)0.0148 (8)
O20.0942 (14)0.1202 (17)0.0668 (12)0.0807 (14)0.0069 (10)0.0069 (11)
O30.0313 (7)0.0720 (9)0.0249 (7)0.0190 (6)0.0090 (5)0.0143 (6)
O40.0193 (6)0.0712 (9)0.0359 (7)0.0150 (6)0.0074 (5)0.0221 (6)
O50.0192 (6)0.0751 (10)0.0257 (6)0.0139 (6)0.0014 (5)0.0102 (6)
O60.0257 (6)0.0560 (8)0.0234 (6)0.0122 (5)0.0054 (5)0.0099 (5)
Geometric parameters (Å, º) top
C1—N21.315 (2)C6—O31.220 (2)
C1—N11.351 (2)C6—O41.268 (2)
C1—C21.413 (2)C6—C71.545 (2)
C2—C31.347 (3)C7—O61.222 (2)
C2—H20.9300C7—O51.2759 (19)
C3—C41.398 (3)N1—H10.8600
C3—H30.9300N2—H2A0.89 (3)
C4—C51.352 (2)N2—H2B0.89 (3)
C4—N31.448 (2)N3—O11.210 (2)
C5—N11.344 (2)N3—O21.211 (2)
C5—H50.9300O4—H40.8200
N2—C1—N1119.96 (16)O3—C6—C7120.04 (14)
N2—C1—C2122.16 (16)O4—C6—C7112.84 (13)
N1—C1—C2117.88 (16)O6—C7—O5126.27 (14)
C3—C2—C1120.31 (16)O6—C7—C6120.06 (14)
C3—C2—H2119.8O5—C7—C6113.64 (13)
C1—C2—H2119.8C5—N1—C1122.79 (14)
C2—C3—C4118.97 (16)C5—N1—H1118.6
C2—C3—H3120.5C1—N1—H1118.6
C4—C3—H3120.5C1—N2—H2A121.5 (16)
C5—C4—C3120.75 (17)C1—N2—H2B115.1 (15)
C5—C4—N3118.45 (16)H2A—N2—H2B123 (2)
C3—C4—N3120.79 (16)O1—N3—O2123.01 (19)
N1—C5—C4119.29 (16)O1—N3—C4119.28 (16)
N1—C5—H5120.4O2—N3—C4117.68 (17)
C4—C5—H5120.4C6—O4—H4109.5
O3—C6—O4127.10 (15)
N2—C1—C2—C3179.55 (17)O3—C6—C7—O510.4 (2)
N1—C1—C2—C30.1 (3)O4—C6—C7—O5171.21 (16)
C1—C2—C3—C40.9 (3)C4—C5—N1—C10.1 (3)
C2—C3—C4—C51.3 (3)N2—C1—N1—C5179.04 (16)
C2—C3—C4—N3179.89 (17)C2—C1—N1—C50.4 (3)
C3—C4—C5—N10.8 (3)C5—C4—N3—O11.9 (3)
N3—C4—C5—N1179.43 (16)C3—C4—N3—O1179.50 (18)
O3—C6—C7—O6168.06 (17)C5—C4—N3—O2175.9 (2)
O4—C6—C7—O610.3 (2)C3—C4—N3—O22.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.932.483.323 (2)152
C3—H3···O2ii0.932.373.296 (2)178
C5—H5···O1iii0.932.423.186 (2)140
C5—H5···O4iv0.932.442.970 (2)116
N1—H1···O4iv0.862.472.9770 (18)119
N1—H1···O6iv0.861.942.7697 (18)160
O4—H4···O5v0.821.642.4486 (16)170
N2—H2A···O3v0.89 (3)2.16 (3)2.959 (2)149 (2)
N2—H2A···O5v0.89 (3)2.36 (3)3.007 (2)130 (2)
N2—H2B···O3vi0.89 (3)1.99 (3)2.870 (2)173 (2)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.932.483.323 (2)151.6
C3—H3···O2ii0.932.373.296 (2)177.5
C5—H5···O1iii0.932.423.186 (2)139.7
C5—H5···O4iv0.932.442.970 (2)115.8
N1—H1···O6iv0.861.942.7697 (18)160.3
O4—H4···O5v0.821.642.4486 (16)170.0
N2—H2A···O3v0.89 (3)2.16 (3)2.959 (2)149 (2)
N2—H2A···O5v0.89 (3)2.36 (3)3.007 (2)130 (2)
N2—H2B···O3vi0.89 (3)1.99 (3)2.870 (2)173 (2)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1, z+2.
 

Acknowledgements

MAR, DPA and SJX would like to thank the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS-DAE) (file No. 2012/34/63/BRNS/2865; dated 01/03/2013), for funding this major research project.

References

First citationAnderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerissen, J. L. & Smith, P. H. (1974). Acta Cryst. B30, 2240–2242.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHuq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766–o1767.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKarle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301–o1302.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957–o958.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33.  CrossRef IUCr Journals Google Scholar
First citationShowrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469–m470.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages o473-o474
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds