organic compounds
Triphenyltellurium chloride
aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: sksrivas7@yahoo.com
The 18H15ClTe, contains two molecules which are in inverted orientations. The compound displays a tetrahedral geometry around the Te atom in spite of there being five electron domains. This is attributed to the fact that the lone pair is not sterically active. The dihedral angles between the three phenyl rings are 76.51 (16)/73.75 (16)/71.06 (17) and 78.60 (17)/77.67 (16)/79.11 (16)° in the two molecules. The crystal packing features eight C—H⋯π interactions.
of the title compound, CCCDC reference: 990042
Related literature
For the first synthesis of the title compound, see: Günther et al. (1974). For related compounds, see: Klapötke et al. (2001); Naumann et al. (2002). For chalcogen-bearing compounds, see: Srivastava et al. (2010, 2011); Rastogi et al. (2011). For organotellurium(IV) derivatives that form metal complexes and supramolecular aggregations, see: Santos et al. (2007); Teikink & Zukerman-Schpector (2010). For their applications as antileishmanial and antibacterial agents, see: Lima et al. (2009); Soni et al. (2005).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 990042
10.1107/S160053681400498X/jj2184sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681400498X/jj2184Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681400498X/jj2184Isup3.cml
In recent years organotellurium compounds have been widely used as ligands forming complexes with supramolecular behaviour (Santos et al., 2007; Teikink et al., 2010; Srivastava et al., 2011). These compounds have interesting applications as antileishmanial and antibacterial agents (Lima et al., 2009; Soni et al., 2005). The crystal structures of related compounds, tris(pentafluorophenyl)tellurium chloride, (C6H5)3TeCl and tris(pentafluorophenyl)tellurium bromide, (C6H5)3TeBr have been reported earlier (Klapötke et al., 2001; Naumann et al., 2002). As part of our investigations on the chalcogen bearing compounds (Srivastava et al. 2010; Rastogi et al. 2011), we herein report the synthesis and X-ray
analysis of the title compound, triphenyltellurium chloride.The title compound was prepared by the modified procedure described earlier (Günther et al.,1974). A mixture of TeCl4 (26.8 g, 0.1 mol) and AlCl3 (39.9 g, 0.3 mol) in 300 mL dry benzene was placed into a 500 mL two-necked, round-bottom flask equipped with a magnetic stirring bar, a nitrogen inlet and a reflux condenser. The reflux condenser was connected with Tygon tubing to a gas dispersion tube immersed in water containing phenolphthalein indicator. The reaction mixture was heated to reflux under nitrogen. Vigorous hydrogen chloride evolution occurred immediately. The hydrogen chloride was swept through the condenser into phenolphthalein solution by nitrogen and titrated with NaOH solution. The reaction mixture was poured into 400 mL of ice and water, when three equivalents of HCl had evolved. A dark colored solid was separated by filtration of the quenched reaction mixture and dissolved in minimum amount of boiling water. The hot mixture was then quickly filtered to give a clear colorless solution. On cooling the filtrate, a white crystalline solid of triphenyltellurium chloride separated out. The compound was crystallized in ethanol and chloroform mixture (60:40) to give white crystals suitable for X-ray analysis in 72% yield. M.P. 249-250 °C. Anal. calc. for C18H15ClTe(%): C,54.82; H,3.83; Cl,8.99; Te,32.35. Found: C,54.88; H,3.86; Cl,9.16; Te,32.30.
H atoms were positioned geometrically and refined using the riding model, with C–H distance of 0.95 Å, with Uiso (H) = 1.20 Ueq (C) atoms.
The molecular structure of the title compound, C18H15ClTe, is shown in Fig.1. The π intermolecular interactions (Table 1, Fig.2).
of the structure contains two molecules which are in inverted orientations. The molecule displays a tetrahedral geometry around the Te atom (sum of bond angles, 436.56°) in spite of being five electron domains. This attributes the fact that the lone pair is not sterically active. This is in contrast with the reported structure of distorted octahedral geometry for (C6F5)3TeCl (Klapotke et al., 2001) and trigonal bipyramidal geometry for (C6F5)3TeBr (Naumann et al., 2002). This clearly indicates that there is no effect of free electron pair at Te in the present structure. The dihedral angles between the mean planes of the three phenyl rings C7A–C12A, C1A–C6A, C13A–C18A in molecule A and C7B–C12B, C1B–C6B, C13B–C18B in molecule B are 76.51 (16)/73.75 (16) and 78.60 (17)/77.67 (16)°, respectively, in the two molecules indicating that there is no conjugation between three aromatic rings. The two phenyl rings at C7 and C13 are inclined at an angle of 71.06 (17)° in molecule A and 79.11 (16)° in molecule B. The crystal packing is stabilized by eight C—H···Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Packing diagram of C18H15ClTe viewed along b axis. |
C18H15ClTe | F(000) = 1536 |
Mr = 394.35 | Dx = 1.635 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 18.7514 (3) Å | Cell parameters from 8646 reflections |
b = 9.60800 (15) Å | θ = 3.0–75.3° |
c = 18.4367 (3) Å | µ = 16.07 mm−1 |
β = 105.2453 (16)° | T = 123 K |
V = 3204.74 (9) Å3 | Prism, colorless |
Z = 8 | 0.25 × 0.12 × 0.08 mm |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 6446 independent reflections |
Radiation source: Enhance(Cu)X-ray Source | 5854 reflections with I > 2σ(I) |
Detector resolution: 10.5081 pixels mm-1 | Rint = 0.051 |
ω scans | θmax = 75.5°, θmin = 4.9° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −23→22 |
Tmin = 0.215, Tmax = 1.000 | k = −11→11 |
12435 measured reflections | l = −15→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
6446 reflections | Δρmax = 0.98 e Å−3 |
361 parameters | Δρmin = −1.24 e Å−3 |
C18H15ClTe | V = 3204.74 (9) Å3 |
Mr = 394.35 | Z = 8 |
Monoclinic, P21/c | Cu Kα radiation |
a = 18.7514 (3) Å | µ = 16.07 mm−1 |
b = 9.60800 (15) Å | T = 123 K |
c = 18.4367 (3) Å | 0.25 × 0.12 × 0.08 mm |
β = 105.2453 (16)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 6446 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 5854 reflections with I > 2σ(I) |
Tmin = 0.215, Tmax = 1.000 | Rint = 0.051 |
12435 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.98 e Å−3 |
6446 reflections | Δρmin = −1.24 e Å−3 |
361 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.94906 (2) | 0.68564 (2) | 0.31239 (2) | 0.01281 (7) | |
Cl1A | 0.89902 (5) | 0.50007 (10) | 0.36822 (5) | 0.02617 (18) | |
C1A | 0.90760 (17) | 0.8720 (3) | 0.34765 (15) | 0.0117 (5) | |
C2A | 0.95451 (18) | 0.9705 (4) | 0.39152 (17) | 0.0174 (6) | |
H2AA | 1.0060 | 0.9520 | 0.4089 | 0.021* | |
C3A | 0.9264 (2) | 1.0956 (4) | 0.40997 (19) | 0.0221 (7) | |
H3AA | 0.9586 | 1.1625 | 0.4395 | 0.027* | |
C4A | 0.8510 (2) | 1.1227 (4) | 0.38521 (19) | 0.0203 (7) | |
H4AA | 0.8318 | 1.2084 | 0.3976 | 0.024* | |
C5A | 0.80402 (18) | 1.0247 (4) | 0.34240 (17) | 0.0177 (6) | |
H5AA | 0.7525 | 1.0427 | 0.3260 | 0.021* | |
C6A | 0.83215 (17) | 0.9001 (4) | 0.32338 (16) | 0.0136 (6) | |
H6AA | 0.7997 | 0.8337 | 0.2936 | 0.016* | |
C7A | 0.90531 (16) | 0.6542 (4) | 0.19509 (16) | 0.0132 (6) | |
C8A | 0.9106 (2) | 0.7593 (4) | 0.14490 (18) | 0.0192 (6) | |
H8AA | 0.9337 | 0.8449 | 0.1632 | 0.023* | |
C9A | 0.8819 (2) | 0.7394 (4) | 0.06757 (18) | 0.0241 (7) | |
H9AA | 0.8860 | 0.8112 | 0.0334 | 0.029* | |
C10A | 0.8474 (2) | 0.6147 (4) | 0.04067 (18) | 0.0253 (8) | |
H10A | 0.8277 | 0.6015 | −0.0119 | 0.030* | |
C11A | 0.84169 (19) | 0.5095 (4) | 0.0903 (2) | 0.0217 (7) | |
H11A | 0.8182 | 0.4243 | 0.0717 | 0.026* | |
C12A | 0.87045 (18) | 0.5289 (4) | 0.16747 (19) | 0.0175 (6) | |
H12A | 0.8664 | 0.4569 | 0.2014 | 0.021* | |
C13A | 1.06448 (16) | 0.6564 (3) | 0.35559 (16) | 0.0113 (5) | |
C14A | 1.11265 (18) | 0.6647 (4) | 0.30923 (16) | 0.0157 (6) | |
H14A | 1.0936 | 0.6821 | 0.2570 | 0.019* | |
C15A | 1.18813 (18) | 0.6477 (4) | 0.33918 (18) | 0.0183 (6) | |
H15A | 1.2206 | 0.6547 | 0.3076 | 0.022* | |
C16A | 1.21641 (18) | 0.6202 (4) | 0.41587 (19) | 0.0196 (7) | |
H16A | 1.2681 | 0.6082 | 0.4363 | 0.023* | |
C17A | 1.16919 (19) | 0.6103 (4) | 0.46211 (17) | 0.0175 (6) | |
H17A | 1.1884 | 0.5911 | 0.5141 | 0.021* | |
C18A | 1.09335 (18) | 0.6286 (3) | 0.43220 (16) | 0.0143 (6) | |
H18A | 1.0611 | 0.6220 | 0.4641 | 0.017* | |
Te2 | 0.45436 (2) | 0.55648 (2) | 0.33256 (2) | 0.01326 (7) | |
Cl1B | 0.40664 (5) | 0.72841 (10) | 0.39883 (5) | 0.02692 (18) | |
C1B | 0.40378 (16) | 0.5962 (4) | 0.21742 (16) | 0.0139 (6) | |
C2B | 0.4015 (2) | 0.4914 (4) | 0.16450 (18) | 0.0191 (6) | |
H2BA | 0.4224 | 0.4030 | 0.1806 | 0.023* | |
C3B | 0.3690 (2) | 0.5145 (4) | 0.08827 (18) | 0.0216 (7) | |
H3BA | 0.3680 | 0.4424 | 0.0528 | 0.026* | |
C4B | 0.33825 (19) | 0.6434 (4) | 0.06456 (18) | 0.0207 (7) | |
H4BA | 0.3159 | 0.6593 | 0.0127 | 0.025* | |
C5B | 0.33996 (18) | 0.7490 (4) | 0.11611 (18) | 0.0186 (6) | |
H5BA | 0.3191 | 0.8373 | 0.0995 | 0.022* | |
C6B | 0.37254 (17) | 0.7257 (3) | 0.19282 (17) | 0.0146 (6) | |
H6BA | 0.3734 | 0.7980 | 0.2282 | 0.017* | |
C7B | 0.56983 (16) | 0.5920 (3) | 0.36148 (16) | 0.0110 (5) | |
C8B | 0.60684 (17) | 0.5895 (4) | 0.30504 (15) | 0.0138 (6) | |
H8BA | 0.5800 | 0.5717 | 0.2546 | 0.017* | |
C9B | 0.68260 (19) | 0.6128 (4) | 0.32186 (17) | 0.0182 (6) | |
H9BA | 0.7073 | 0.6108 | 0.2830 | 0.022* | |
C10B | 0.72222 (18) | 0.6392 (4) | 0.39582 (18) | 0.0188 (6) | |
H10B | 0.7740 | 0.6550 | 0.4075 | 0.023* | |
C11B | 0.68595 (18) | 0.6424 (4) | 0.45235 (17) | 0.0164 (6) | |
H11B | 0.7130 | 0.6611 | 0.5027 | 0.020* | |
C12B | 0.60982 (18) | 0.6181 (4) | 0.43578 (16) | 0.0148 (6) | |
H12B | 0.5853 | 0.6194 | 0.4748 | 0.018* | |
C13B | 0.41530 (17) | 0.3643 (3) | 0.36394 (15) | 0.0121 (6) | |
C14B | 0.46223 (18) | 0.2532 (4) | 0.39384 (17) | 0.0173 (6) | |
H14B | 0.5143 | 0.2645 | 0.4044 | 0.021* | |
C15B | 0.4328 (2) | 0.1266 (4) | 0.40814 (19) | 0.0229 (7) | |
H15B | 0.4649 | 0.0514 | 0.4281 | 0.027* | |
C16B | 0.3565 (2) | 0.1092 (4) | 0.39335 (18) | 0.0219 (7) | |
H16B | 0.3365 | 0.0222 | 0.4027 | 0.026* | |
C17B | 0.30978 (19) | 0.2199 (4) | 0.36487 (18) | 0.0205 (7) | |
H17B | 0.2578 | 0.2090 | 0.3557 | 0.025* | |
C18B | 0.33869 (17) | 0.3461 (4) | 0.34975 (16) | 0.0145 (6) | |
H18B | 0.3063 | 0.4208 | 0.3296 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.01195 (10) | 0.01092 (11) | 0.01414 (9) | 0.00276 (7) | 0.00093 (7) | 0.00010 (6) |
Cl1A | 0.0262 (4) | 0.0210 (4) | 0.0342 (4) | 0.0001 (3) | 0.0131 (3) | 0.0099 (3) |
C1A | 0.0140 (14) | 0.0102 (14) | 0.0114 (11) | 0.0027 (11) | 0.0043 (10) | −0.0017 (10) |
C2A | 0.0125 (14) | 0.0214 (18) | 0.0168 (13) | −0.0011 (13) | 0.0010 (11) | −0.0029 (12) |
C3A | 0.0222 (17) | 0.0186 (18) | 0.0268 (16) | −0.0052 (14) | 0.0085 (13) | −0.0093 (14) |
C4A | 0.0259 (17) | 0.0130 (16) | 0.0254 (15) | 0.0060 (13) | 0.0131 (13) | −0.0020 (12) |
C5A | 0.0143 (15) | 0.0195 (17) | 0.0197 (13) | 0.0084 (13) | 0.0051 (11) | 0.0036 (12) |
C6A | 0.0124 (14) | 0.0135 (15) | 0.0131 (12) | 0.0006 (12) | 0.0004 (10) | −0.0001 (11) |
C7A | 0.0080 (13) | 0.0125 (15) | 0.0176 (13) | 0.0057 (11) | 0.0008 (10) | −0.0012 (11) |
C8A | 0.0234 (17) | 0.0118 (16) | 0.0191 (14) | 0.0002 (13) | 0.0001 (12) | −0.0017 (12) |
C9A | 0.0317 (19) | 0.0200 (18) | 0.0170 (14) | 0.0076 (15) | 0.0002 (13) | 0.0034 (13) |
C10A | 0.0245 (17) | 0.029 (2) | 0.0171 (14) | 0.0161 (16) | −0.0045 (12) | −0.0083 (14) |
C11A | 0.0174 (16) | 0.0165 (17) | 0.0271 (16) | 0.0042 (13) | −0.0014 (12) | −0.0115 (13) |
C12A | 0.0133 (14) | 0.0129 (16) | 0.0249 (15) | 0.0009 (12) | 0.0026 (12) | −0.0050 (12) |
C13A | 0.0082 (12) | 0.0096 (14) | 0.0134 (12) | 0.0003 (11) | −0.0019 (10) | −0.0023 (10) |
C14A | 0.0189 (15) | 0.0152 (16) | 0.0122 (12) | 0.0010 (12) | 0.0027 (11) | −0.0017 (11) |
C15A | 0.0134 (14) | 0.0190 (17) | 0.0240 (15) | 0.0018 (13) | 0.0071 (12) | −0.0047 (13) |
C16A | 0.0110 (14) | 0.0183 (17) | 0.0250 (15) | 0.0030 (13) | −0.0030 (12) | −0.0043 (13) |
C17A | 0.0177 (15) | 0.0157 (16) | 0.0136 (12) | 0.0049 (13) | −0.0057 (11) | −0.0012 (11) |
C18A | 0.0165 (15) | 0.0129 (15) | 0.0130 (12) | 0.0007 (12) | 0.0031 (11) | −0.0015 (11) |
Te2 | 0.01147 (10) | 0.01182 (11) | 0.01491 (10) | −0.00067 (7) | 0.00070 (7) | 0.00025 (6) |
Cl1B | 0.0253 (4) | 0.0222 (4) | 0.0349 (4) | 0.0029 (3) | 0.0109 (3) | −0.0098 (3) |
C1B | 0.0070 (13) | 0.0157 (16) | 0.0165 (13) | −0.0049 (12) | −0.0012 (10) | −0.0002 (12) |
C2B | 0.0233 (17) | 0.0115 (16) | 0.0204 (14) | −0.0034 (13) | 0.0020 (12) | 0.0003 (12) |
C3B | 0.0301 (18) | 0.0161 (17) | 0.0172 (14) | −0.0052 (14) | 0.0038 (13) | −0.0037 (12) |
C4B | 0.0191 (16) | 0.0219 (18) | 0.0175 (14) | −0.0076 (14) | −0.0019 (12) | 0.0066 (13) |
C5B | 0.0135 (15) | 0.0165 (17) | 0.0224 (15) | −0.0028 (12) | −0.0012 (12) | 0.0078 (13) |
C6B | 0.0111 (13) | 0.0098 (15) | 0.0203 (14) | −0.0022 (12) | −0.0004 (11) | 0.0013 (11) |
C7B | 0.0076 (12) | 0.0088 (14) | 0.0144 (12) | 0.0018 (11) | −0.0011 (10) | 0.0018 (10) |
C8B | 0.0166 (15) | 0.0140 (15) | 0.0091 (11) | −0.0023 (12) | 0.0003 (10) | 0.0027 (10) |
C9B | 0.0186 (15) | 0.0202 (18) | 0.0171 (14) | −0.0020 (13) | 0.0070 (11) | 0.0059 (12) |
C10B | 0.0139 (14) | 0.0168 (17) | 0.0228 (15) | −0.0017 (13) | −0.0002 (12) | 0.0007 (12) |
C11B | 0.0138 (14) | 0.0162 (16) | 0.0157 (13) | −0.0014 (12) | −0.0024 (11) | −0.0029 (11) |
C12B | 0.0166 (15) | 0.0159 (16) | 0.0119 (12) | 0.0028 (12) | 0.0035 (11) | −0.0021 (11) |
C13B | 0.0152 (14) | 0.0121 (15) | 0.0081 (11) | −0.0024 (12) | 0.0016 (10) | 0.0029 (10) |
C14B | 0.0152 (15) | 0.0185 (17) | 0.0187 (13) | 0.0029 (13) | 0.0052 (11) | 0.0033 (12) |
C15B | 0.0334 (19) | 0.0160 (17) | 0.0208 (14) | 0.0064 (15) | 0.0100 (13) | 0.0056 (12) |
C16B | 0.0321 (19) | 0.0182 (17) | 0.0181 (14) | −0.0100 (14) | 0.0116 (13) | −0.0001 (12) |
C17B | 0.0178 (16) | 0.0253 (19) | 0.0187 (13) | −0.0090 (14) | 0.0056 (12) | −0.0025 (13) |
C18B | 0.0116 (14) | 0.0165 (16) | 0.0143 (12) | 0.0000 (12) | 0.0017 (10) | −0.0006 (11) |
Te1—C13A | 2.119 (3) | Te2—C7B | 2.117 (3) |
Te1—C1A | 2.121 (3) | Te2—C1B | 2.120 (3) |
Te1—C7A | 2.123 (3) | Te2—C13B | 2.122 (3) |
Te1—Cl1A | 2.3720 (9) | Te2—Cl1B | 2.3659 (9) |
C1A—C6A | 1.394 (4) | C1B—C2B | 1.395 (5) |
C1A—C2A | 1.396 (4) | C1B—C6B | 1.399 (5) |
C2A—C3A | 1.390 (5) | C2B—C3B | 1.395 (5) |
C2A—H2AA | 0.9500 | C2B—H2BA | 0.9500 |
C3A—C4A | 1.390 (5) | C3B—C4B | 1.387 (5) |
C3A—H3AA | 0.9500 | C3B—H3BA | 0.9500 |
C4A—C5A | 1.386 (5) | C4B—C5B | 1.385 (5) |
C4A—H4AA | 0.9500 | C4B—H4BA | 0.9500 |
C5A—C6A | 1.390 (5) | C5B—C6B | 1.403 (4) |
C5A—H5AA | 0.9500 | C5B—H5BA | 0.9500 |
C6A—H6AA | 0.9500 | C6B—H6BA | 0.9500 |
C7A—C8A | 1.390 (5) | C7B—C8B | 1.395 (4) |
C7A—C12A | 1.400 (5) | C7B—C12B | 1.401 (4) |
C8A—C9A | 1.398 (4) | C8B—C9B | 1.390 (5) |
C8A—H8AA | 0.9500 | C8B—H8BA | 0.9500 |
C9A—C10A | 1.390 (6) | C9B—C10B | 1.394 (5) |
C9A—H9AA | 0.9500 | C9B—H9BA | 0.9500 |
C10A—C11A | 1.386 (6) | C10B—C11B | 1.387 (5) |
C10A—H10A | 0.9500 | C10B—H10B | 0.9500 |
C11A—C12A | 1.396 (5) | C11B—C12B | 1.398 (5) |
C11A—H11A | 0.9500 | C11B—H11B | 0.9500 |
C12A—H12A | 0.9500 | C12B—H12B | 0.9500 |
C13A—C18A | 1.399 (4) | C13B—C14B | 1.401 (5) |
C13A—C14A | 1.400 (4) | C13B—C18B | 1.402 (4) |
C14A—C15A | 1.387 (5) | C14B—C15B | 1.389 (5) |
C14A—H14A | 0.9500 | C14B—H14B | 0.9500 |
C15A—C16A | 1.399 (5) | C15B—C16B | 1.395 (6) |
C15A—H15A | 0.9500 | C15B—H15B | 0.9500 |
C16A—C17A | 1.384 (5) | C16B—C17B | 1.390 (6) |
C16A—H16A | 0.9500 | C16B—H16B | 0.9500 |
C17A—C18A | 1.395 (5) | C17B—C18B | 1.386 (5) |
C17A—H17A | 0.9500 | C17B—H17B | 0.9500 |
C18A—H18A | 0.9500 | C18B—H18B | 0.9500 |
C13A—Te1—C1A | 114.64 (12) | C7B—Te2—C1B | 112.45 (11) |
C13A—Te1—C7A | 116.54 (11) | C7B—Te2—C13B | 118.37 (12) |
C1A—Te1—C7A | 110.95 (11) | C1B—Te2—C13B | 109.51 (11) |
C13A—Te1—Cl1A | 102.64 (9) | C7B—Te2—Cl1B | 104.96 (9) |
C1A—Te1—Cl1A | 106.43 (9) | C1B—Te2—Cl1B | 105.13 (10) |
C7A—Te1—Cl1A | 104.14 (10) | C13B—Te2—Cl1B | 105.20 (9) |
C6A—C1A—C2A | 119.1 (3) | C2B—C1B—C6B | 118.8 (3) |
C6A—C1A—Te1 | 119.2 (2) | C2B—C1B—Te2 | 119.6 (2) |
C2A—C1A—Te1 | 121.6 (2) | C6B—C1B—Te2 | 121.6 (2) |
C3A—C2A—C1A | 120.4 (3) | C1B—C2B—C3B | 121.0 (3) |
C3A—C2A—H2AA | 119.8 | C1B—C2B—H2BA | 119.5 |
C1A—C2A—H2AA | 119.8 | C3B—C2B—H2BA | 119.5 |
C2A—C3A—C4A | 120.0 (3) | C4B—C3B—C2B | 119.7 (3) |
C2A—C3A—H3AA | 120.0 | C4B—C3B—H3BA | 120.2 |
C4A—C3A—H3AA | 120.0 | C2B—C3B—H3BA | 120.2 |
C5A—C4A—C3A | 119.9 (3) | C5B—C4B—C3B | 120.3 (3) |
C5A—C4A—H4AA | 120.0 | C5B—C4B—H4BA | 119.8 |
C3A—C4A—H4AA | 120.0 | C3B—C4B—H4BA | 119.8 |
C4A—C5A—C6A | 120.1 (3) | C4B—C5B—C6B | 120.0 (3) |
C4A—C5A—H5AA | 119.9 | C4B—C5B—H5BA | 120.0 |
C6A—C5A—H5AA | 119.9 | C6B—C5B—H5BA | 120.0 |
C5A—C6A—C1A | 120.4 (3) | C1B—C6B—C5B | 120.2 (3) |
C5A—C6A—H6AA | 119.8 | C1B—C6B—H6BA | 119.9 |
C1A—C6A—H6AA | 119.8 | C5B—C6B—H6BA | 119.9 |
C8A—C7A—C12A | 119.3 (3) | C8B—C7B—C12B | 119.3 (3) |
C8A—C7A—Te1 | 119.9 (2) | C8B—C7B—Te2 | 119.1 (2) |
C12A—C7A—Te1 | 120.7 (2) | C12B—C7B—Te2 | 121.6 (2) |
C7A—C8A—C9A | 120.3 (3) | C9B—C8B—C7B | 120.7 (3) |
C7A—C8A—H8AA | 119.9 | C9B—C8B—H8BA | 119.6 |
C9A—C8A—H8AA | 119.9 | C7B—C8B—H8BA | 119.6 |
C10A—C9A—C8A | 120.0 (3) | C8B—C9B—C10B | 119.9 (3) |
C10A—C9A—H9AA | 120.0 | C8B—C9B—H9BA | 120.1 |
C8A—C9A—H9AA | 120.0 | C10B—C9B—H9BA | 120.1 |
C11A—C10A—C9A | 120.2 (3) | C11B—C10B—C9B | 119.9 (3) |
C11A—C10A—H10A | 119.9 | C11B—C10B—H10B | 120.0 |
C9A—C10A—H10A | 119.9 | C9B—C10B—H10B | 120.0 |
C10A—C11A—C12A | 119.9 (3) | C10B—C11B—C12B | 120.4 (3) |
C10A—C11A—H11A | 120.0 | C10B—C11B—H11B | 119.8 |
C12A—C11A—H11A | 120.0 | C12B—C11B—H11B | 119.8 |
C11A—C12A—C7A | 120.3 (3) | C11B—C12B—C7B | 119.8 (3) |
C11A—C12A—H12A | 119.9 | C11B—C12B—H12B | 120.1 |
C7A—C12A—H12A | 119.9 | C7B—C12B—H12B | 120.1 |
C18A—C13A—C14A | 119.1 (3) | C14B—C13B—C18B | 119.0 (3) |
C18A—C13A—Te1 | 119.4 (2) | C14B—C13B—Te2 | 123.0 (2) |
C14A—C13A—Te1 | 121.5 (2) | C18B—C13B—Te2 | 117.9 (2) |
C15A—C14A—C13A | 120.3 (3) | C15B—C14B—C13B | 120.2 (3) |
C15A—C14A—H14A | 119.8 | C15B—C14B—H14B | 119.9 |
C13A—C14A—H14A | 119.8 | C13B—C14B—H14B | 119.9 |
C14A—C15A—C16A | 120.1 (3) | C14B—C15B—C16B | 120.4 (3) |
C14A—C15A—H15A | 120.0 | C14B—C15B—H15B | 119.8 |
C16A—C15A—H15A | 120.0 | C16B—C15B—H15B | 119.8 |
C17A—C16A—C15A | 120.1 (3) | C17B—C16B—C15B | 119.6 (3) |
C17A—C16A—H16A | 119.9 | C17B—C16B—H16B | 120.2 |
C15A—C16A—H16A | 119.9 | C15B—C16B—H16B | 120.2 |
C16A—C17A—C18A | 119.9 (3) | C18B—C17B—C16B | 120.3 (3) |
C16A—C17A—H17A | 120.0 | C18B—C17B—H17B | 119.9 |
C18A—C17A—H17A | 120.0 | C16B—C17B—H17B | 119.9 |
C17A—C18A—C13A | 120.5 (3) | C17B—C18B—C13B | 120.5 (3) |
C17A—C18A—H18A | 119.8 | C17B—C18B—H18B | 119.7 |
C13A—C18A—H18A | 119.8 | C13B—C18B—H18B | 119.7 |
C6A—C1A—C2A—C3A | −0.7 (5) | C6B—C1B—C2B—C3B | 0.2 (5) |
Te1—C1A—C2A—C3A | 176.0 (3) | Te2—C1B—C2B—C3B | −179.6 (3) |
C1A—C2A—C3A—C4A | 0.5 (5) | C1B—C2B—C3B—C4B | −0.2 (6) |
C2A—C3A—C4A—C5A | 0.3 (5) | C2B—C3B—C4B—C5B | 0.3 (5) |
C3A—C4A—C5A—C6A | −0.8 (5) | C3B—C4B—C5B—C6B | −0.4 (5) |
C4A—C5A—C6A—C1A | 0.6 (5) | C2B—C1B—C6B—C5B | −0.3 (5) |
C2A—C1A—C6A—C5A | 0.2 (5) | Te2—C1B—C6B—C5B | 179.5 (2) |
Te1—C1A—C6A—C5A | −176.6 (2) | C4B—C5B—C6B—C1B | 0.4 (5) |
C12A—C7A—C8A—C9A | −0.6 (5) | C12B—C7B—C8B—C9B | −0.1 (5) |
Te1—C7A—C8A—C9A | 180.0 (3) | Te2—C7B—C8B—C9B | 179.8 (3) |
C7A—C8A—C9A—C10A | 0.6 (6) | C7B—C8B—C9B—C10B | −0.1 (5) |
C8A—C9A—C10A—C11A | −0.4 (6) | C8B—C9B—C10B—C11B | −0.1 (6) |
C9A—C10A—C11A—C12A | 0.2 (5) | C9B—C10B—C11B—C12B | 0.5 (6) |
C10A—C11A—C12A—C7A | −0.2 (5) | C10B—C11B—C12B—C7B | −0.7 (5) |
C8A—C7A—C12A—C11A | 0.4 (5) | C8B—C7B—C12B—C11B | 0.5 (5) |
Te1—C7A—C12A—C11A | 179.8 (2) | Te2—C7B—C12B—C11B | −179.4 (3) |
C18A—C13A—C14A—C15A | −1.0 (5) | C18B—C13B—C14B—C15B | 0.8 (4) |
Te1—C13A—C14A—C15A | 178.8 (3) | Te2—C13B—C14B—C15B | −175.3 (2) |
C13A—C14A—C15A—C16A | 0.9 (5) | C13B—C14B—C15B—C16B | −0.4 (5) |
C14A—C15A—C16A—C17A | −0.2 (6) | C14B—C15B—C16B—C17B | −0.7 (5) |
C15A—C16A—C17A—C18A | −0.3 (6) | C15B—C16B—C17B—C18B | 1.3 (5) |
C16A—C17A—C18A—C13A | 0.2 (5) | C16B—C17B—C18B—C13B | −0.9 (5) |
C14A—C13A—C18A—C17A | 0.5 (5) | C14B—C13B—C18B—C17B | −0.2 (4) |
Te1—C13A—C18A—C17A | −179.4 (3) | Te2—C13B—C18B—C17B | 176.1 (2) |
Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2A—H2AA···Cg2i | 0.95 | 2.96 | 3.587 (4) | 125 |
C5A—H5AA···Cg4 | 0.95 | 2.65 | 3.497 (4) | 149 |
C10A—H10A···Cg1ii | 0.95 | 2.83 | 3.580 (4) | 137 |
C5B—H5BA···Cg5iii | 0.95 | 2.76 | 3.532 (4) | 139 |
C11A—H11A···Cg3iv | 0.95 | 2.91 | 3.601 (4) | 131 |
C12B—H12B···Cg6v | 0.95 | 2.95 | 3.671 (3) | 134 |
C14B—H14B···Cg4vi | 0.95 | 2.86 | 3.589 (4) | 134 |
C17B—H17B···Cg2 | 0.95 | 2.78 | 3.679 (4) | 158 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y−1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2. |
Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the C1A–C6A, C7A–C12A, C13A–C18A, C1B–C6B, C7B–C12B and C13B–C18B phenyl rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2A—H2AA···Cg2i | 0.95 | 2.96 | 3.587 (4) | 125 |
C5A—H5AA···Cg4 | 0.95 | 2.65 | 3.497 (4) | 149 |
C10A—H10A···Cg1ii | 0.95 | 2.83 | 3.580 (4) | 137 |
C5B—H5BA···Cg5iii | 0.95 | 2.76 | 3.532 (4) | 139 |
C11A—H11A···Cg3iv | 0.95 | 2.91 | 3.601 (4) | 131 |
C12B—H12B···Cg6v | 0.95 | 2.95 | 3.671 (3) | 134 |
C14B—H14B···Cg4vi | 0.95 | 2.86 | 3.589 (4) | 134 |
C17B—H17B···Cg2 | 0.95 | 2.78 | 3.679 (4) | 158 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y−1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x+1, y−1/2, −z+1/2. |
Acknowledgements
AC and SJ thank the JUG for the award of a University Fellowship. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Günther, W. H. H., Nepywoda, J. & Chu, J. Y. C. (1974). J. Organomet. Chem. 74, 79–84. Google Scholar
Klapötke, T. M., Krumm, B., Mayer, P., Polborn, K. & Ruscitti, O. P. (2001). J. Fluorine Chem. 112, 207–212. Google Scholar
Lima, C. B. C., Silva, W. W. A., Oliveira, R. L., Cunha, R. & Criorgio, S. (2009). Korean J. Parasitol. 47, 213–218. Web of Science CrossRef PubMed CAS Google Scholar
Naumann, D., Tyrra, W., Herrmann, R., Pantenburg, I. & Wickleder, M. S. (2002). Z. Anorg. Allg. Chem. 628, 833–842. Web of Science CSD CrossRef CAS Google Scholar
Rastogi, R., Srivastava, S. K., Butcher, R. J. & Jasinski, J. P. (2011). J. Chem. Crystallogr. 41, 391–400. Web of Science CSD CrossRef CAS Google Scholar
Santos, S. S., Lang, E. S. & Oliveira, G. M. (2007). J. Organomet. Chem. 692, 3081–3088. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soni, D., Gupta, P. K., Kumar, Y. & Chandrashekhar, T. G. (2005). Indian J. Biochem. Biophys. 42, 398–400. Web of Science PubMed CAS Google Scholar
Srivastava, S. K., Rastogi, R., Rajaram, P., Butcher, R. J. & Jasinski, J. P. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 455–462. Web of Science CSD CrossRef CAS Google Scholar
Srivastava, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011). Organometallics, 30, 534–546. Web of Science CSD CrossRef CAS Google Scholar
Teikink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46–76. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.