organic compounds
2-Amino-5-nitropyridinium hydrogen oxalate
aPhysics Research Centre, Department of Physics, St Xavier's College (Autonomous), Palayamkottai 627 002, Tamil Nadu, India, bDepartment of Chemistry, St Xavier's College (Autonomous), Palayamkottai 627 002, Tamil Nadu, India, and cDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India
*Correspondence e-mail: devarajanpremanand@gmail.com, mnizam_new@yahoo.in
In the cation of the title molecular salt, C5H6N3O2+·C2HO4−, the dihedral angle between the aromatic ring and the nitro group is 3.5 (3)°; in the anion, the dihedral angle between the CO2 and CO2H planes is 10.5 (2)°. In the crystal, the anions are linked into [100] chains by O—H⋯O hydrogen bonds. The cations cross-link the chains by way of N—H⋯O hydrogen bonds and the structure is consolidated by C—H⋯O interactions.
CCDC reference: 990527
Related literature
For the crystal structures of related pyridine derivatives, see: Babu et al. (2014); Anderson et al. (2005); Karle et al. (2003). For simple organic–inorganic salts containing strong intermolecular hydrogen bonds, see: Fu et al. (2011); Sethuram et al. (2013a,b); Shihabuddeen Syed et al. (2013); Showrilu et al. (2013); Huq et al. (2013). For the structure of oxalic acid, see: Derissen & Smith (1974). For graph-set analysis, see: Bernstein et al.(1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).
Supporting information
CCDC reference: 990527
10.1107/S160053681400525X/jj2183sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681400525X/jj2183Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681400525X/jj2183Isup3.cml
Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of 2-amino-5-nitropyridine and oxalic acid in methanol at room temperature.
The amino group NH2 H atoms of the pyridine derivatives were located in difference Fourier maps and refined in the riding mode approximation. The OH, NH(Protonated) and C-bound H-atoms were placed in calculated positions and treated as riding atoms: O-H = 0.82Å, N-H = 0.86Å, C-H = 0.93Å with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(N,C) for other H atoms.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).Fig. 1. View of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms are presented as a small spheres of arbitrary radius. | |
Fig. 2. The crystal packing of the title compound viewed along a axis. N—H···O, O—H···O hydrogen bonds and weak C—H···O intermolecular inteeractions are shown as dashed lines, forming a three-dimensional network. H atoms not involved in hydrogen bonding have been omitted for clarity. |
C5H6N3O2+·C2HO4− | Z = 2 |
Mr = 229.16 | F(000) = 236 |
Triclinic, P1 | Dx = 1.655 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5609 (2) Å | Cell parameters from 2794 reflections |
b = 9.2012 (4) Å | θ = 2.4–31.1° |
c = 9.2305 (4) Å | µ = 0.15 mm−1 |
α = 90.245 (2)° | T = 293 K |
β = 98.500 (2)° | Block, colourless |
γ = 100.038 (2)° | 0.35 × 0.30 × 0.30 mm |
V = 459.74 (3) Å3 |
Bruker Kappa APEXII CCD diffractometer | 1615 independent reflections |
Radiation source: fine-focus sealed tube | 1417 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 0.1000 pixels mm-1 | θmax = 25.0°, θmin = 2.2° |
ω and ϕ scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | k = −10→10 |
Tmin = 0.950, Tmax = 0.957 | l = −10→10 |
10142 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2329P] where P = (Fo2 + 2Fc2)/3 |
1615 reflections | (Δ/σ)max < 0.001 |
153 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C5H6N3O2+·C2HO4− | γ = 100.038 (2)° |
Mr = 229.16 | V = 459.74 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.5609 (2) Å | Mo Kα radiation |
b = 9.2012 (4) Å | µ = 0.15 mm−1 |
c = 9.2305 (4) Å | T = 293 K |
α = 90.245 (2)° | 0.35 × 0.30 × 0.30 mm |
β = 98.500 (2)° |
Bruker Kappa APEXII CCD diffractometer | 1615 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1417 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.957 | Rint = 0.020 |
10142 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.28 e Å−3 |
1615 reflections | Δρmin = −0.32 e Å−3 |
153 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3486 (3) | 0.30577 (19) | 0.87248 (18) | 0.0302 (4) | |
C2 | 0.5136 (3) | 0.2468 (2) | 0.97783 (19) | 0.0361 (4) | |
H2 | 0.5206 | 0.2695 | 1.0768 | 0.043* | |
C3 | 0.6606 (3) | 0.1580 (2) | 0.9356 (2) | 0.0380 (4) | |
H3 | 0.7711 | 0.1201 | 1.0046 | 0.046* | |
C4 | 0.6446 (3) | 0.12349 (19) | 0.78639 (19) | 0.0338 (4) | |
C5 | 0.4879 (3) | 0.18053 (19) | 0.68547 (19) | 0.0332 (4) | |
H5 | 0.4796 | 0.1582 | 0.5863 | 0.040* | |
C6 | 0.8206 (3) | 0.61691 (18) | 0.66445 (17) | 0.0270 (4) | |
C7 | 1.0607 (3) | 0.64305 (19) | 0.59536 (17) | 0.0269 (4) | |
N1 | 0.3441 (3) | 0.26987 (16) | 0.72996 (15) | 0.0323 (4) | |
H1 | 0.2451 | 0.3057 | 0.6649 | 0.039* | |
N2 | 0.2009 (3) | 0.39211 (19) | 0.90933 (19) | 0.0408 (4) | |
N3 | 0.7996 (3) | 0.02858 (19) | 0.73614 (19) | 0.0450 (4) | |
O1 | 0.7803 (3) | −0.0001 (2) | 0.60645 (19) | 0.0674 (5) | |
O2 | 0.9490 (4) | −0.0148 (3) | 0.8270 (2) | 0.0882 (7) | |
O3 | 0.8197 (2) | 0.56345 (16) | 0.78510 (13) | 0.0410 (4) | |
O4 | 0.6388 (2) | 0.65291 (16) | 0.58166 (14) | 0.0409 (4) | |
H4 | 0.5159 | 0.6372 | 0.6226 | 0.061* | |
O5 | 1.2521 (2) | 0.62615 (16) | 0.68401 (13) | 0.0395 (4) | |
O6 | 1.0537 (2) | 0.67353 (14) | 0.46624 (12) | 0.0342 (3) | |
H2A | 0.114 (5) | 0.439 (3) | 0.842 (3) | 0.060 (7)* | |
H2B | 0.208 (4) | 0.407 (2) | 1.005 (3) | 0.051 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0316 (9) | 0.0336 (9) | 0.0242 (8) | 0.0042 (7) | 0.0024 (7) | 0.0058 (7) |
C2 | 0.0424 (10) | 0.0428 (10) | 0.0217 (8) | 0.0085 (8) | −0.0013 (7) | 0.0051 (7) |
C3 | 0.0379 (10) | 0.0426 (10) | 0.0313 (9) | 0.0111 (8) | −0.0070 (7) | 0.0093 (8) |
C4 | 0.0324 (9) | 0.0333 (9) | 0.0351 (10) | 0.0082 (7) | 0.0002 (7) | 0.0039 (7) |
C5 | 0.0387 (10) | 0.0347 (9) | 0.0253 (9) | 0.0074 (7) | 0.0010 (7) | 0.0015 (7) |
C6 | 0.0212 (8) | 0.0392 (9) | 0.0216 (8) | 0.0085 (7) | 0.0027 (6) | 0.0034 (6) |
C7 | 0.0205 (8) | 0.0390 (9) | 0.0221 (8) | 0.0082 (6) | 0.0022 (6) | 0.0029 (6) |
N1 | 0.0344 (8) | 0.0391 (8) | 0.0231 (7) | 0.0118 (6) | −0.0027 (6) | 0.0064 (6) |
N2 | 0.0464 (10) | 0.0537 (10) | 0.0275 (9) | 0.0224 (8) | 0.0064 (7) | 0.0078 (7) |
N3 | 0.0458 (10) | 0.0423 (9) | 0.0481 (11) | 0.0169 (8) | −0.0003 (8) | 0.0007 (7) |
O1 | 0.0832 (12) | 0.0683 (11) | 0.0567 (10) | 0.0355 (9) | 0.0044 (9) | −0.0148 (8) |
O2 | 0.0942 (14) | 0.1202 (17) | 0.0668 (12) | 0.0807 (14) | −0.0069 (10) | 0.0069 (11) |
O3 | 0.0313 (7) | 0.0720 (9) | 0.0249 (7) | 0.0190 (6) | 0.0090 (5) | 0.0143 (6) |
O4 | 0.0193 (6) | 0.0712 (9) | 0.0359 (7) | 0.0150 (6) | 0.0074 (5) | 0.0221 (6) |
O5 | 0.0192 (6) | 0.0751 (10) | 0.0257 (6) | 0.0139 (6) | 0.0014 (5) | 0.0102 (6) |
O6 | 0.0257 (6) | 0.0560 (8) | 0.0234 (6) | 0.0122 (5) | 0.0054 (5) | 0.0099 (5) |
C1—N2 | 1.315 (2) | C6—O3 | 1.220 (2) |
C1—N1 | 1.351 (2) | C6—O4 | 1.268 (2) |
C1—C2 | 1.413 (2) | C6—C7 | 1.545 (2) |
C2—C3 | 1.347 (3) | C7—O6 | 1.222 (2) |
C2—H2 | 0.9300 | C7—O5 | 1.2759 (19) |
C3—C4 | 1.398 (3) | N1—H1 | 0.8600 |
C3—H3 | 0.9300 | N2—H2A | 0.89 (3) |
C4—C5 | 1.352 (2) | N2—H2B | 0.89 (3) |
C4—N3 | 1.448 (2) | N3—O1 | 1.210 (2) |
C5—N1 | 1.344 (2) | N3—O2 | 1.211 (2) |
C5—H5 | 0.9300 | O4—H4 | 0.8200 |
N2—C1—N1 | 119.96 (16) | O3—C6—C7 | 120.04 (14) |
N2—C1—C2 | 122.16 (16) | O4—C6—C7 | 112.84 (13) |
N1—C1—C2 | 117.88 (16) | O6—C7—O5 | 126.27 (14) |
C3—C2—C1 | 120.31 (16) | O6—C7—C6 | 120.06 (14) |
C3—C2—H2 | 119.8 | O5—C7—C6 | 113.64 (13) |
C1—C2—H2 | 119.8 | C5—N1—C1 | 122.79 (14) |
C2—C3—C4 | 118.97 (16) | C5—N1—H1 | 118.6 |
C2—C3—H3 | 120.5 | C1—N1—H1 | 118.6 |
C4—C3—H3 | 120.5 | C1—N2—H2A | 121.5 (16) |
C5—C4—C3 | 120.75 (17) | C1—N2—H2B | 115.1 (15) |
C5—C4—N3 | 118.45 (16) | H2A—N2—H2B | 123 (2) |
C3—C4—N3 | 120.79 (16) | O1—N3—O2 | 123.01 (19) |
N1—C5—C4 | 119.29 (16) | O1—N3—C4 | 119.28 (16) |
N1—C5—H5 | 120.4 | O2—N3—C4 | 117.68 (17) |
C4—C5—H5 | 120.4 | C6—O4—H4 | 109.5 |
O3—C6—O4 | 127.10 (15) | ||
N2—C1—C2—C3 | 179.55 (17) | O3—C6—C7—O5 | −10.4 (2) |
N1—C1—C2—C3 | 0.1 (3) | O4—C6—C7—O5 | 171.21 (16) |
C1—C2—C3—C4 | −0.9 (3) | C4—C5—N1—C1 | −0.1 (3) |
C2—C3—C4—C5 | 1.3 (3) | N2—C1—N1—C5 | −179.04 (16) |
C2—C3—C4—N3 | 179.89 (17) | C2—C1—N1—C5 | 0.4 (3) |
C3—C4—C5—N1 | −0.8 (3) | C5—C4—N3—O1 | −1.9 (3) |
N3—C4—C5—N1 | −179.43 (16) | C3—C4—N3—O1 | 179.50 (18) |
O3—C6—C7—O6 | 168.06 (17) | C5—C4—N3—O2 | 175.9 (2) |
O4—C6—C7—O6 | −10.3 (2) | C3—C4—N3—O2 | −2.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O5i | 0.93 | 2.48 | 3.323 (2) | 152 |
C3—H3···O2ii | 0.93 | 2.37 | 3.296 (2) | 178 |
C5—H5···O1iii | 0.93 | 2.42 | 3.186 (2) | 140 |
C5—H5···O4iv | 0.93 | 2.44 | 2.970 (2) | 116 |
N1—H1···O4iv | 0.86 | 2.47 | 2.9770 (18) | 119 |
N1—H1···O6iv | 0.86 | 1.94 | 2.7697 (18) | 160 |
O4—H4···O5v | 0.82 | 1.64 | 2.4486 (16) | 170 |
N2—H2A···O3v | 0.89 (3) | 2.16 (3) | 2.959 (2) | 149 (2) |
N2—H2A···O5v | 0.89 (3) | 2.36 (3) | 3.007 (2) | 130 (2) |
N2—H2B···O3vi | 0.89 (3) | 1.99 (3) | 2.870 (2) | 173 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O5i | 0.93 | 2.48 | 3.323 (2) | 151.6 |
C3—H3···O2ii | 0.93 | 2.37 | 3.296 (2) | 177.5 |
C5—H5···O1iii | 0.93 | 2.42 | 3.186 (2) | 139.7 |
C5—H5···O4iv | 0.93 | 2.44 | 2.970 (2) | 115.8 |
N1—H1···O6iv | 0.86 | 1.94 | 2.7697 (18) | 160.3 |
O4—H4···O5v | 0.82 | 1.64 | 2.4486 (16) | 170.0 |
N2—H2A···O3v | 0.89 (3) | 2.16 (3) | 2.959 (2) | 149 (2) |
N2—H2A···O5v | 0.89 (3) | 2.36 (3) | 3.007 (2) | 130 (2) |
N2—H2B···O3vi | 0.89 (3) | 1.99 (3) | 2.870 (2) | 173 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z+2. |
Acknowledgements
MAR, DPA and SJX would like to thank the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS-DAE) (file No. 2012/34/63/BRNS/2865; dated 01/03/2013), for funding this major research project.
References
Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014). Acta Cryst. E70, o391–o392. CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Derissen, J. L. & Smith, P. H. (1974). Acta Cryst. B30, 2240–2242. CSD CrossRef IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fu, D.-W., Zhang, W., Cai, H.-L., Ge, J.-Z., Zhang, Y. & Xiong, R.-G. (2011). Adv. Mater. 23, 5658–5662. Web of Science CSD CrossRef CAS PubMed Google Scholar
Huq, C. A. M. A., Fouzia, S. & NizamMohideen, M. (2013). Acta Cryst. E69, o1766–o1767. CSD CrossRef CAS IUCr Journals Google Scholar
Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sethuram, M., Bhargavi, G., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013a). Acta Cryst. E69, o1301–o1302. CSD CrossRef CAS IUCr Journals Google Scholar
Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013b). Acta Cryst. E69, o957–o958. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shihabuddeen Syed, A., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, i33. CrossRef IUCr Journals Google Scholar
Showrilu, K., Rajarajan, K. & NizamMohideen, M. (2013). Acta Cryst. E69, m469–m470. CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Simple organic–inorganic salts containing strong intermolecular hydrogen bonds have attracted an attention as materials which display ferroelectric-paraelectric phase transitions (Fu et al., 2011; Sethuram, et al., 2013a,b; Huq, et al., 2013; Shihabuddeen Syed, et al., 2013; Showrilu, et al., 2013). As part of our ongoing investigations of pyridine derivatives (Babu et al., 2014), the title compound was synthesized and we report herein on its crystal structure.
In the title salt, (C5H6N3O2)+, (C2HO4)-, the asymmetric unit consists of an independent 2-amino-5-nitropyridinium cation, and oxalic actetate anion, which lie on an inversion symmetry. A proton transfer from the carboxyl group of oxalic acid to atom N1 of 2-amino-5-nitro pyridinine resulted in the formation of a salt. This protonation lead to the widening of the C5-N1-C1 angle of the pyridine ring to 122.79 (14)°, compared to 115.25 (13)° in the unprotonated aminopyridine (Anderson et al., 2005). This type of protonation is observed in various aminopyridine acid complexes (Babu et al., 2014; Karle et al., 2003).
The bond lengths and bond angles of the aminopyridine are comparable to the values reported earlier for aminopyridine (Babu et al., 2014; Anderson et al., 2005). The bond lengths and bond angles of the oxalate are comparable to the values reported for oxalic acid (Derissen & Smith, 1974). The non hydrogen pyridine ring, C1/C2/C3/C4/C5/N1, is planar with a maximum deviation of 0.006 (1)Å from the least squares plane for the C3 atom, with the endocyclic angles covering range of 117.88 (16) - 122.79 (14)°. The hydrogen oxalate anion O3/O4/O5/O6/C6/C7, is less planar with a maximum deviation of -0.131 (1)Å for the O3 and O6 atoms.
The crystal packing is consolidated by intermolecular N—H···O and O—H···O hydrogen bonds and weak C—H···O intermolecular interactions (Table 1 and Fig. 2). In the crystal structure, the 2-Amino-5-nitropyridinium unit is bound to acetate anions by five distinct N—H···O hydrogen bonds. The ion pairs are joined by two N—H···O hydrogen bonds in which the N atom of the 2-amino-5-nitroPyridinium unit acts as a bifurcated donor, thus generating R12(5) ring motifs (Bernstein et al., 1995). The hydroxyl group hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through strong intermolecular O—H···O hydrogen bonds, with the O···O distance of 2.4486 (16)Å, which is from a chain, C(5), running along the b axis (Bernstein et al., 1995). The structure is further stabilized by weak C—H···O intermolecular inteactions, forming a three-dimensional network.