metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m120-m121

(μ-Acetato-κ2O:O′)[μ-2,6-bis­­({bis­­[(pyri­din-2-yl-κN)meth­yl]amino-κN}meth­yl)-4-methyl­phenolato-κ2O:O](metha­nol-κO)dizinc bis­­(perchlorate)

aInorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden, and bDepartment of Chemistry, University of Jyvaskyla, PO Box 35, FI-40014 Jyväskylä, Finland
*Correspondence e-mail: ebbe.nordlander@chemphys.lu.se

(Received 22 October 2013; accepted 24 February 2014; online 5 March 2014)

The binuclear title complex, [Zn2(C33H33N6O)(CH3COO2)(CH3OH)](ClO4)2, was synthesized by the reaction between 2,6-bis­({[bis­(pyridin-2-yl)meth­yl]amino}­meth­yl)-4-methyl­phenol (H-BPMP), Zn(OAc)2 and NaClO4. The two ZnII ions are bridged by the phenolate O atom of the octadentate ligand and the acetate group. An additional methanol ligand is terminally coordinated to one of the ZnII ions, rendering the whole structure unsymmetric. Other symmetric dizinc complexes of BPMP have been reported. However, to the best of our knowledge, the present structure, in which the two ZnII ions are distinguishable by the number of coordinating ligands and the coordination geometries (octahedral and square-pyramidal), is unique. The dizinc complex is a dication, and two perchlorate anions balance the charge. The –OH group of the coordinating methanol solvent mol­ecule forms a hydrogen bond with a perchlorate counter-anion. One of the anions is disordered over two sets of sites with an occupancy ratio of 0.734 (2):0.266 (2).

Related literature

For the ligand synthesis and related dizinc complexes of the HBPMP ligand, see: Selmeczi et al. (2007[Selmeczi, K., Michel, C., Milet, A., Gautier-Luneau, I., Philouze, C., Pierre, J.-L., Schnieders, D., Rompel, A. & Belle, C. (2007). Chem. Eur. J. 13, 9093-9106.]); Torelli et al. (2000[Torelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Le Pape, L. & Luneau, D. (2000). Inorg. Chem. 39, 3526-3536.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C33H33N6O)(C2H3O2)(CH4O)](ClO4)2

  • Mr = 950.38

  • Triclinic, [P \overline 1]

  • a = 10.0543 (4) Å

  • b = 10.7342 (4) Å

  • c = 18.7836 (7) Å

  • α = 86.320 (2)°

  • β = 80.372 (2)°

  • γ = 78.185 (2)°

  • V = 1955.38 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 100 K

  • 0.35 × 0.33 × 0.18 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.786

  • 62201 measured reflections

  • 19190 independent reflections

  • 15523 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.087

  • S = 1.03

  • 19190 reflections

  • 563 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.0574 (8)
Zn1—O2 2.0849 (8)
Zn1—O3 2.1013 (9)
Zn1—N2 2.1470 (10)
Zn1—N3 2.1524 (9)
Zn1—N1 2.1699 (9)
Zn2—O1 1.9932 (8)
Zn2—O4 2.0009 (8)
Zn2—N5 2.0747 (10)
Zn2—N6 2.1117 (10)
Zn2—N4 2.2025 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.85 1.86 2.7022 (14) 170
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2011[CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal and molecular structure of the dinuclear ZnII complex [Zn2(µ-OAc)(MeOH)(BPMP)]2+, where OAc = acetate and H-BPMP = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol, has been determined. The complex is rendered asymmetric by the coordination of the methanol molecule. Thus, the two metal sites may be distinguished by their coordination geometries and the number of donor groups at each metal center. Zn1 is in an N3O3 coordination environment with slightly distorted octahedral geometry and an average metal–ligand bond length of 2.119 Å; whereas Zn2 is in distorted square pyramidal geometry with N3O2 coordination geometry and with an average bond length of 2.077 Å. The Zn1—Zn2 distance is 3.5528 (2) Å and the two metals are bridged by the phenolate oxygen (O1) and the syn,syn-µ-1,3-acetate. The Zn1—O1—Zn2 angle is 122.57 (9)°, which is a value that is intermediate between those reported by Selmeczi et al. for the two dizinc complexes [Zn2(BPMP)(µ-OH)](ClO4)2 and [Zn2(BPMP)(H2O)2](ClO4)3 [96.04 (2) and 137.21(3, respectively; Selmeczi et al., 2007]. A difference of 0.0840 (11) Å has been observed between the two Zn—O (acetate) bonds. The –OH group of the coordinated methanol solvent molecule forms an isolated hydrogen bond with a perhclorate counteranion.

Related literature top

For the ligand synthesis and related dizinc complexes of the HBPMP ligand, see: Selmeczi et al. (2007); Torelli et al. (2000).

Experimental top

The ligand HBPMP was prepared by following the procedure reported by Torelli et al. (2000). For the synthesis of [Zn2(µ-acetato)(MeOH)(BPMP)](ClO4)2, a 30 ml methanolic solution of 0.25 g (0.471 mmol) of HBPMP in a 100 ml round bottom flask was prepared. To this solution, 0.173 g (0.943 mmol) of Zn(OAc)2 was added, and the solution was stirred for two hrs, followed by addition of 0.1153 g (0.942 mmol) of sodium perchlorate. The resultant solution was stirred vigorously for 1 hr. The solvent was removed under vacuum and washed initially with 10 ml of ice cold water to remove unreacted salts and thereafter with 20 ml of diethyl ether. The resultant solid was collected in a round bottom flask and was dried under vacuum to yield a white powder that was dissolved in 2 ml of dry methanol. Colorless crystals of [Zn2(µ-OAc)(MeOH)(BPMP)](ClO4)2 suitable for X-ray crystallography were grown from this methanol solution by slow diffusion of diethyl ether.

Refinement top

The oxygen atoms of one of the ClO4- anions were disordered over two sites with occupancy ratio of 0.73/0.27. The OH hydrogen atom was located from the difference Fourier map but the isotropic refinement was not satisfactory. Therefore, the OH hydrogen atom was constrained to ride on its parent atom, with Uiso = 1.5 Ueq(parent atom). Other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å, and Uiso = 1.2–1.5 Ueq(parent atom). The highest peak is located 0.71 Å from atom Zn1 and the deepest hole is located 0.51 Å from atom Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Plot of the molecular cation [Zn2(µ-OAc)(MeOH)(BPMP)]2+, showing 30% probability displacement ellipsoids. H atoms have been excluded for clarity.
(µ-Acetato-κ2O:O')[µ-2,6-bis({bis[(pyridin-2-yl-κN)methyl]amino-κN}methyl)-4-methylphenolato-κ2O:O](methanol-κO)dizinc bis(perchlorate) top
Crystal data top
[Zn2(C33H33N6O)(C2H3O2)(CH4O)](ClO4)2Z = 2
Mr = 950.38F(000) = 976
Triclinic, P1Dx = 1.614 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0543 (4) ÅCell parameters from 9729 reflections
b = 10.7342 (4) Åθ = 2.8–36.4°
c = 18.7836 (7) ŵ = 1.43 mm1
α = 86.320 (2)°T = 100 K
β = 80.372 (2)°Block, yellow
γ = 78.185 (2)°0.35 × 0.33 × 0.18 mm
V = 1955.38 (13) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
19190 independent reflections
Radiation source: fine-focus sealed tube15523 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.016
Detector resolution: 16 pixels mm-1θmax = 36.6°, θmin = 2.1°
ϕ scans and ω scans with κ offseth = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1717
Tmin = 0.633, Tmax = 0.786l = 3031
62201 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.735P]
where P = (Fo2 + 2Fc2)/3
19190 reflections(Δ/σ)max = 0.002
563 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Zn2(C33H33N6O)(C2H3O2)(CH4O)](ClO4)2γ = 78.185 (2)°
Mr = 950.38V = 1955.38 (13) Å3
Triclinic, P1Z = 2
a = 10.0543 (4) ÅMo Kα radiation
b = 10.7342 (4) ŵ = 1.43 mm1
c = 18.7836 (7) ÅT = 100 K
α = 86.320 (2)°0.35 × 0.33 × 0.18 mm
β = 80.372 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
19190 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
15523 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.786Rint = 0.016
62201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.03Δρmax = 0.95 e Å3
19190 reflectionsΔρmin = 0.65 e Å3
563 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.404914 (12)0.287963 (11)0.196393 (7)0.01438 (3)
Zn20.762399 (12)0.192005 (12)0.203424 (7)0.01622 (3)
Cl10.64852 (3)0.81110 (3)0.138938 (18)0.02784 (6)
Cl20.04630 (4)0.73238 (3)0.416697 (16)0.02788 (6)
O10.56730 (8)0.22892 (8)0.25227 (4)0.01726 (13)
O20.51803 (8)0.39983 (8)0.12574 (5)0.02011 (15)
O30.45462 (10)0.13837 (8)0.12373 (5)0.02328 (16)
H3O0.50900.07470.13960.035*
O40.73783 (9)0.29498 (9)0.11224 (5)0.02349 (16)
O50.64811 (15)0.93993 (11)0.15863 (9)0.0514 (4)
O60.51205 (14)0.80215 (14)0.13164 (9)0.0527 (3)
O70.73777 (15)0.78473 (14)0.07170 (7)0.0489 (3)
O80.69998 (15)0.72519 (12)0.19353 (7)0.0466 (3)
O90.13246 (16)0.74430 (14)0.34787 (7)0.0321 (3)0.734 (2)
O100.0887 (3)0.61728 (15)0.45314 (10)0.0500 (6)0.734 (2)
O110.0592 (2)0.83897 (13)0.46055 (8)0.0342 (4)0.734 (2)
O120.09405 (19)0.7509 (2)0.40768 (10)0.0472 (5)0.734 (2)
O9B0.0062 (5)0.6900 (4)0.3461 (2)0.0367 (10)0.266 (2)
O10B0.1895 (5)0.7003 (5)0.4069 (4)0.0510 (14)0.266 (2)
O11B0.0021 (7)0.6269 (5)0.4675 (3)0.0397 (12)0.266 (2)
O12B0.0205 (5)0.8437 (3)0.4349 (2)0.0334 (10)0.266 (2)
N10.22879 (9)0.38476 (9)0.14793 (5)0.01711 (15)
N20.31404 (10)0.43817 (9)0.27006 (5)0.01806 (16)
N30.28959 (10)0.18295 (9)0.27692 (5)0.01951 (17)
N40.81362 (10)0.05214 (9)0.29061 (5)0.01938 (16)
N50.82889 (10)0.31006 (9)0.26733 (5)0.01902 (16)
N60.92968 (10)0.06431 (9)0.14755 (5)0.01880 (16)
C10.16155 (11)0.33903 (11)0.10315 (7)0.02043 (19)
H10.19650.25540.08600.025*
C20.04273 (12)0.40860 (12)0.08061 (7)0.0232 (2)
H20.00270.37360.04860.028*
C30.00807 (12)0.53026 (12)0.10589 (7)0.0238 (2)
H30.08880.58050.09120.029*
C40.06054 (12)0.57767 (11)0.15289 (7)0.0225 (2)
H40.02670.66050.17130.027*
C50.17950 (11)0.50276 (10)0.17279 (6)0.01827 (18)
C60.25960 (12)0.54702 (10)0.22410 (6)0.02066 (19)
H6A0.33650.58300.19640.025*
H6B0.19890.61440.25470.025*
C70.20189 (12)0.39622 (12)0.32153 (6)0.0219 (2)
H7A0.11430.42270.30220.026*
H7B0.19150.43840.36800.026*
C80.23019 (11)0.25369 (12)0.33441 (6)0.0208 (2)
C90.19014 (12)0.19933 (14)0.40185 (7)0.0269 (2)
H90.15030.25140.44200.032*
C100.20931 (14)0.06843 (15)0.40935 (8)0.0313 (3)
H100.18160.02910.45460.038*
C110.26965 (14)0.00504 (13)0.34994 (8)0.0306 (3)
H110.28310.09530.35380.037*
C120.30993 (12)0.05536 (11)0.28486 (7)0.0239 (2)
H120.35330.00500.24450.029*
C130.42082 (12)0.46870 (11)0.30836 (6)0.02080 (19)
H13A0.38090.54390.33830.025*
H13B0.49760.49000.27250.025*
C140.47481 (12)0.35782 (11)0.35572 (6)0.01978 (18)
C150.45211 (14)0.36787 (13)0.43074 (7)0.0250 (2)
H150.40260.44580.45130.030*
C160.49986 (14)0.26715 (14)0.47628 (7)0.0279 (2)
C170.4717 (2)0.27899 (19)0.55740 (8)0.0450 (4)
H17A0.46760.36730.56940.068*
H17B0.54550.22290.57880.068*
H17C0.38360.25440.57660.068*
C180.57440 (13)0.15521 (13)0.44460 (7)0.0249 (2)
H180.60940.08590.47470.030*
C190.59933 (11)0.14172 (11)0.36993 (6)0.02006 (19)
C200.54680 (11)0.24273 (11)0.32473 (6)0.01771 (17)
C210.68633 (12)0.02336 (11)0.33656 (7)0.0219 (2)
H21A0.63300.01380.30660.026*
H21B0.71210.03990.37510.026*
C220.89557 (12)0.11097 (12)0.33267 (6)0.0218 (2)
H22A0.99440.08430.31310.026*
H22B0.88120.07930.38350.026*
C230.85776 (11)0.25427 (11)0.33065 (6)0.01980 (19)
C240.85952 (12)0.32543 (13)0.38967 (7)0.0234 (2)
H240.87760.28430.43430.028*
C250.83471 (13)0.45668 (14)0.38262 (7)0.0260 (2)
H250.83780.50690.42190.031*
C260.80504 (13)0.51447 (12)0.31695 (7)0.0249 (2)
H260.78810.60450.31060.030*
C270.80086 (12)0.43792 (11)0.26140 (6)0.02130 (19)
H270.77720.47710.21720.026*
C280.89733 (13)0.06454 (11)0.25708 (7)0.0235 (2)
H28A0.83620.11960.24570.028*
H28B0.95550.11230.29130.028*
C290.98728 (12)0.03182 (11)0.18882 (6)0.02039 (19)
C301.12006 (13)0.09959 (12)0.16848 (7)0.0246 (2)
H301.16080.16380.19980.029*
C311.19249 (14)0.07226 (13)0.10175 (8)0.0281 (2)
H311.28370.11730.08680.034*
C321.13011 (14)0.02149 (12)0.05717 (7)0.0264 (2)
H321.17590.03950.01030.032*
C330.99908 (12)0.08864 (11)0.08247 (6)0.02099 (19)
H330.95690.15450.05250.025*
C340.49460 (18)0.15787 (14)0.04811 (7)0.0329 (3)
H34A0.46160.09740.02170.049*
H34B0.59520.14450.03680.049*
H34C0.45450.24510.03380.049*
C390.64042 (11)0.38137 (11)0.09515 (6)0.01909 (18)
C500.67620 (14)0.46809 (15)0.03151 (8)0.0331 (3)
H50A0.62210.46020.00620.050*
H50B0.77450.44410.01240.050*
H50C0.65520.55640.04700.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01089 (5)0.01544 (5)0.01542 (5)0.00063 (4)0.00265 (4)0.00095 (4)
Zn20.01181 (5)0.02042 (6)0.01527 (5)0.00020 (4)0.00364 (4)0.00250 (4)
Cl10.02812 (14)0.02265 (12)0.02927 (14)0.00642 (10)0.00913 (11)0.00039 (10)
Cl20.03615 (16)0.02869 (13)0.01692 (11)0.00313 (11)0.00466 (11)0.00407 (9)
O10.0122 (3)0.0231 (3)0.0150 (3)0.0000 (3)0.0029 (2)0.0012 (3)
O20.0152 (3)0.0223 (3)0.0212 (4)0.0020 (3)0.0026 (3)0.0047 (3)
O30.0256 (4)0.0178 (3)0.0237 (4)0.0036 (3)0.0049 (3)0.0022 (3)
O40.0160 (3)0.0325 (4)0.0185 (4)0.0012 (3)0.0033 (3)0.0075 (3)
O50.0559 (8)0.0244 (5)0.0764 (10)0.0123 (5)0.0390 (7)0.0103 (5)
O60.0332 (6)0.0538 (8)0.0721 (10)0.0047 (6)0.0165 (6)0.0005 (7)
O70.0481 (7)0.0544 (8)0.0323 (6)0.0102 (6)0.0007 (5)0.0030 (5)
O80.0610 (8)0.0367 (6)0.0358 (6)0.0086 (5)0.0166 (6)0.0106 (5)
O90.0359 (7)0.0380 (7)0.0181 (6)0.0001 (6)0.0015 (5)0.0060 (5)
O100.1041 (19)0.0174 (6)0.0296 (8)0.0013 (9)0.0282 (11)0.0031 (5)
O110.0595 (11)0.0219 (6)0.0210 (6)0.0149 (6)0.0042 (6)0.0056 (4)
O120.0377 (9)0.0678 (12)0.0394 (9)0.0215 (8)0.0073 (7)0.0125 (8)
O9B0.059 (3)0.0264 (17)0.0257 (18)0.0033 (17)0.0166 (18)0.0019 (13)
O10B0.032 (2)0.038 (2)0.084 (4)0.0089 (18)0.007 (2)0.006 (2)
O11B0.066 (3)0.032 (2)0.028 (2)0.021 (2)0.014 (2)0.0086 (16)
O12B0.050 (3)0.0197 (15)0.0257 (18)0.0028 (15)0.0020 (17)0.0029 (12)
N10.0125 (3)0.0172 (3)0.0203 (4)0.0002 (3)0.0035 (3)0.0016 (3)
N20.0157 (4)0.0191 (4)0.0172 (4)0.0012 (3)0.0026 (3)0.0005 (3)
N30.0127 (4)0.0219 (4)0.0229 (4)0.0021 (3)0.0036 (3)0.0046 (3)
N40.0144 (4)0.0223 (4)0.0198 (4)0.0001 (3)0.0044 (3)0.0038 (3)
N50.0142 (4)0.0249 (4)0.0182 (4)0.0041 (3)0.0041 (3)0.0026 (3)
N60.0159 (4)0.0202 (4)0.0200 (4)0.0023 (3)0.0040 (3)0.0001 (3)
C10.0157 (4)0.0196 (4)0.0264 (5)0.0025 (3)0.0070 (4)0.0026 (4)
C20.0166 (4)0.0256 (5)0.0289 (6)0.0051 (4)0.0095 (4)0.0061 (4)
C30.0136 (4)0.0259 (5)0.0296 (6)0.0007 (4)0.0058 (4)0.0074 (4)
C40.0171 (4)0.0200 (4)0.0265 (5)0.0039 (4)0.0028 (4)0.0028 (4)
C50.0145 (4)0.0179 (4)0.0199 (5)0.0013 (3)0.0019 (3)0.0019 (3)
C60.0223 (5)0.0162 (4)0.0215 (5)0.0027 (4)0.0058 (4)0.0009 (3)
C70.0158 (4)0.0266 (5)0.0193 (5)0.0020 (4)0.0006 (4)0.0011 (4)
C80.0119 (4)0.0283 (5)0.0207 (5)0.0020 (4)0.0027 (3)0.0052 (4)
C90.0160 (5)0.0410 (7)0.0219 (5)0.0047 (4)0.0033 (4)0.0095 (5)
C100.0213 (5)0.0421 (7)0.0305 (6)0.0091 (5)0.0080 (5)0.0183 (5)
C110.0222 (5)0.0297 (6)0.0407 (7)0.0077 (4)0.0104 (5)0.0166 (5)
C120.0177 (5)0.0225 (5)0.0318 (6)0.0044 (4)0.0072 (4)0.0073 (4)
C130.0222 (5)0.0212 (4)0.0192 (5)0.0021 (4)0.0060 (4)0.0019 (4)
C140.0177 (4)0.0248 (5)0.0164 (4)0.0024 (4)0.0039 (3)0.0002 (4)
C150.0252 (5)0.0313 (6)0.0177 (5)0.0029 (4)0.0040 (4)0.0019 (4)
C160.0281 (6)0.0382 (6)0.0165 (5)0.0047 (5)0.0046 (4)0.0022 (4)
C170.0611 (11)0.0512 (9)0.0171 (6)0.0012 (8)0.0056 (6)0.0007 (6)
C180.0221 (5)0.0335 (6)0.0183 (5)0.0041 (4)0.0054 (4)0.0066 (4)
C190.0153 (4)0.0257 (5)0.0185 (5)0.0035 (4)0.0037 (3)0.0049 (4)
C200.0126 (4)0.0242 (4)0.0158 (4)0.0025 (3)0.0032 (3)0.0025 (3)
C210.0177 (5)0.0243 (5)0.0223 (5)0.0026 (4)0.0036 (4)0.0070 (4)
C220.0157 (4)0.0290 (5)0.0202 (5)0.0006 (4)0.0077 (4)0.0036 (4)
C230.0127 (4)0.0284 (5)0.0185 (4)0.0036 (4)0.0048 (3)0.0030 (4)
C240.0172 (5)0.0351 (6)0.0189 (5)0.0055 (4)0.0055 (4)0.0004 (4)
C250.0214 (5)0.0355 (6)0.0228 (5)0.0080 (5)0.0038 (4)0.0040 (4)
C260.0223 (5)0.0273 (5)0.0254 (5)0.0066 (4)0.0026 (4)0.0014 (4)
C270.0180 (5)0.0252 (5)0.0204 (5)0.0050 (4)0.0026 (4)0.0027 (4)
C280.0206 (5)0.0217 (5)0.0251 (5)0.0019 (4)0.0047 (4)0.0050 (4)
C290.0173 (4)0.0200 (4)0.0235 (5)0.0012 (3)0.0056 (4)0.0001 (4)
C300.0189 (5)0.0226 (5)0.0307 (6)0.0017 (4)0.0059 (4)0.0032 (4)
C310.0195 (5)0.0283 (6)0.0342 (7)0.0005 (4)0.0004 (5)0.0078 (5)
C320.0244 (5)0.0265 (5)0.0271 (6)0.0059 (4)0.0023 (4)0.0055 (4)
C330.0221 (5)0.0203 (4)0.0207 (5)0.0047 (4)0.0021 (4)0.0025 (4)
C340.0425 (8)0.0318 (6)0.0216 (6)0.0017 (6)0.0063 (5)0.0072 (5)
C390.0154 (4)0.0246 (5)0.0177 (4)0.0042 (4)0.0056 (3)0.0051 (3)
C500.0190 (5)0.0464 (8)0.0323 (7)0.0078 (5)0.0065 (5)0.0222 (6)
Geometric parameters (Å, º) top
Zn1—O12.0574 (8)C8—C91.3921 (16)
Zn1—O22.0849 (8)C9—C101.380 (2)
Zn1—O32.1013 (9)C9—H90.9500
Zn1—N22.1470 (10)C10—C111.388 (2)
Zn1—N32.1524 (9)C10—H100.9500
Zn1—N12.1699 (9)C11—C121.3852 (18)
Zn2—O11.9932 (8)C11—H110.9500
Zn2—O42.0009 (8)C12—H120.9500
Zn2—N52.0747 (10)C13—C141.5045 (16)
Zn2—N62.1117 (10)C13—H13A0.9900
Zn2—N42.2025 (9)C13—H13B0.9900
Cl1—O61.4245 (14)C14—C151.3969 (17)
Cl1—O81.4249 (11)C14—C201.4051 (16)
Cl1—O71.4294 (13)C15—C161.3919 (18)
Cl1—O51.4533 (12)C15—H150.9500
Cl2—O12B1.281 (4)C16—C181.390 (2)
Cl2—O10B1.394 (5)C16—C171.511 (2)
Cl2—O101.3965 (15)C17—H17A0.9800
Cl2—O121.4214 (18)C17—H17B0.9800
Cl2—O91.4448 (14)C17—H17C0.9800
Cl2—O111.4906 (14)C18—C191.3946 (17)
Cl2—O11B1.536 (4)C18—H180.9500
Cl2—O9B1.568 (4)C19—C201.4046 (15)
O1—C201.3552 (13)C19—C211.4953 (17)
O2—C391.2497 (14)C21—H21A0.9900
O3—C341.4241 (17)C21—H21B0.9900
O3—H3O0.8547C22—C231.5067 (17)
O4—C391.2716 (13)C22—H22A0.9900
N1—C11.3359 (15)C22—H22B0.9900
N1—C51.3451 (14)C23—C241.3905 (18)
N2—C61.4754 (14)C24—C251.3812 (19)
N2—C71.4819 (15)C24—H240.9500
N2—C131.4866 (15)C25—C261.3944 (18)
N3—C81.3429 (16)C25—H250.9500
N3—C121.3450 (15)C26—C271.3800 (18)
N4—C281.4718 (16)C26—H260.9500
N4—C221.4821 (16)C27—H270.9500
N4—C211.4955 (15)C28—C291.5066 (17)
N5—C271.3447 (15)C28—H28A0.9900
N5—C231.3455 (14)C28—H28B0.9900
N6—C331.3407 (15)C29—C301.3873 (17)
N6—C291.3431 (14)C30—C311.386 (2)
C1—C21.3883 (16)C30—H300.9500
C1—H10.9500C31—C321.384 (2)
C2—C31.3847 (18)C31—H310.9500
C2—H20.9500C32—C331.3881 (18)
C3—C41.3854 (19)C32—H320.9500
C3—H30.9500C33—H330.9500
C4—C51.3906 (15)C34—H34A0.9800
C4—H40.9500C34—H34B0.9800
C5—C61.5094 (17)C34—H34C0.9800
C6—H6A0.9900C39—C501.5084 (16)
C6—H6B0.9900C50—H50A0.9800
C7—C81.5092 (17)C50—H50B0.9800
C7—H7A0.9900C50—H50C0.9800
C7—H7B0.9900
O1—Zn1—O290.95 (3)C8—C7—H7A109.3
O1—Zn1—O397.15 (3)N2—C7—H7B109.3
O2—Zn1—O391.81 (4)C8—C7—H7B109.3
O1—Zn1—N291.74 (3)H7A—C7—H7B107.9
O2—Zn1—N294.53 (4)N3—C8—C9122.20 (12)
O3—Zn1—N2169.00 (4)N3—C8—C7116.56 (10)
O1—Zn1—N386.70 (3)C9—C8—C7121.17 (12)
O2—Zn1—N3174.90 (4)C10—C9—C8118.80 (13)
O3—Zn1—N392.97 (4)C10—C9—H9120.6
N2—Zn1—N381.04 (4)C8—C9—H9120.6
O1—Zn1—N1168.87 (4)C9—C10—C11119.19 (12)
O2—Zn1—N186.08 (3)C9—C10—H10120.4
O3—Zn1—N193.66 (4)C11—C10—H10120.4
N2—Zn1—N177.83 (4)C12—C11—C10118.92 (12)
N3—Zn1—N195.38 (3)C12—C11—H11120.5
O1—Zn2—O498.18 (3)C10—C11—H11120.5
O1—Zn2—N594.83 (4)N3—C12—C11122.16 (13)
O4—Zn2—N5104.35 (4)N3—C12—H12118.9
O1—Zn2—N6149.41 (4)C11—C12—H12118.9
O4—Zn2—N690.61 (4)N2—C13—C14110.86 (9)
N5—Zn2—N6111.34 (4)N2—C13—H13A109.5
O1—Zn2—N489.52 (3)C14—C13—H13A109.5
O4—Zn2—N4169.51 (4)N2—C13—H13B109.5
N5—Zn2—N481.95 (4)C14—C13—H13B109.5
N6—Zn2—N479.21 (4)H13A—C13—H13B108.1
O6—Cl1—O8111.94 (9)C15—C14—C20119.55 (10)
O6—Cl1—O7109.80 (9)C15—C14—C13120.33 (11)
O8—Cl1—O7109.16 (8)C20—C14—C13120.11 (10)
O6—Cl1—O5108.75 (8)C16—C15—C14121.96 (12)
O8—Cl1—O5108.31 (8)C16—C15—H15119.0
O7—Cl1—O5108.83 (10)C14—C15—H15119.0
O12B—Cl2—O10B122.5 (3)C18—C16—C15117.73 (11)
O12B—Cl2—O10135.8 (2)C18—C16—C17121.11 (13)
O10B—Cl2—O1069.9 (3)C15—C16—C17121.16 (13)
O12B—Cl2—O1267.9 (3)C16—C17—H17A109.5
O10B—Cl2—O12164.3 (3)C16—C17—H17B109.5
O10—Cl2—O12111.87 (15)H17A—C17—H17B109.5
O12B—Cl2—O9108.17 (18)C16—C17—H17C109.5
O10B—Cl2—O956.6 (3)H17A—C17—H17C109.5
O10—Cl2—O9112.33 (13)H17B—C17—H17C109.5
O12—Cl2—O9110.44 (10)C16—C18—C19121.93 (11)
O10B—Cl2—O1186.4 (2)C16—C18—H18119.0
O10—Cl2—O11108.75 (10)C19—C18—H18119.0
O12—Cl2—O11107.04 (12)C18—C19—C20119.73 (11)
O9—Cl2—O11106.09 (8)C18—C19—C21121.19 (10)
O12B—Cl2—O11B112.4 (3)C20—C19—C21119.02 (10)
O10B—Cl2—O11B104.9 (3)O1—C20—C19120.02 (10)
O12—Cl2—O11B78.9 (3)O1—C20—C14120.94 (9)
O9—Cl2—O11B138.7 (2)C19—C20—C14119.03 (10)
O11—Cl2—O11B109.2 (2)C19—C21—N4110.63 (9)
O12B—Cl2—O9B111.8 (3)C19—C21—H21A109.5
O10B—Cl2—O9B104.8 (3)N4—C21—H21A109.5
O10—Cl2—O9B103.47 (16)C19—C21—H21B109.5
O12—Cl2—O9B59.5 (2)N4—C21—H21B109.5
O9—Cl2—O9B59.87 (19)H21A—C21—H21B108.1
O11—Cl2—O9B147.78 (15)N4—C22—C23112.64 (9)
O11B—Cl2—O9B97.2 (2)N4—C22—H22A109.1
C20—O1—Zn2116.39 (6)C23—C22—H22A109.1
C20—O1—Zn1119.30 (6)N4—C22—H22B109.1
Zn2—O1—Zn1122.58 (4)C23—C22—H22B109.1
C39—O2—Zn1132.81 (7)H22A—C22—H22B107.8
C34—O3—Zn1122.56 (8)N5—C23—C24121.68 (11)
C34—O3—H3O110.3N5—C23—C22116.27 (10)
Zn1—O3—H3O111.1C24—C23—C22121.97 (10)
C39—O4—Zn2132.45 (8)C25—C24—C23119.24 (11)
C1—N1—C5119.00 (9)C25—C24—H24120.4
C1—N1—Zn1128.68 (7)C23—C24—H24120.4
C5—N1—Zn1112.10 (7)C24—C25—C26119.05 (12)
C6—N2—C7111.21 (9)C24—C25—H25120.5
C6—N2—C13111.14 (9)C26—C25—H25120.5
C7—N2—C13111.29 (9)C27—C26—C25118.52 (12)
C6—N2—Zn1104.81 (7)C27—C26—H26120.7
C7—N2—Zn1108.42 (7)C25—C26—H26120.7
C13—N2—Zn1109.74 (7)N5—C27—C26122.62 (11)
C8—N3—C12118.70 (10)N5—C27—H27118.7
C8—N3—Zn1111.57 (7)C26—C27—H27118.7
C12—N3—Zn1125.70 (8)N4—C28—C29110.33 (9)
C28—N4—C22110.45 (9)N4—C28—H28A109.6
C28—N4—C21110.18 (9)C29—C28—H28A109.6
C22—N4—C21111.60 (9)N4—C28—H28B109.6
C28—N4—Zn2107.91 (7)C29—C28—H28B109.6
C22—N4—Zn2105.41 (7)H28A—C28—H28B108.1
C21—N4—Zn2111.13 (7)N6—C29—C30121.89 (11)
C27—N5—C23118.83 (11)N6—C29—C28115.99 (10)
C27—N5—Zn2123.99 (8)C30—C29—C28122.08 (10)
C23—N5—Zn2113.17 (8)C31—C30—C29119.06 (12)
C33—N6—C29118.65 (10)C31—C30—H30120.5
C33—N6—Zn2124.81 (8)C29—C30—H30120.5
C29—N6—Zn2114.47 (8)C32—C31—C30119.09 (12)
N1—C1—C2122.73 (11)C32—C31—H31120.5
N1—C1—H1118.6C30—C31—H31120.5
C2—C1—H1118.6C31—C32—C33118.48 (12)
C3—C2—C1118.44 (11)C31—C32—H32120.8
C3—C2—H2120.8C33—C32—H32120.8
C1—C2—H2120.8N6—C33—C32122.62 (11)
C2—C3—C4119.05 (10)N6—C33—H33118.7
C2—C3—H3120.5C32—C33—H33118.7
C4—C3—H3120.5O3—C34—H34A109.5
C3—C4—C5119.31 (11)O3—C34—H34B109.5
C3—C4—H4120.3H34A—C34—H34B109.5
C5—C4—H4120.3O3—C34—H34C109.5
N1—C5—C4121.46 (11)H34A—C34—H34C109.5
N1—C5—C6115.97 (9)H34B—C34—H34C109.5
C4—C5—C6122.57 (10)O2—C39—O4125.96 (10)
N2—C6—C5109.33 (9)O2—C39—C50117.32 (10)
N2—C6—H6A109.8O4—C39—C50116.71 (10)
C5—C6—H6A109.8C39—C50—H50A109.5
N2—C6—H6B109.8C39—C50—H50B109.5
C5—C6—H6B109.8H50A—C50—H50B109.5
H6A—C6—H6B108.3C39—C50—H50C109.5
N2—C7—C8111.72 (9)H50A—C50—H50C109.5
N2—C7—H7A109.3H50B—C50—H50C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.851.862.7022 (14)170
Symmetry code: (i) x, y1, z.
Selected bond lengths (Å) top
Zn1—O12.0574 (8)Zn2—O11.9932 (8)
Zn1—O22.0849 (8)Zn2—O42.0009 (8)
Zn1—O32.1013 (9)Zn2—N52.0747 (10)
Zn1—N22.1470 (10)Zn2—N62.1117 (10)
Zn1—N32.1524 (9)Zn2—N42.2025 (9)
Zn1—N12.1699 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.851.862.7022 (14)169.8
Symmetry code: (i) x, y1, z.
 

Acknowledgements

BD gratefully acknowledges a European Union Erasmus Mundus fellowship. The authors thank Ahmed Fawzy Abdel-Magied for assistance with the editing of the manuscript.

References

First citationBruker (2010). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationSelmeczi, K., Michel, C., Milet, A., Gautier-Luneau, I., Philouze, C., Pierre, J.-L., Schnieders, D., Rompel, A. & Belle, C. (2007). Chem. Eur. J. 13, 9093–9106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorelli, S., Belle, C., Gautier-Luneau, I., Pierre, J. L., Saint-Aman, E., Latour, J. M., Le Pape, L. & Luneau, D. (2000). Inorg. Chem. 39, 3526–3536.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 4| April 2014| Pages m120-m121
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds